Top Banner
ڀݚ ˙հ CERN SPS Λ༻λχϡʔτϦϊଌఆͱ৽ཧ୳ɿ SHiP ܭը + DsTau/NA65 ݧa University of Bernɼ b भେɼ c ݹେɼ d ذෞେ ༗լ ত وa ɼ༗լ ஐb ɼখদ խ c ɼ ౻ࠤc ɼ٢ຊ խ ߒd [email protected]ɼ[email protected]ɼkomatsu@flab.phys.nagoya-u.ac.jpɼ sato@flab.phys.nagoya-u.ac.jpɼ[email protected] 2020 ( 2 )2 1 ཧഎ ܠஶΒɼ CERN ͷ Super Proton Synchrotron (SPS) Λ༻ɼҎԼ 1.1-1.3 Ͱड़ΔཧΛٻΔɻ ͰຊͷಘҙͱΔज़ੜΔɻ 1.1 λχϡʔτϦϊཚʹΔϨϓτϯ วͷݕ λχϡʔτϦϊ 3 ΔχϡʔτϦϊͷதͰ 3 ʹҐஔΔɻͷੜͱݕͰɼ Αͷݕग़ज़ΔɻΕ·Ͱ ʹ DONuTɼOPERAɼSuper-KɼIceCube ݧλ χϡʔτϦϊͷ؍ଌΛใΔɻͷதͰχϡʔ τϦϊৼಈΛհͳతͳଌఆ DONuT ݧ ͰΔɻΕΕͷଌఆՌෆఆେɼλ χϡʔτϦϊʹͷجຊతͳʹ ݧతʹཧղΕͳɻਤ 1 ࡏݱʹಘΒΕΔχϡʔ τϦϊԠஅ໘ΛɻϛϡʔχϡʔτϦϊʹ 2%ఔͱਫ਼ΑଌΒΕΔɻଞɼλχϡʔ τϦϊʹ 50%ҎͷෆఆΔɻ ΕχϡʔτϦϊཚʹΔϨϓτϯวݕͷ ݶքΛΊΔɻ ϨϓτϯวΕ·ͰͷʹلΘΔʑͳ ʹݧΕɻͰૉඪ४ཧʹ Δ “sacred principle”ʢͳΔݪཧʣͱडೖΕ ΒΕΔɻʹݱ1 ͷՌଌఆਫ਼ͷғͰว ΓΔͱݴΔɻϨϓτϯวΛ৴ ΔͳΒλχϡʔτϦϊଞͷ 2 ͱಉ ͰΓɼ৽ཧͳͷΕͳɻ χϡʔτϦϊৗʹզʑΛڻΛ ɻਓΑಘλχϡʔτϦϊݕग़ͷ ज़Λʹث3 ͷϨϓτϯʹ৽ཧͷՄ /GeV) 2 cm -40 10 × ( const σ 0 20 40 60 80 100 120 e ν μ ν τ ν DONuT DONuT with n=6.1 from Pythia 6 (main systematic uncertainty not included) SM 1: 3 ͷχϡʔτϦϊͷ ν ɼ ν ۉඇཚ Ԡஅ໘ [1]ɻԣઢඪ४ཧΒ༧ଌΕΔɻ Λ୳ͷ৺༂ΔΈͰΔɻ ෳͷίϥΠμʔʹݧΑʮୈ 3 ͷΘΔաఔͰϨϓτϯวΕΔ ΕͳʯͱݧՌใΕΔɻ b ΫΥʔΫΛΉͷηϛϨϓτχοΫյʹ λյΔͱϛϡʔΦϯյΔ ͷൺɼR(D () )= Γ(BD () τ ντ ) Γ(BD () l ν) ɼཧ༧ΑΓଟ ͱใΕΔ [2] (BaBarɼBelleɼLHCb ͷ ՌΑΓɼ2019 Ͱ 3.1σ ͷ༗ҙ)ɻಉͷஹ b s�� (B 0 K 0 ��ɼB + K + ��) Β ΕΔɻΕΒͷηϛϨϓτχοΫյ tree-level ͰͷաఔͰΓͷҧϨϓτϯͱͳΔ ΊɼΕΕͷյͷൺਖ਼ʹܭͰΔɻ ΕΒͷݧՌඪ४ཧͰઆɼ“Flavor anomalies” ͱݺΕΔΑʹͳΔɻͷΞϊϚ Ϧʔʹର৽ཧͷଘ׆ʹΕɼ· ݧత༗ҙͷɾ൱ఆʹଟ໘ΒͳΕ Δɻ Ε·ͰͷใͷյΛ༻ݧΒͷΈͰ 115
9

SHiP - h + DsTau/NA652 K l h { ` ô M H E w è Ó Ä ï ¬ R $ t ¿ Ó ç b ý { U O b s y o a p K Ç á Ä æ Ê Z t S M o è Ó Ä ï Ó ' Q q Å U _ Q o µ V p K { f x Ç á Ä

Jan 22, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: SHiP - h + DsTau/NA652 K l h { ` ô M H E w è Ó Ä ï ¬ R $ t ¿ Ó ç b ý { U O b s y o a p K Ç á Ä æ Ê Z t S M o è Ó Ä ï Ó ' Q q Å U _ Q o µ V p K { f x Ç á Ä

8

web

5

GroundBIRD CMB

GroundBIRD

CMB

[17]

CMB

CMB

GroundBIRD

CMB GroundBIRD

KEK

IAC

[1] A.A. Penzias, R. W. Wilson, Astrophysical Jour-

nal Letters, 142: 419–421, (1965).

[2] T. Nagasaki et al., J. Low Temp. Phys., 193,

1066–1074, (2018)

J. Choi et al., EPJ Web Conf., 168, 01014,

(2018).

[3] Planck Collaboration, arXiv:1807.06205, Ac-

cepted by A and A, (2018).

[4] POLARBEAR Collaboration, Astrophys.J., 848

no.2 121, (2017).

[5] SPT Collaboration, FERMILAB-PUB-19-536-

AE-PPD, 16 pp., (2019).

[6] BICEP2 and Keck Array Collaborations, Phys.

Rev. Lett., 121, 221301, (2018).

[7] Simons Observatory Collaboration, JCAP 1902,

056, (2019).

[8] K.Abazajian et al., arXiv:1908.01062 [astro-

ph.IM].

[9] T. Essinger-Hileman et al., Proc. SPIE, Vol.

9153, id. 91531I 23 pp., (2014).

[10] A. Gomez et al., Proc.SPIE Int.Soc.Opt.Eng.

7733, 77330Z, (2010).

[11] M. Hazumi et al., J. Low Temp. Phys., 194, 443–

452 (2019).

[12] J. Choi et al., Rev. Sci. Instrum., 84, 114502,

(2013).

6029079

[13] S. Oguri et al., Rev. Sci. Instrum., 85, 086101,

(2014).

S. Oguri et al., Rev. Sci. Instrum., 84, 055116,

(2013).

US 9,316,418 B2.

[14] H. Ishitsuka et al., J. Low Temp. Phys., 184,

424–430 (2016).

[15] J. Suzuki et al., J. Low Temp. Phys., 193, 562–

569 (2018).

[16] L. Ferrari et al., Proc. SPIE Vol. 9914, 99142G

(2016).

[17] H. Kutsuma et al., Appl. Phys. Lett., 115,

032603, (2019).

1

CERN SPS

SHiP + DsTau/NA65

aUniversity of Bern b c d

a b c c d

[email protected] [email protected] [email protected]

[email protected] [email protected]

2020 ( 2 ) 2

1

CERN Super Proton Synchrotron (SPS)

1.1-1.3

1.1

3

3

DONuT OPERA Super-K IceCube

DONuT

1

2%

50%

“sacred principle”

1

2

3

/GeV

)2

cm

-40

10× (co

nst

σ

0

20

40

60

80

100

120

eν μντν

DO

NuT

DO

NuT

with

n=6

.1 fr

om P

ythi

a 6

(mai

n sy

stem

atic

unc

erta

inty

not

incl

uded

)

SM

1: 3 ν ν

[1]

3

b

R(D(∗)) = Γ(B→D(∗)τντ )Γ(B→D(∗)lν)

[2] (BaBar Belle LHCb

2019 3.1σ )

b → s�� (B0 → K∗0�� B+ → K+��)

tree-level

“Flavor

anomalies”

115

Page 2: SHiP - h + DsTau/NA652 K l h { ` ô M H E w è Ó Ä ï ¬ R $ t ¿ Ó ç b ý { U O b s y o a p K Ç á Ä æ Ê Z t S M o è Ó Ä ï Ó ' Q q Å U _ Q o µ V p K { f x Ç á Ä

2

1

CERN SPS

400 GeV

DsTau

SHiP

1 DONuT

(>50%) (9 ) (33%)

2

Ds (cs

cs) Ds → τντ

τ → ντX DONuT

Ds

Ds

DsTau

10%

SHiP 10,000

2%

400 GeVproton

�� production target(e.g. tungsten)

charged particle sweeping,neutron absorption

�� beam

�� ���

�� �

��proton

�� production���

�� detection

≃5mm

�� acceptance ~ 5%

≃5mm

�� detector

2:

2 10%

10–150 GeV

Super-K Hyper-K

1.2 Hidden Sector

LHC

SHiP

(Search for Hidden Particle) CERN SPS

Beam Dump Facility (BDF) charm

beauty hidden sector

particle Hid-

den Sector (HS) decay spectrometer

Light Dark Matter (LDM)

Scattering and Neutrino De-

tector(SND) 3

3: SHiP :

sweep Active Muon shield

Scattering and Neutrino Detector

sweep

decay volume HS decay spectrometer

120 m

SHiP

SHiP

charm beauty

Hidden particle model

independent

particle ID

Heavy

Neutral Lepton (HNL) dark photon dark

scalar axion-like particles

4 HNL

[3, 4]

116

Page 3: SHiP - h + DsTau/NA652 K l h { ` ô M H E w è Ó Ä ï ¬ R $ t ¿ Ó ç b ý { U O b s y o a p K Ç á Ä æ Ê Z t S M o è Ó Ä ï Ó ' Q q Å U _ Q o µ V p K { f x Ç á Ä

2

1

CERN SPS

400 GeV

DsTau

SHiP

1 DONuT

(>50%) (9 ) (33%)

2

Ds (cs

cs) Ds → τντ

τ → ντX DONuT

Ds

Ds

DsTau

10%

SHiP 10,000

2%

400 GeVproton

�� production target(e.g. tungsten)

charged particle sweeping,neutron absorption

�� beam

�� ���

�� �

��proton

�� production���

�� detection

≃5mm

�� acceptance ~ 5%

≃5mm

�� detector

2:

2 10%

10–150 GeV

Super-K Hyper-K

1.2 Hidden Sector

LHC

SHiP

(Search for Hidden Particle) CERN SPS

Beam Dump Facility (BDF) charm

beauty hidden sector

particle Hid-

den Sector (HS) decay spectrometer

Light Dark Matter (LDM)

Scattering and Neutrino De-

tector(SND) 3

3: SHiP :

sweep Active Muon shield

Scattering and Neutrino Detector

sweep

decay volume HS decay spectrometer

120 m

SHiP

SHiP

charm beauty

Hidden particle model

independent

particle ID

Heavy

Neutral Lepton (HNL) dark photon dark

scalar axion-like particles

4 HNL

[3, 4]

3

4: SHiP Heavy Neutral Lepton

1.3 Charm Production Intrinsic Charm

Prompt Neutrino Study

1000

2

3

u

intrinsic charm [5, 6]

2

π K

π K

DsTau

2×108

2×108

10

intrinsic charm

charm

2 DsTau SHiP

DsTau/NA65 Spokesperson

Deputy Spokesperson Physics Coordinator

(5 9 )

CERN-SPS 400 GeV

DsTau

2016 2 CERN SPS/PS (SPSC)

letter of intent [7] 2016/2017

[8]

2017 8 SPSC 2018 1 SPSC

2018 2021

2018 8

1/10

SPSC

2019 6 CERN Research Board DsTau

NA65 2021/2022

SHiP 2015 4 SPSC Technical

Proposal[9] SHiP

review article [3]

2015 170 45 14

2019 250 57 18

SPSC

2016 SPSC 3 Com-

prehensive Design Study (CDS)

CERN Physics Beyond Collider forum

(PBC) R&D BDF

European Particle Physics Strategy Up-

date (EPPSU) PBC

Comprehensive Design Study EPPSU

SHiP [10] BDF[11]

2019 1 SHiP/BDF 2019 5

Open EPPSU Symposium

2019 12 Comprehensive Design Study (CDS)

report[12] SPSC 2020 Technical De-

sign Report (TDR) 2023

TDR

5 6

2028

117

Page 4: SHiP - h + DsTau/NA652 K l h { ` ô M H E w è Ó Ä ï ¬ R $ t ¿ Ó ç b ý { U O b s y o a p K Ç á Ä æ Ê Z t S M o è Ó Ä ï Ó ' Q q Å U _ Q o µ V p K { f x Ç á Ä

4

3 DsTau/NA65

3.1

DsTau/NA65 400 GeV

400 GeV

10 20

Ds D−s → τ−ντ

τ− → Xντ

Ds Ds

DsTau/NA65 Ds

D−s → τ−ντ τ− → Xντ

1

2

Ds τ

mm

mm 2

D−s → τ−ντ Ds τ

7mrad mm mrad

5

Ds Ds

Ds → τ τ τ → X

4 Ds

4

20% [1]

12.5 cm×10 cm

x-y

x 6 4

10%

2×108 400

3.2 2018

2018 1/10

5: DsTau/NA65

6: DsTau/NA65

DONuT

2021

2018 55 m2

/

3 8 CERN

SPS-H2

3.5×108 400 GeV 30

4 11

( 7)

7: DsTau SPS-H2

118

Page 5: SHiP - h + DsTau/NA652 K l h { ` ô M H E w è Ó Ä ï ¬ R $ t ¿ Ó ç b ý { U O b s y o a p K Ç á Ä æ Ê Z t S M o è Ó Ä ï Ó ' Q q Å U _ Q o µ V p K { f x Ç á Ä

4

3 DsTau/NA65

3.1

DsTau/NA65 400 GeV

400 GeV

10 20

Ds D−s → τ−ντ

τ− → Xντ

Ds Ds

DsTau/NA65 Ds

D−s → τ−ντ τ− → Xντ

1

2

Ds τ

mm

mm 2

D−s → τ−ντ Ds τ

7mrad mm mrad

5

Ds Ds

Ds → τ τ τ → X

4 Ds

4

20% [1]

12.5 cm×10 cm

x-y

x 6 4

10%

2×108 400

3.2 2018

2018 1/10

5: DsTau/NA65

6: DsTau/NA65

DONuT

2021

2018 55 m2

/

3 8 CERN

SPS-H2

3.5×108 400 GeV 30

4 11

( 7)

7: DsTau SPS-H2

5

8:

HTS

HTS 1 2.5 mrad

τ

2018 30

2019 90%

1

13

8

1 2

tanθ <0.1 2

95%

5×105 /cm2 HTS

1

CHORUS

DONuT OPERA

/

/

/

[13]

400 GeV

76151 /

86

9

/

Ds

mrad Ds

500 μm

400 GeV proton

primary vertex

neutral decay

kink

9: 1-prong (kink, /

) 2-prong (

) [1]

3.3

2021-2022 2×108

2

Ds

1000

Ds

[1] 400 GeV

Ds

SHiP

Ds

d2σ/dxF /dp2T ∝ (1− | xF |)n · e−b·p2

T

n b

n

Ds n

10 Ds

n

Ds

1000

119

Page 6: SHiP - h + DsTau/NA652 K l h { ` ô M H E w è Ó Ä ï ¬ R $ t ¿ Ó ç b ý { U O b s y o a p K Ç á Ä æ Ê Z t S M o è Ó Ä ï Ó ' Q q Å U _ Q o µ V p K { f x Ç á Ä

6

50% 10%

10: Ds

n δn

[1] y

n = 5.8

4 SHiP ντ

SHiP (BDF)

appearance

OPERA [14] DONuT

OPERA

Scattering and Neutrino Detector (SND)

Lepton Universality

Light Dark Matter (LDM)

4.1 BDF+

BDF 11 CERN North Area

North Area

BDF SPS 400 GeV 1 slow extrac-

tion 7.2 SPS

355 kW 1

extraction time 2.65 MW

11: BDF : CERN North Area

(TZM)

BDF

12

BDF

12: BDF target complex

SHiP 12

3

SND SND OPERA

Emulsion Cloud Chamber (ECC) ECC

OPERA

ECC

ECC

40 cm×40 cm 35 35

10X0

ECC 3 15 mm

Compact Emulsion Spectrometer

(CES)

muon filter Target Tracker (TT)

wall wall 2×2 ECC

CES SND 19 wall

120

Page 7: SHiP - h + DsTau/NA652 K l h { ` ô M H E w è Ó Ä ï ¬ R $ t ¿ Ó ç b ý { U O b s y o a p K Ç á Ä æ Ê Z t S M o è Ó Ä ï Ó ' Q q Å U _ Q o µ V p K { f x Ç á Ä

6

50% 10%

10: Ds

n δn

[1] y

n = 5.8

4 SHiP ντ

SHiP (BDF)

appearance

OPERA [14] DONuT

OPERA

Scattering and Neutrino Detector (SND)

Lepton Universality

Light Dark Matter (LDM)

4.1 BDF+

BDF 11 CERN North Area

North Area

BDF SPS 400 GeV 1 slow extrac-

tion 7.2 SPS

355 kW 1

extraction time 2.65 MW

11: BDF : CERN North Area

(TZM)

BDF

12

BDF

12: BDF target complex

SHiP 12

3

SND SND OPERA

Emulsion Cloud Chamber (ECC) ECC

OPERA

ECC

ECC

40 cm×40 cm 35 35

10X0

ECC 3 15 mm

Compact Emulsion Spectrometer

(CES)

muon filter Target Tracker (TT)

wall wall 2×2 ECC

CES SND 19 wall

7

8

CES

13: SND

interacted νμ νe ντ

13

30 mm

10 GeV

SND 14 1.2 T

CES

3

4.2

SHiP BDF 5 2×1020 PoT

OPERA CERN Neu-

trino beam to GranSasso (CNGS) 1.8×1020 PoT

1

6000 5000

2 CES hadronic decay

14: SND: SND 1.2T

1: DIS

�E� [GeV] CC DIS

Nνe 59 1.1 × 106

Nνμ 42 2.7 × 106

Nντ 52 3.2 × 104

Nνe46 2.6 × 105

Nνμ36 6.0 × 105

Nντ70 2.1 × 104

SHiP ECC

τ → e

CES

2:

Decay Mode ντ ντ

τ → μ 1200 1000

τ → h 4000 3000

τ → 3h 1000 700

Total 6200 4700

5000

DONuT 9

OPERA 10

3

121

Page 8: SHiP - h + DsTau/NA652 K l h { ` ô M H E w è Ó Ä ï ¬ R $ t ¿ Ó ç b ý { U O b s y o a p K Ç á Ä æ Ê Z t S M o è Ó Ä ï Ó ' Q q Å U _ Q o µ V p K { f x Ç á Ä

8

DsTau/NA65 SHiP

B

anomaly B → Dτντ

b,d

Belle BaBar

LHCb

OPERA

(ντN → τD0N �)[15] 1

0.1

SHiP ντ

R(D) RR(c) = ντN→τcXντN→τX /νN→lcX

νN→lX

double ratio

3 GENIE [16]

3: DIS

�E� CC DIS Charm frac.

[GeV] with charm [%]

Nνe66 6.0 × 104 5.7

Nνμ55 1.3 × 105 4.7

Nνe57 1.3 × 104 5.1

Nνμ49 2.5 × 104 4.2

Total 2.3 × 105

6000 5000

300 charm B

anomaly 15%

DONuT OPERA

5

CERN SPS DsTau/NA65 SHiP

hidden sector

intrinsic charm study

DsTau/NA65 2021-2022

SHiP 2020

6

DsTau Collaboration (

) SHiP Collaboration

SPS SPS Coordinator

17H02887 18KK0085

[1] S. Aoki et al. [DsTau Collaboration], DsTau:

study of tau neutrino production with 400 GeV

protons from the CERN-SPS. J. High Energ.

Phys. 2020, 33 (2020).

[2] Y.S. Amhis et al. [HFLAV Collaboration], Aver-

ages of b-hadron c-hadron, and τ -lepton prop-

erties as of 2018. [arXiv:1909.12524].

[3] S. Alekhin et al., A facility to Search for Hidden

Particles at the CERN SPS: the SHiP physics

case, Rept. Prog. Phys. 79 (2016), no. 12 124201.

[arXiv:1504.04855].

[4] J. Beacham et al., Physics Beyond Colliders at

CERN: Beyond the Standard Model Working

Group Report 2019. [arXiv:1901.09966].

[5] A.V. Giannini, V.P. Goncalves, and F.S.

Navarra, Intrinsic charm contribution to the

prompt atmospheric neutrino flux, Physical Re-

view D 98 (2018) 014012.

[6] Weidong Bai, Mary Hall Reno, Prompt neutri-

nos and intrinsic charm at SHiP, J. High Energ.

Phys. (2019) 77.

122

Page 9: SHiP - h + DsTau/NA652 K l h { ` ô M H E w è Ó Ä ï ¬ R $ t ¿ Ó ç b ý { U O b s y o a p K Ç á Ä æ Ê Z t S M o è Ó Ä ï Ó ' Q q Å U _ Q o µ V p K { f x Ç á Ä

8

DsTau/NA65 SHiP

B

anomaly B → Dτντ

b,d

Belle BaBar

LHCb

OPERA

(ντN → τD0N �)[15] 1

0.1

SHiP ντ

R(D) RR(c) = ντN→τcXντN→τX /νN→lcX

νN→lX

double ratio

3 GENIE [16]

3: DIS

�E� CC DIS Charm frac.

[GeV] with charm [%]

Nνe66 6.0 × 104 5.7

Nνμ55 1.3 × 105 4.7

Nνe57 1.3 × 104 5.1

Nνμ49 2.5 × 104 4.2

Total 2.3 × 105

6000 5000

300 charm B

anomaly 15%

DONuT OPERA

5

CERN SPS DsTau/NA65 SHiP

hidden sector

intrinsic charm study

DsTau/NA65 2021-2022

SHiP 2020

6

DsTau Collaboration (

) SHiP Collaboration

SPS SPS Coordinator

17H02887 18KK0085

[1] S. Aoki et al. [DsTau Collaboration], DsTau:

study of tau neutrino production with 400 GeV

protons from the CERN-SPS. J. High Energ.

Phys. 2020, 33 (2020).

[2] Y.S. Amhis et al. [HFLAV Collaboration], Aver-

ages of b-hadron c-hadron, and τ -lepton prop-

erties as of 2018. [arXiv:1909.12524].

[3] S. Alekhin et al., A facility to Search for Hidden

Particles at the CERN SPS: the SHiP physics

case, Rept. Prog. Phys. 79 (2016), no. 12 124201.

[arXiv:1504.04855].

[4] J. Beacham et al., Physics Beyond Colliders at

CERN: Beyond the Standard Model Working

Group Report 2019. [arXiv:1901.09966].

[5] A.V. Giannini, V.P. Goncalves, and F.S.

Navarra, Intrinsic charm contribution to the

prompt atmospheric neutrino flux, Physical Re-

view D 98 (2018) 014012.

[6] Weidong Bai, Mary Hall Reno, Prompt neutri-

nos and intrinsic charm at SHiP, J. High Energ.

Phys. (2019) 77.

9

[7] S. Aoki, A. Ariga, T. Ariga, K. Kodama, M.

Nakamura, O. Sato, Study of tau-neutrino pro-

duction by measuring Ds → τ events in 400 GeV

proton interactions: Test of lepton universality in

neutrino charged-current interactions, Letter of

Intent to SPSC CERN-SPSC-2016-013 ; SPSC-

I-245.

[8] S. Aoki et al. [DsTau Collaboration], Study

of tau-neutrino production at the CERN-SPS

Experiment Proposal, CERN-SPSC-2017-029 ;

SPSC-P-354.

[9] M. Anelli et al. [SHiP Collaboration], A fa-

cility to Search for Hidden Particles (SHiP)

at the CERN SPS - Technical Proposal, 2015.

[arXiv:1504.04956].

[10] C. Ahdida et al. [SHiP Collaboration], The SHiP

experiment at the SPS Beam Dump Facility -

Comprehensive overview, submitted to EPPSU

2018.

[11] C. Ahdida et al., SPS Beam Dump Facility -

Comprehensive overview, submitted to EPPSU

2018.

[12] C. Ahdida et al. [SHiP Collaboration], SHiP Ex-

periment - Comprehensive Design Study report,

CERN-SPSC-2019-049 ; SPSC-SR-263.

[13] S. Aoki et al. [DsTau Collaboration], DsTau Sta-

tus Report, CERN-SPSC-2019-013 ; SPSC-SR-

250.

[14] N. Agafonova et al. [OPERA Collaboration], Fi-

nal Results of the OPERA Experiment on ντ Ap-

pearance in the CNGS Neutrino Beam, Phys.

Rev. Lett. 120 (2018) no.21,211801. Erratum:

Phys. Rev. Lett. 121 (2018) no.13 139901.

[15] N. Agafonova et al. [OPERA Collaboration],

First observation of a tau neutrino charged cur-

rent interaction with charm production in the

Opera experiment. [arXiv:1912.11012].

[16] C. Andreopoulos et al., The GENIE Neutrino

Monte Carlo Generator, Nucl. Instrum. Meth. A

614 (2010) 87.

123