Top Banner
Shape Compression using Shape Compression using Spherical Geometry Images Spherical Geometry Images Hugues Hoppe, Microsoft Research Hugues Hoppe, Microsoft Research Emil Praun, University of Utah Emil Praun, University of Utah
40

Shape Compression using Spherical Geometry Images Hugues Hoppe, Microsoft Research Emil Praun, University of Utah Hugues Hoppe, Microsoft Research Emil.

Mar 27, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Shape Compression using Spherical Geometry Images Hugues Hoppe, Microsoft Research Emil Praun, University of Utah Hugues Hoppe, Microsoft Research Emil.

Shape Compression usingShape Compression usingSpherical Geometry ImagesSpherical Geometry ImagesShape Compression usingShape Compression using

Spherical Geometry ImagesSpherical Geometry Images

Hugues Hoppe, Microsoft ResearchHugues Hoppe, Microsoft Research

Emil Praun, University of UtahEmil Praun, University of Utah

Hugues Hoppe, Microsoft ResearchHugues Hoppe, Microsoft Research

Emil Praun, University of UtahEmil Praun, University of Utah

Page 2: Shape Compression using Spherical Geometry Images Hugues Hoppe, Microsoft Research Emil Praun, University of Utah Hugues Hoppe, Microsoft Research Emil.

Mesh representationMesh representation

semi-regularsemi-regularirregularirregular completely regularcompletely regular

Page 3: Shape Compression using Spherical Geometry Images Hugues Hoppe, Microsoft Research Emil Praun, University of Utah Hugues Hoppe, Microsoft Research Emil.

What if What if imagesimages were represented with were represented with irregularirregular meshes?meshes?

DrawbacksDrawbacks:: storage of connectivitystorage of connectivity no random lookupno random lookup renderingrendering compositingcompositing filteringfiltering compressioncompression

demodemo

Page 4: Shape Compression using Spherical Geometry Images Hugues Hoppe, Microsoft Research Emil Praun, University of Utah Hugues Hoppe, Microsoft Research Emil.

Simple 2D gridSimple 2D grid

AdvantagesAdvantages:: implicit connectivityimplicit connectivity 2D lookup2D lookup raster-scanraster-scan alpha blendingalpha blending DSPDSP JPEG 2000JPEG 2000

Page 5: Shape Compression using Spherical Geometry Images Hugues Hoppe, Microsoft Research Emil Praun, University of Utah Hugues Hoppe, Microsoft Research Emil.

Representations for mediaRepresentations for mediaRepresentations for mediaRepresentations for media

Audio:Audio: uniform 1D griduniform 1D grid

Images:Images: uniform 2D griduniform 2D grid

Video:Video: uniform 3D griduniform 3D grid

Geometry: irregular meshGeometry: irregular mesh

Audio:Audio: uniform 1D griduniform 1D grid

Images:Images: uniform 2D griduniform 2D grid

Video:Video: uniform 3D griduniform 3D grid

Geometry: irregular meshGeometry: irregular mesh

historical artifact?historical artifact?

Page 6: Shape Compression using Spherical Geometry Images Hugues Hoppe, Microsoft Research Emil Praun, University of Utah Hugues Hoppe, Microsoft Research Emil.

Geometry imageGeometry image

geometry imagegeometry image257 x 257; 12 bits/channel257 x 257; 12 bits/channel

3D geometry3D geometry2D grid sampling2D grid sampling

Page 7: Shape Compression using Spherical Geometry Images Hugues Hoppe, Microsoft Research Emil Praun, University of Utah Hugues Hoppe, Microsoft Research Emil.

Geometry imageGeometry imageGeometry imageGeometry image

Page 8: Shape Compression using Spherical Geometry Images Hugues Hoppe, Microsoft Research Emil Praun, University of Utah Hugues Hoppe, Microsoft Research Emil.

Geometry imageGeometry imageGeometry imageGeometry image

[[rr,,gg,,bb] = [] = [xx,,yy,,zz]]

renderrender

Page 9: Shape Compression using Spherical Geometry Images Hugues Hoppe, Microsoft Research Emil Praun, University of Utah Hugues Hoppe, Microsoft Research Emil.

Advantages for hardware renderingAdvantages for hardware renderingAdvantages for hardware renderingAdvantages for hardware rendering

Regular sampling Regular sampling no vertex indices. no vertex indices. Regular sampling Regular sampling no vertex indices. no vertex indices.

Unified parametrization Unified parametrization no texture coordinates. no texture coordinates. Unified parametrization Unified parametrization no texture coordinates. no texture coordinates.

SequentialSequential traversal of source data traversal of source data SequentialSequential traversal of source data traversal of source data

Page 10: Shape Compression using Spherical Geometry Images Hugues Hoppe, Microsoft Research Emil Praun, University of Utah Hugues Hoppe, Microsoft Research Emil.

Main questionsMain questionsMain questionsMain questions

cut?cut?

parametrize?parametrize?

Page 11: Shape Compression using Spherical Geometry Images Hugues Hoppe, Microsoft Research Emil Praun, University of Utah Hugues Hoppe, Microsoft Research Emil.

Construction approachesConstruction approachesConstruction approachesConstruction approaches

SphericalSphericalGeneral cutGeneral cut Multi-chartMulti-chart

[Gu et al. SIGGRAPH 2002][Gu et al. SIGGRAPH 2002] [Praun & Hoppe. SIGGRAPH 2003][Praun & Hoppe. SIGGRAPH 2003] [Sander et al. SGP 2003][Sander et al. SGP 2003]

arbitrary surfacearbitrary surface genus-zero surfacegenus-zero surface

cut symmetriescut symmetries

>1 chart>1 chart

zipperingzippering

Page 12: Shape Compression using Spherical Geometry Images Hugues Hoppe, Microsoft Research Emil Praun, University of Utah Hugues Hoppe, Microsoft Research Emil.

Construction approachesConstruction approachesConstruction approachesConstruction approaches

General cutGeneral cut

[Gu et al. SIGGRAPH 2002][Gu et al. SIGGRAPH 2002]

arbitrary surfacearbitrary surface

genus 6

Page 13: Shape Compression using Spherical Geometry Images Hugues Hoppe, Microsoft Research Emil Praun, University of Utah Hugues Hoppe, Microsoft Research Emil.

Construction approachesConstruction approachesConstruction approachesConstruction approaches

SphericalSphericalGeneral cutGeneral cut Multi-chartMulti-chart

[Gu et al. SIGGRAPH 2002][Gu et al. SIGGRAPH 2002] [Praun & Hoppe. SIGGRAPH 2003][Praun & Hoppe. SIGGRAPH 2003] [Sander et al. SGP 2003][Sander et al. SGP 2003]

arbitrary surfacearbitrary surface genus-zero surfacegenus-zero surface

cut symmetriescut symmetries

>1 chart>1 chart

zipperingzippering

piecewisepiecewise regular regular400x160

Page 14: Shape Compression using Spherical Geometry Images Hugues Hoppe, Microsoft Research Emil Praun, University of Utah Hugues Hoppe, Microsoft Research Emil.

Construction approachesConstruction approachesConstruction approachesConstruction approaches

SphericalSphericalGeneral cutGeneral cut Multi-chartMulti-chart

[Gu et al. SIGGRAPH 2002][Gu et al. SIGGRAPH 2002] [Praun & Hoppe. SIGGRAPH 2003][Praun & Hoppe. SIGGRAPH 2003] [Sander et al. SGP 2003][Sander et al. SGP 2003]

arbitrary surfacearbitrary surface genus-zero surfacegenus-zero surface

cut symmetriescut symmetries

>1 chart>1 chart

zipperingzippering

Page 15: Shape Compression using Spherical Geometry Images Hugues Hoppe, Microsoft Research Emil Praun, University of Utah Hugues Hoppe, Microsoft Research Emil.

Spherical parameterization and remeshingSpherical parameterization and remeshingSpherical parameterization and remeshingSpherical parameterization and remeshing[Praun, Hoppe 2003][Praun, Hoppe 2003]

Page 16: Shape Compression using Spherical Geometry Images Hugues Hoppe, Microsoft Research Emil Praun, University of Utah Hugues Hoppe, Microsoft Research Emil.

Spherical parameterization and remeshingSpherical parameterization and remeshingSpherical parameterization and remeshingSpherical parameterization and remeshing[Praun, Hoppe 2003][Praun, Hoppe 2003]

Page 17: Shape Compression using Spherical Geometry Images Hugues Hoppe, Microsoft Research Emil Praun, University of Utah Hugues Hoppe, Microsoft Research Emil.

Spherical geometry imagesSpherical geometry imagesSpherical geometry imagesSpherical geometry images

Page 18: Shape Compression using Spherical Geometry Images Hugues Hoppe, Microsoft Research Emil Praun, University of Utah Hugues Hoppe, Microsoft Research Emil.

StepsStepsStepsSteps

demodemodemodemo

image image IIdomain domain DDsphere sphere SSmesh mesh MM

Page 19: Shape Compression using Spherical Geometry Images Hugues Hoppe, Microsoft Research Emil Praun, University of Utah Hugues Hoppe, Microsoft Research Emil.

Two challenges:Two challenges:

robustnessrobustness

good samplinggood sampling

Two challenges:Two challenges:

robustnessrobustness

good samplinggood sampling

Spherical parametrizationSpherical parametrizationSpherical parametrizationSpherical parametrization

sphere sphere SSmesh mesh MM

[Sander et al. 2001][Sander et al. 2001]

[Hormann et al. 1999][Hormann et al. 1999]

[Sander et al. 2002][Sander et al. 2002]

coarse-to-finecoarse-to-fine

stretch metricstretch metric

coarse-to-finecoarse-to-fine

stretch metricstretch metric

[Kent et al. 1992][Kent et al. 1992][Haker et al. 2000][Haker et al. 2000][Alexa 2002][Alexa 2002][Grimm 2002][Grimm 2002][Sheffer et al. 2003][Sheffer et al. 2003][Gotsman et al. 2003][Gotsman et al. 2003]

Page 20: Shape Compression using Spherical Geometry Images Hugues Hoppe, Microsoft Research Emil Praun, University of Utah Hugues Hoppe, Microsoft Research Emil.

Coarse-to-fine algorithmCoarse-to-fine algorithmCoarse-to-fine algorithmCoarse-to-fine algorithm

Convert to progressive meshConvert to progressive mesh

Parametrize coarse-to-fineParametrize coarse-to-fine(maintain embedding & minimize stretch)(maintain embedding & minimize stretch)

Page 21: Shape Compression using Spherical Geometry Images Hugues Hoppe, Microsoft Research Emil Praun, University of Utah Hugues Hoppe, Microsoft Research Emil.

Traditional conformal metricTraditional conformal metricTraditional conformal metricTraditional conformal metric

Preserve angles but “area compression”Preserve angles but “area compression” Bad for sampling using regular gridsBad for sampling using regular grids

Preserve angles but “area compression”Preserve angles but “area compression” Bad for sampling using regular gridsBad for sampling using regular grids

Page 22: Shape Compression using Spherical Geometry Images Hugues Hoppe, Microsoft Research Emil Praun, University of Utah Hugues Hoppe, Microsoft Research Emil.

Stretch metricStretch metricStretch metricStretch metric [Sander et al. 2001][Sander et al. 2001]

[Sander et al. 2002][Sander et al. 2002]

Penalizes undersamplingPenalizes undersampling Better samples the surfaceBetter samples the surface

Page 23: Shape Compression using Spherical Geometry Images Hugues Hoppe, Microsoft Research Emil Praun, University of Utah Hugues Hoppe, Microsoft Research Emil.

Applications of spherical remeshingApplications of spherical remeshingApplications of spherical remeshingApplications of spherical remeshing

Level-of-detail controlLevel-of-detail control

MorphingMorphing

Geometry amplificationGeometry amplification

Shape compressionShape compression

Level-of-detail controlLevel-of-detail control

MorphingMorphing

Geometry amplificationGeometry amplification

Shape compressionShape compression

Page 24: Shape Compression using Spherical Geometry Images Hugues Hoppe, Microsoft Research Emil Praun, University of Utah Hugues Hoppe, Microsoft Research Emil.

Level-of-detail controlLevel-of-detail controlLevel-of-detail controlLevel-of-detail control

Page 25: Shape Compression using Spherical Geometry Images Hugues Hoppe, Microsoft Research Emil Praun, University of Utah Hugues Hoppe, Microsoft Research Emil.

MorphingMorphingMorphingMorphing

Align meshes on the sphere.Align meshes on the sphere. Interpolate the resulting geometry images.Interpolate the resulting geometry images.

Align meshes on the sphere.Align meshes on the sphere. Interpolate the resulting geometry images.Interpolate the resulting geometry images.

Page 26: Shape Compression using Spherical Geometry Images Hugues Hoppe, Microsoft Research Emil Praun, University of Utah Hugues Hoppe, Microsoft Research Emil.

Geometry amplificationGeometry amplificationGeometry amplificationGeometry amplification

257x257257x257scalar displacements

simulation

33x3333x3365x6565x65

129x129129x129

257x257257x257

GPUGPU

CPUCPU

floating-pointfloating-pointgeometry imagegeometry image ++

[Losasso et al. SGP 2003][Losasso et al. SGP 2003]

demodemo

““smooth geometry images”smooth geometry images”

Page 27: Shape Compression using Spherical Geometry Images Hugues Hoppe, Microsoft Research Emil Praun, University of Utah Hugues Hoppe, Microsoft Research Emil.

Shape compressionShape compressionShape compressionShape compression

(Genus-zero shapes)(Genus-zero shapes)

Spherical image topologySpherical image topology

Infinite 2D tilingInfinite 2D tiling

Wavelets on regular 2D gridWavelets on regular 2D grid

(Genus-zero shapes)(Genus-zero shapes)

Spherical image topologySpherical image topology

Infinite 2D tilingInfinite 2D tiling

Wavelets on regular 2D gridWavelets on regular 2D grid

Page 28: Shape Compression using Spherical Geometry Images Hugues Hoppe, Microsoft Research Emil Praun, University of Utah Hugues Hoppe, Microsoft Research Emil.

Spherical image topologySpherical image topologySpherical image topologySpherical image topology

Page 29: Shape Compression using Spherical Geometry Images Hugues Hoppe, Microsoft Research Emil Praun, University of Utah Hugues Hoppe, Microsoft Research Emil.

Spherical image topologySpherical image topologySpherical image topologySpherical image topology

Page 30: Shape Compression using Spherical Geometry Images Hugues Hoppe, Microsoft Research Emil Praun, University of Utah Hugues Hoppe, Microsoft Research Emil.

Spherical image topologySpherical image topologySpherical image topologySpherical image topology

Page 31: Shape Compression using Spherical Geometry Images Hugues Hoppe, Microsoft Research Emil Praun, University of Utah Hugues Hoppe, Microsoft Research Emil.

Infinite 2D tilingInfinite 2D tilingInfinite 2D tilingInfinite 2D tiling

Page 32: Shape Compression using Spherical Geometry Images Hugues Hoppe, Microsoft Research Emil Praun, University of Utah Hugues Hoppe, Microsoft Research Emil.

Wavelets on regular 2D gridWavelets on regular 2D gridWavelets on regular 2D gridWavelets on regular 2D grid

spherical waveletsspherical wavelets image waveletsimage wavelets[Schröder[Schröder & Sweldens 1995] & Sweldens 1995] [Davis [Davis 1995] [Antonini et al 1992]1995] [Antonini et al 1992]

Page 33: Shape Compression using Spherical Geometry Images Hugues Hoppe, Microsoft Research Emil Praun, University of Utah Hugues Hoppe, Microsoft Research Emil.

Test modelsTest modelsTest modelsTest models

Page 34: Shape Compression using Spherical Geometry Images Hugues Hoppe, Microsoft Research Emil Praun, University of Utah Hugues Hoppe, Microsoft Research Emil.

Compression resultsCompression resultsCompression resultsCompression results

Page 35: Shape Compression using Spherical Geometry Images Hugues Hoppe, Microsoft Research Emil Praun, University of Utah Hugues Hoppe, Microsoft Research Emil.

Compression resultsCompression resultsCompression resultsCompression results

45

50

55

60

65

70

75

80

85

90

100 1000 10000 100000File Size (bytes)

PSNR

Spherical wavelets

Image wavelets

Globally smooth [2003]

Normal mesh [2002]

PGC [2000]

TG [1998]

Page 36: Shape Compression using Spherical Geometry Images Hugues Hoppe, Microsoft Research Emil Praun, University of Utah Hugues Hoppe, Microsoft Research Emil.

Compression resultsCompression resultsCompression resultsCompression results

45

50

55

60

65

70

75

80

85

90

100 1000 10000 100000File Size (bytes)

PSNR

Spherical wavelets

Image wavelets

Normal mesh [2002]

Page 37: Shape Compression using Spherical Geometry Images Hugues Hoppe, Microsoft Research Emil Praun, University of Utah Hugues Hoppe, Microsoft Research Emil.

Compression resultsCompression resultsCompression resultsCompression results

45

50

55

60

65

70

75

80

85

90

100 1000 10000 100000File Size (bytes)

PSNR

Spherical wavelets

Image wavelets

Globally smooth [2003]

Normal mesh [2002]

PGC [2000]

TG [1998]

Page 38: Shape Compression using Spherical Geometry Images Hugues Hoppe, Microsoft Research Emil Praun, University of Utah Hugues Hoppe, Microsoft Research Emil.

Compression resultsCompression resultsCompression resultsCompression results

45

50

55

60

65

70

75

80

85

90

100 1000 10000 100000File Size (bytes)

PSNR

Spherical wavelets

Image wavelets

Globally smooth [2003]

Normal mesh [2002]

PGC [2000]

TG [1998]

Page 39: Shape Compression using Spherical Geometry Images Hugues Hoppe, Microsoft Research Emil Praun, University of Utah Hugues Hoppe, Microsoft Research Emil.

SummarySummarySummarySummary

Geometry imageGeometry image Simplicity of 2D gridSimplicity of 2D grid

ApplicationsApplications RenderingRendering LODLOD MorphingMorphing Geometry amplificationGeometry amplification Shape compressionShape compression

Geometry imageGeometry image Simplicity of 2D gridSimplicity of 2D grid

ApplicationsApplications RenderingRendering LODLOD MorphingMorphing Geometry amplificationGeometry amplification Shape compressionShape compression

Page 40: Shape Compression using Spherical Geometry Images Hugues Hoppe, Microsoft Research Emil Praun, University of Utah Hugues Hoppe, Microsoft Research Emil.

Future workFuture workFuture workFuture work

Visual error metricsVisual error metrics [Touma & Gotsman 1998] [Sorkine et al 2003] [Touma & Gotsman 1998] [Sorkine et al 2003]

Attenuation of rippling artifactsAttenuation of rippling artifacts

Surface boundariesSurface boundaries

Animated meshesAnimated meshes “geometry videos” [Briceño et al 2003] “geometry videos” [Briceño et al 2003]

Visual error metricsVisual error metrics [Touma & Gotsman 1998] [Sorkine et al 2003] [Touma & Gotsman 1998] [Sorkine et al 2003]

Attenuation of rippling artifactsAttenuation of rippling artifacts

Surface boundariesSurface boundaries

Animated meshesAnimated meshes “geometry videos” [Briceño et al 2003] “geometry videos” [Briceño et al 2003]