Top Banner
SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York
61

SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

Dec 14, 2015

Download

Documents

Aryan Gerold
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

SiGe HBT BiCMOS Field Programmable Gate Arrays for

Fast Reconfigurable Computing

Bryan S. Goda

Rensselaer Polytechnic Institute

Troy, New York

Page 2: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

Agenda

• Introduction

• BiCMOS FPGA History

• SiGe HBT BiCMOS Process

• Current Mode Logic

• Xilinx 6200 FPGA Design

• Configuration Memory

• Performance Results

• Conclusions and Future Work

Page 3: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

Current Role of SiGe

• “More Zip per Chip”

• Wireless Phones -> Watch Sized Phone

• Direct Broadcast Satellite

• Fiber-Optic Lines, Switches, and Routers

Page 4: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

Programmable Bipolar Logic

1983: Fairchild ECL Field Programmable Logic Array• Fuse Based• 4ns Cycle Rate• High Power• Scaling Problems

1990: Algotronix 1.2uM 256 Cell Configurable Logic Array• fT 6 GHz, 200ps Gate Delay• 4 Transistor Static RAM Memory Cells• ASIC Emulation and Signal Processing• Forerunner of XC6200

Page 5: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

V+

a a

Vref

a a

EN1 EN2

V-

Y1 Y1 Y2 Y2

US Patent CMOS Switchable 2 Input Multiplexer

Page 6: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

SiGe Heterojunction Bipolar Transistor

• Selectively introduce Ge into the base of a Si BJT

• Smaller Base Bandgap increases e- injection, higher Beta (100)

• Higher Beta allows more heavily doped base RB (125 Ohm)

• Graded Bandgap decrease base transit time fT

Page 7: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.
Page 8: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

SiGe HBT

• 50Ghz Process, 100Ghz process within a year (30uA at 50 Ghz)

• 5 layers of metal• Used in RPI VLSI Class• co-integrated with CMOS process

– can have HBT logic with CMOS memory– low power and high speed

Page 9: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

fT Curves for Various Emitter Lengths

Page 10: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

SiGe HBT Layout

Base

Emitter

Collector Sub-Collector

Page 11: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

EC

EV

e-

h+n+ Siemitter

p-Si

Ge

p-SiGebase

Eg,Ge(x=0)

Eg,Ge(grade)= Eg,Ge(x=Wb)- Eg,Ge(x=0)

Drift Field

n- Sicollector

Band Diagram

=0.031 ev

Dielectric ConstantSi = 11.7Ge =16.2SiGe (7.5% Ge)=12.03

Page 12: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

CML Branch Current vs. Differential DC Voltage

Page 13: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

IBM SiGe and CMOS Load Gate Delays on M1, M2, LM

Page 14: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

Current Steering Logic

Level 1

Vcc 0 V

-250 mV

Level 2

-950 mV

-1.2 V

Level 3

-1.90 V

-2.15 V

Vee 4.5 V

Fastest Logic LevelLimited Drive Capability

Inter-block Signal LevelGood Fan-Out (10)

Clock SignalSlowest Level

Level 4 Possible

Page 15: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

Current Steering Logic In SiGe• 13ps Transistor Switching Time (75 Ghz)

– 6ps Process Next Year

• Small Voltage Swings (250mv) vs 3.3 or 5 V– Less Power– Smaller Swing = Faster

• “Steer” Currents, Use Differential Logic– Less Switch Noise

• Less Transistors needed, Complement Signal Present

• Flip-Flops and Multiplexers Easy to Implement

Page 16: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

Vcc

AA A

BB

Vee

Vref

A XOR B

A XOR B

O V

Level 10 -0.25 V

Level 2-0.95 -1.2V

-4.5V

A B A XOR B0 0 00 1 11 0 11 1 0

CMLXOR Logic Schematic

1 0 1 1 0 1 1 1 0

0 0 0 1 1 0 0 1 0

1 0 1 0 1 1 1 0

Alevel1

Blevel 2

A XOR B

Page 17: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

Logic Cell

General FPGA Structure

I/O Cell

Routing Network

Configuration Memory

Page 18: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

High Speed FPGA Applications

• Real Time Image Processing- Radar- Pattern Recognition

• Digital Networks- Mobile Subscriber Equipment- Command Information Systems- High Speed Switching Nodes

• Control Systems- Guidance Systems- Reprogrammable Survivability

• Satellite Systems

Page 19: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

Desired Image

Search Image

1. Desired Image is programmed into chip (1 pixel = 1CLB)2. Load a section of search image3. If enough pixels match, then turn found bit on4. Load another section, or reprogram with new desired image

Image Correlation

Page 20: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

Samples FromXC6200 CAD Tools

CLBsIO Blocks

Pins

Page 21: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

FPGA Drawbacks

• Slowdown – 200 Mhz Internal Speed down to 30-60 MHz External – Pass Transistor = Low Pass Filter

• Limited Bandwidth

• Relatively Long Configuration Times (Seconds)

• Vender Guarded Information

• More Expensive than Comparable ASIC

Page 22: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

Equivalent Circuit from Node 3 to Node 2

M

M

M M

MM

1

On

23

4

3

2

1 4

Interconnect

4

1

23

Pass Transistor (Memory)

Pass Transistor Interconnect Modeling

Page 23: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

Field Programmable Gate Arrays (FPGA)

• Hierarchy Level Organization (Sea of Gates)– Simple Cells (Configurable Logic Blocks)– 4x4, 16x16, 64x64 groupings– Hierarchy of routing resources at each level– I/O Blocks (external interface)

Page 24: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

Design Parameters

• Logic Swings Levels- Based on Differential Pair Switching- Current Levels

• Redesign of the Configurable Logic Block- Take Advantage of Differential Wiring- What Parts Can be Turned off if not Used?

• Supply Levels- How Many Levels of Logic?

• Routing Resources

• CMOS Voltage Levels- Integrate CMOS into Bipolar Current Tree

Page 25: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

a

VCC 0 V

OUT

OUT

a b b c c d d

S1 S1 S1 S1

S2 S2

Vee -3.4 V

Level 3-1.9 -2.15V

Level 2-0.95 -1.2V

Level 10 -0.25V

Replace with

Vref

Current Tree with CMOS Routing

Page 26: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

Pulse Width 50ps 60ps 70ps 100ps

CMOSBipolar

Bipolar vs Bipolar/CMOS Current Trees

Page 27: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

4:1 MultiplexerLevel 1 Inputs

Level 1Output

Level 1Output

Level 2Input

Level 2Input

Level 3Input Level 3

Input

CMOSVersion

W/L 5:1

Page 28: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

If a=1 then select Y2output = b

If a=0 then select Y3output = 0

A OR B

A and B

If a=1 then select Y2output = 1

If a=0 then select Y3output = b

X2:= a

1

0

X1:= a

X3:= b

Y2

Y3

X2:= b

1

0

X1:= a

X3:= a

Y2

Y3

Sample Logic Using Multiplexers

Page 29: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

Non-Inverted Output

Inverted Output

X2:=b

1

0

X1:= a

X3:= a

Y2

Y3

X2:= b

1

0

X1:= a

X3:= a

Y2

Y3

Redesign of XC6200 Logic

Original XC6200 Design• Have to Track Inversions

Revised Design• Use Differential Pair Logic• Eliminate XC6200 Fast Logic• No Inversion Tracking

Page 30: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

X1Y2X2

X3 Y3

1

0

D Q

Clk Q

FC

S

RP Multiplexer

CS Multiplexer

Clr

Original XC6200Architecture

RedesignedArchitecture

X1Y2X2

X3 Y3

1

0

D Q

Clk Q

FC

S

RP Multiplexer

CS Multiplexer

Clr Switchable

Bipolar with CMOS Routing

Page 31: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

10 Ghz Three CLB Simulation

Page 32: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

4:1 MuxHigh Speed Logic

2:1 MuxCMOS Control Buffer

4:1 Mux (off switchable)CMOS Control Master/Slave Latch (off switchable)

(off switchable)

CLB Layout

Page 33: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

Sample CLB Test Circuit

CLB8:1 Mux

Pad Drivers

8/1 DivideBufferVrefVref

Page 34: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

Actual Fabricated Test Circuit

Pads (110u x 110u)

Page 35: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

NSEWN4S4E4W4

NSEWN4S4E4W4

F

N S E W N4 S4 E4 W4

X1 X2CLB

X3

Outgoing CLB Routing Incoming CLB Routing

Page 36: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

4x4 Block Boundary Routing

S Switches

E S

witch

es

N Switches

W S

wit

ches

S Switches

E S

witch

es

N Switches

W S

wit

ches

Local RoutingMagic Routing

Length 4 FastLane (4x4)Length 16 Fastlane (16x16)Chip Length Fastlane (64x64)

Page 37: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

NSEWN4S4E4W4

NSEWN4S4E4W4

F

N S E W N4 S4 E4 W4

X1 X2CLB

X3

Local CLB Routing

N S

W FW

out

S E W F

Sout

N S E

F

Eou

t

N E W F

Nout

• Nearest Neighbor Routing• Output (F) or Local Through

Example: Route East Signal Through to Next CLBNote: Can’t Route Signal Back to Origin at this Level

Page 38: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

New

Co

nfi

gu

rati

on

Dat

a

VEE

VEE

VSS VSS

SRAM Bits In Memory Planes CMOS to CML Buffer

decode

CLBMultiplexer

InputsVREF

Normal CMOS Memory-CML Interface

Page 39: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

D Latch M/S40 Transistors

D Latch M/S18 Transistors

DQ

Clock

QCLK

D

CLK

QQ

Data Data

WordOut Out

RAM Cell6 TransistorsParallel Load

Memory Design

Page 40: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

Memory Planes

CLBs

3-D Chip Stacking

• Shorter Wires• More CLBs/Area• Optimize Memory

Page 41: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

CLB with Routing and RAM (2)

MUX MUX MUX

CLB

MUX Selects

CLBSelect

RAM1

RAM2

Page 42: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

Layout of Configurable Logic Block with 2 sets of RAMRAM 2:1 Mux

8:1Mux (routing)CMOS Selects CLB (logic)

Master/Slave Latch(memory)

Circuit Elements:240 nfets122 pfets36 resistors98 npn1 HBTs16 npnhb1 HBTs

Page 43: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

Circuit Type Buffer CMLXOR,AND,OR

MUXXOR,AND,OR

CLB

Propagation Delay 17ps 22-25ps 23-26ps 100ps

SiGe Performance

* Projected Power Levels for 7HP Process:At 50Ghz, 30 uA, 20x+ reduction in power

Power Decreasing Ideas

Date Idea Power Consumption/CLBDec 98 Original CLB 73 mWJune 99 CLB Redesign I 34 mWAug 99 CLB Redesign II 24 mWDec 99 Widlar Current Mirror

with CMOS Control, CMOS Routing 10.8 mW

Mar 00 Supply Voltage 4.5 -> 3.3V 7 mWDec 00* 7HP Process 0.3 mW

Page 44: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

Multiplexer Performance vs Temperature

Normal 250 mV Swing

200 mV Min Swing

Page 45: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

Vcc

Vref

Vee

Input

Widlar Current Mirror with CMOS Control

Page 46: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

XC6200 Design Improvements

• Developed at the University of Scotland

• Inversion of Signal at Every CLB- Taken care of due to differential pair wiring

• No Pass Transistors, Use Multiplexers for Routing

• Able to turn off unused parts with CMOS controlled current mirror

• No CMOS-CML Conversion circuits needed, CMOS in current trees

• Handcrafted, dense layouts

• Context Switching

Page 47: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

Power Delay Product

0.001

0.01

0.1

1

1998 1999 2000 2001 2002

Year

uW

/gat

e/M

hz

(log

sca

le)

PDP BiCMOS

PDP CMOS High

PDP CMOS Low

5HP

7HP8HP

Page 48: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

A A B B C C

A A B B C C

Slow Transition

Fast Transition

Data Dependent Switching

Could Vary Signals Up to 30%

Setup Time Violations

Differential Logic hasComplement Switching In Opposite Direction

Bit Line Twisting

Page 49: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

Future Work

• Testing

• Overall FPGA Architecture

• Scaling

• Integrate with Other Systems

• Projected Graduation May 2001, work to continue at USMA

• Power Reduction- 7HP Process

Page 50: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

Pattern1000110010070ps ~ 7.1 GHz

Pattern2101101110070ps

Select

00011001001011011100

0001000100 AND1011111100 OR

AND OR AND OR

CLB Context Switch Example

Page 51: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

Redesigned CLB Cell with Routing and Memory (2x)

2x24 BitRAM

Three 8-1 InputMux

CLBFour 4-1 Output

Mux

M1M2M3M4

Page 52: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

CLB Row 4x1

Switch

Circuit Elements

1520 Nfets792 Pfets260 Resistors140 NPN1 HB576 NPN1

Memory Bus Lines N/S Input Output

Page 53: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

Device XC6209 XC6216 XC6236 XC6264

Gate Count 9-13K 16-24K 36-55K 64-100K

Number Cells 2304 4096 9216 16384

I/O Blocks 192 256 384 512

Row x Col 48x48 64x64 96x96 128x128

XC6200 Device Family

Page 54: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

Typical Routing Delays

Symbol Parameter XC6200 SiGe Redesign TNN Route Nearest Neighbor 1 ns 23 ps

Tmagic Route X2/X3 to Magic Out 1.5 ns 47 ps

TL4 Length 4 FastLane 1.5 ns 47 ps

TL16 Length 16 FastLane 2 ns 70 ps

TCL64 Chip-Length (64) Delay 3 ns 94 ps

~31x improvement

Page 55: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

4x4 CLB Layout Cell

• Largest Basic Block

• Over 13,000 Transistors

• CommercialProduct Size is a 4x4 Arrayof this Cell

Page 56: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.
Page 57: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.
Page 58: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.
Page 59: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.

5 Stage Ring Oscillator

Schematic 6.36 Ghz -- 8.4mA

Parasitics 5.71 Ghz 89% 8.6mA

50oC 5.26 Ghz 82% 8.85 mA

75oC 4.87 Ghz 76% 9.1 mA

100oC 4.16 Ghz 65% 9.34 mA

125oC 3.12 Ghz 49% 9.5 mA

Speed Relative to Schematic Current

Page 60: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.
Page 61: SiGe HBT BiCMOS Field Programmable Gate Arrays for Fast Reconfigurable Computing Bryan S. Goda Rensselaer Polytechnic Institute Troy, New York.