Top Banner
Introduction Energetic Electrons Fluence Analysis Summary SHINE 2008 George C. Ho and Glenn M. Mason The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 June 26th, 2008 Energetic Electrons in Energetic Electrons in 3 3 He Enhanced He Enhanced Solar Energetic Particle Events Solar Energetic Particle Events
34

SHINE 2008 Introduction Energetic ElectronsFluence AnalysisSummary George C. Ho and Glenn M. Mason The Johns Hopkins University Applied Physics Laboratory,

Apr 01, 2015

Download

Documents

Aryanna Stoffer
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: SHINE 2008 Introduction Energetic ElectronsFluence AnalysisSummary George C. Ho and Glenn M. Mason The Johns Hopkins University Applied Physics Laboratory,

Introduction Energetic Electrons Fluence Analysis Summary SHINE 2008

George C. Ho and Glenn M. Mason

The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723

June 26th, 2008

Energetic Electrons in Energetic Electrons in 33He Enhanced He Enhanced Solar Energetic Particle EventsSolar Energetic Particle Events

Page 2: SHINE 2008 Introduction Energetic ElectronsFluence AnalysisSummary George C. Ho and Glenn M. Mason The Johns Hopkins University Applied Physics Laboratory,

Introduction Energetic Electrons Fluence Analysis Summary SHINE 2008

Key: proton = neutron = electron =

Helium-3 Helium-4Relative Abundance 1 2500

•Introduction–First Discovery

–Classification Paradigm

•Energetic Electron–Timing

–Occurrence

•Fluence Analysis–Observations

–Implication

•Discussion

Outline

Page 3: SHINE 2008 Introduction Energetic ElectronsFluence AnalysisSummary George C. Ho and Glenn M. Mason The Johns Hopkins University Applied Physics Laboratory,

Introduction Energetic Electrons Fluence Analysis Summary SHINE 2008

Introduction

Page 4: SHINE 2008 Introduction Energetic ElectronsFluence AnalysisSummary George C. Ho and Glenn M. Mason The Johns Hopkins University Applied Physics Laboratory,

Introduction Energetic Electrons Fluence Analysis Summary SHINE 2008

Anglin, 1975

Discovery that small solar particle events sometimes showed enormous enrichments of 3He, without any accompanying 3H or 2H enrichments

(Garrard, Stone & Vogt, NASA SP-342, 1973; Anglin et al. 1974; Serlemitsos & Balasubrahmanyan 1975)

Page 5: SHINE 2008 Introduction Energetic ElectronsFluence AnalysisSummary George C. Ho and Glenn M. Mason The Johns Hopkins University Applied Physics Laboratory,

Introduction Energetic Electrons Fluence Analysis Summary SHINE 2008

Kilometric Type III Association

Reames and Stone, 1986

Page 6: SHINE 2008 Introduction Energetic ElectronsFluence AnalysisSummary George C. Ho and Glenn M. Mason The Johns Hopkins University Applied Physics Laboratory,

Introduction Energetic Electrons Fluence Analysis Summary SHINE 2008

Overall Picture as of Mid 1990s

Page 7: SHINE 2008 Introduction Energetic ElectronsFluence AnalysisSummary George C. Ho and Glenn M. Mason The Johns Hopkins University Applied Physics Laboratory,

Introduction Energetic Electrons Fluence Analysis Summary SHINE 2008

Gradual and Impulsive SEP Events

Mason et al., 1989

Page 8: SHINE 2008 Introduction Energetic ElectronsFluence AnalysisSummary George C. Ho and Glenn M. Mason The Johns Hopkins University Applied Physics Laboratory,

Introduction Energetic Electrons Fluence Analysis Summary SHINE 2008

100

101

102

103

104

2 3 4 5Mass (AMU)

(a)

100

101

102

103

2 3 4 5Mass (AMU)

(b)

10-1

100

101

102

103

2 3 4 5Mass (AMU)

(c)

100

101

102

103

2 3 4 5Mass (AMU)

(d)

keV/n

MeV/n

ACE He Mass Resolution

Page 9: SHINE 2008 Introduction Energetic ElectronsFluence AnalysisSummary George C. Ho and Glenn M. Mason The Johns Hopkins University Applied Physics Laboratory,

Event onsets often show almost pure velocity dispersion -- but multiple events can overlap in time. These are separated in constructing fluence spectra

Page 10: SHINE 2008 Introduction Energetic ElectronsFluence AnalysisSummary George C. Ho and Glenn M. Mason The Johns Hopkins University Applied Physics Laboratory,

Introduction Energetic Electrons Fluence Analysis Summary SHINE 2008

Solar Cycle Dependence

ACE launchedin August ‘97

Page 11: SHINE 2008 Introduction Energetic ElectronsFluence AnalysisSummary George C. Ho and Glenn M. Mason The Johns Hopkins University Applied Physics Laboratory,

Introduction Energetic Electrons Fluence Analysis Summary SHINE 2008

Fraction of time with 3He present. Points are shown for individual Bartels rotations; lines show running averageover 6 rotations. Unfilled circles and dotted line: unambiguous 3He (categories 2–4); filled circles and solid line: probable 3He (categories 1 and 5) also included.

Wiedenbeck et al., Solar Wind 10

3He-rich Population

Page 12: SHINE 2008 Introduction Energetic ElectronsFluence AnalysisSummary George C. Ho and Glenn M. Mason The Johns Hopkins University Applied Physics Laboratory,

Introduction Energetic Electrons Fluence Analysis Summary SHINE 2008

Ultra-Heavy Particles

Mason et al., 2004

• Ultra-heavy ions ~200 times SW value

• Acceleration depends on M/Q ratio

• No satisfactory theory

Mason et al. (2004)

Page 13: SHINE 2008 Introduction Energetic ElectronsFluence AnalysisSummary George C. Ho and Glenn M. Mason The Johns Hopkins University Applied Physics Laboratory,

Coordinated Observations

QuickTime™ and aYUV420 codec decompressor

are needed to see this picture.

TRACE & RHESSI imagingTRACE EUV observations reveal thermal emission (~1.5 MK).

Flare loops and EUV jet observed.(21-Aug-2002 3He-rich event)

jet

Courtesy Säm Krucker, UCBerkeley

Page 14: SHINE 2008 Introduction Energetic ElectronsFluence AnalysisSummary George C. Ho and Glenn M. Mason The Johns Hopkins University Applied Physics Laboratory,

Introduction Energetic Electrons Fluence Analysis Summary SHINE 2008

Ionization States

•Mean Q-states of Fe increase with Energy

•At low-E - ionic charge states correspond to equilibrium Temperature

•At high-E, stripping due to acceleration and transport

Klecker et al. (2005)

Page 15: SHINE 2008 Introduction Energetic ElectronsFluence AnalysisSummary George C. Ho and Glenn M. Mason The Johns Hopkins University Applied Physics Laboratory,

Introduction Energetic Electrons Fluence Analysis Summary SHINE 2008

Energetic Electrons in 3He-rich Events

Page 16: SHINE 2008 Introduction Energetic ElectronsFluence AnalysisSummary George C. Ho and Glenn M. Mason The Johns Hopkins University Applied Physics Laboratory,

UT Time

Flu

x

SUN

? e - beam

Earth

Injection study of impulsive electrons

107

106

105

104

05:00 07:00 09:00 11:00

type III radio burst

Fre

q (

Hz)

Linghua Wang et al. 2006 SPD

Page 17: SHINE 2008 Introduction Energetic ElectronsFluence AnalysisSummary George C. Ho and Glenn M. Mason The Johns Hopkins University Applied Physics Laboratory,

Introduction Energetic Electrons Fluence Analysis Summary SHINE 2008

Casual Relationship

Ho et al., 2001

Page 18: SHINE 2008 Introduction Energetic ElectronsFluence AnalysisSummary George C. Ho and Glenn M. Mason The Johns Hopkins University Applied Physics Laboratory,

Introduction Energetic Electrons Fluence Analysis Summary SHINE 2008

Timing Analysis

Ho et al., 2003

Page 19: SHINE 2008 Introduction Energetic ElectronsFluence AnalysisSummary George C. Ho and Glenn M. Mason The Johns Hopkins University Applied Physics Laboratory,

Introduction Energetic Electrons Fluence Analysis Summary SHINE 2008

Scatter-free Transport

Ho et al., 2003

Page 20: SHINE 2008 Introduction Energetic ElectronsFluence AnalysisSummary George C. Ho and Glenn M. Mason The Johns Hopkins University Applied Physics Laboratory,

Introduction Energetic Electrons Fluence Analysis Summary SHINE 2008

Lack of Correlation

Ho et al., 2001

Page 21: SHINE 2008 Introduction Energetic ElectronsFluence AnalysisSummary George C. Ho and Glenn M. Mason The Johns Hopkins University Applied Physics Laboratory,

Introduction Energetic Electrons Fluence Analysis Summary SHINE 2008

Association with all Impulsive Events

Ho et al., 2001

Page 22: SHINE 2008 Introduction Energetic ElectronsFluence AnalysisSummary George C. Ho and Glenn M. Mason The Johns Hopkins University Applied Physics Laboratory,

Introduction Energetic Electrons Fluence Analysis Summary SHINE 2008

Fluence Analysis

Page 23: SHINE 2008 Introduction Energetic ElectronsFluence AnalysisSummary George C. Ho and Glenn M. Mason The Johns Hopkins University Applied Physics Laboratory,

Introduction Energetic Electrons Fluence Analysis Summary SHINE 2008

“Apparent” Anti-correlation

Page 24: SHINE 2008 Introduction Energetic ElectronsFluence AnalysisSummary George C. Ho and Glenn M. Mason The Johns Hopkins University Applied Physics Laboratory,

Introduction Energetic Electrons Fluence Analysis Summary SHINE 2008

Upper Limit on 3He Fluence

• Measurements above instrument thresholds

• 4He fluences range over a factor of 10,000 while the 3He fluences in the same SEP range over only a factor of 100

• 3He/4He does not order the data

• A strict upper limit on the 3He fluence

Page 25: SHINE 2008 Introduction Energetic ElectronsFluence AnalysisSummary George C. Ho and Glenn M. Mason The Johns Hopkins University Applied Physics Laboratory,

Introduction Energetic Electrons Fluence Analysis Summary SHINE 2008

Fluence Distributions

Ho, Roelof, Mason., 2005

Page 26: SHINE 2008 Introduction Energetic ElectronsFluence AnalysisSummary George C. Ho and Glenn M. Mason The Johns Hopkins University Applied Physics Laboratory,

Introduction Energetic Electrons Fluence Analysis Summary SHINE 2008

20Ne vs. 4He Fluences

Ho, Roelof, Mason., 2005

Page 27: SHINE 2008 Introduction Energetic ElectronsFluence AnalysisSummary George C. Ho and Glenn M. Mason The Johns Hopkins University Applied Physics Laboratory,

Introduction Energetic Electrons Fluence Analysis Summary SHINE 2008

10-3

10-1

101

103

105

107

0.01 0.1 1 10 100

ACE - ULEIS/SIS Spectra: 9/09/1998 (252)

MeV/nucleon

4He

3He

16 O

Fe

Class-1 Events:• power law or double power law form

• above ~1 MeV/n all spectra similar

•3He is power law or double power law

Mason et al., 2002

Spectral Form-Class I

Page 28: SHINE 2008 Introduction Energetic ElectronsFluence AnalysisSummary George C. Ho and Glenn M. Mason The Johns Hopkins University Applied Physics Laboratory,

Introduction Energetic Electrons Fluence Analysis Summary SHINE 2008

100

101

102

103

104

2 3 4 5 6

Mass (AMU)

100

101

102

103

104

105

106

107

0.01 0.1 1 10 100

ACE - ULEIS/SIS Spectra: 9/27/2000 (271)

MeV/nucleon

4He

3He16 O

FeMass (AMU)

Class-1 Events:

• single power law for all species except 3He

• 3He harder than others below ~1 MeV/n

• 3He:4He peaks from 1-few MeV/n

Mason et al., 2002

Spectral Form-Class I

Page 29: SHINE 2008 Introduction Energetic ElectronsFluence AnalysisSummary George C. Ho and Glenn M. Mason The Johns Hopkins University Applied Physics Laboratory,

Introduction Energetic Electrons Fluence Analysis Summary SHINE 2008

Class-2 Events:• 4He is power law

• 3He and Fe flatten notably at low energies (other heavy ion species not clear)

• 3He and Fe curve at different energies

• highest 3He: 4He

10-1

100

101

102

103

104

105

106

0.01 0.1 1 10

ACE - ULEIS/SIS Spectra: 3/21/1999 (080)

MeV/nucleon

4He

3He

16 O

Fe

(a)

Mason et al., 2002

Spectral Form-Class II

Page 30: SHINE 2008 Introduction Energetic ElectronsFluence AnalysisSummary George C. Ho and Glenn M. Mason The Johns Hopkins University Applied Physics Laboratory,

10-1

101

103

105

0.01 0.1 1 10

3He 4He 16O Fe

MeV/nucleon

10-1

101

103

105

107

0.01 0.1 1 10

3He 4He 16O Fe

MeV/nucleon

10-3

10-1

101

103

105

107

0.01 0.1 1 10 100

3He 4He 16O Fe

MeV/nucleon

Possible synthesis:

initial 3He enrichment mechanism (Cascade MHD?)

further acceleration results in power law spectra

still further acceleration results in similar spectra for all species

Page 31: SHINE 2008 Introduction Energetic ElectronsFluence AnalysisSummary George C. Ho and Glenn M. Mason The Johns Hopkins University Applied Physics Laboratory,

Introduction Energetic Electrons Fluence Analysis Summary SHINE 2008

Fluence Distributions

Ho, Roelof, Mason., 2005

Page 32: SHINE 2008 Introduction Energetic ElectronsFluence AnalysisSummary George C. Ho and Glenn M. Mason The Johns Hopkins University Applied Physics Laboratory,

Introduction Energetic Electrons Fluence Analysis Summary SHINE 2008

Discussions

• New observations from advanced instrumentations give us new insight into this class of SEP events

• As we learned more about this class of events, we find there is more outstanding questions (personal views):– What enhancement/acceleration mechanism operate in this

remarkable class of SEP event? (Ultra-heavy ion?)– Why is the 3He presented continuously in the interplanetary

space?– What are the causal relationship between the energetic

electrons, flare, and 3He enrichment?– Why is there an apparent upper limit on the 3He fluence in the

interplanetary space? What is its implications?– Why the 3He spectral shape different from other ions?

Page 33: SHINE 2008 Introduction Energetic ElectronsFluence AnalysisSummary George C. Ho and Glenn M. Mason The Johns Hopkins University Applied Physics Laboratory,

Introduction Energetic Electrons Fluence Analysis Summary SHINE 2008

Discussions

• Current observations at 1 AU are hampered by transport effects as we are far from the source

• Require high resolution in-suite observation close to the source of the enrichment/acceleration

Solar Orbiter: Solar Probe + :

Page 34: SHINE 2008 Introduction Energetic ElectronsFluence AnalysisSummary George C. Ho and Glenn M. Mason The Johns Hopkins University Applied Physics Laboratory,

Introduction Energetic Electrons Fluence Analysis Summary SHINE 2008

Fluence Analysis

• The remarkable enrichment of the isotope 3He in solar energetic particle (SEP) events is usually described in terms of the ratio of the fluences of the two isotopes (3He/4He)

• However, only weak correlations between 3He/4He and flare properties have been found [Reames, Dennis, and Stone, ApJ., 1988]

• Strong correlation is found between the occurrence of 3He-rich SEP with energetic electrons [Reames, von Rosenvinge, and Lin, ApJ., 1985]

• However, Ho et al. [ApJ., 2001] found same association in all impulsive SEP events with energetic electrons

• Ho, Roelof, & Mason [ApJL., 2005] found during the peak of solar activity, there is an upper limited on the 3He flunence of 0.2 to 2.0 MeV/nuc.