Top Banner
Several Methods for Computing Determinants of Large Sparse Matrices Ilse Ipsen North Carolina State University Joint Work with Dean Lee (Physics) IWASEP – p.1
47

Several Methods for Computing Determinants of …ipsen/ps/slides_iwasep.pdfSeveral Methods for Computing Determinants of Large Sparse Matrices Ilse Ipsen North Carolina State University

Apr 30, 2018

Download

Documents

lamtu
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Several Methods for Computing Determinants of …ipsen/ps/slides_iwasep.pdfSeveral Methods for Computing Determinants of Large Sparse Matrices Ilse Ipsen North Carolina State University

Several Methodsfor Computing Determinants of

Large Sparse MatricesIlse Ipsen

North Carolina State University

Joint Work with Dean Lee (Physics)

IWASEP – p.1

Page 2: Several Methods for Computing Determinants of …ipsen/ps/slides_iwasep.pdfSeveral Methods for Computing Determinants of Large Sparse Matrices Ilse Ipsen North Carolina State University

Overview

Large sparse complex matrix M of order n

Want: ln det(M) or det(M)1/n

• Block-Diagonal Approximations• Zone Determinant Expansion• Principal Minors of Inverses• Sparse Inverse Approximations• Properties• Numerical Experiments

IWASEP – p.2

Page 3: Several Methods for Computing Determinants of …ipsen/ps/slides_iwasep.pdfSeveral Methods for Computing Determinants of Large Sparse Matrices Ilse Ipsen North Carolina State University

Literature

Sparse Hermitian positive-definite matrices

• Sparse Approximate InversesReusken 2002

• Monte CarloReusken 2002

• Hybrid Monte CarloDuane, Kennedy, Pendelton, Roweth 1987Gottlieb, Liu, Toussaint, Renke, Sugar 1987Scalettar, Scalapino, Sugar 1986

• Gaussian QuadratureBai & Golub 1997

IWASEP – p.3

Page 4: Several Methods for Computing Determinants of …ipsen/ps/slides_iwasep.pdfSeveral Methods for Computing Determinants of Large Sparse Matrices Ilse Ipsen North Carolina State University

Block-Diagonal Approximations

X X X X X

X X X X X

X X X X X

X X X X X

X X X X X

=

X X

X X

X

X X

X X

+

X X X

X X X

X X X X

X X X

X X X

M = D + O

Is det(D) a good approximation for det(M)?

IWASEP – p.4

Page 5: Several Methods for Computing Determinants of …ipsen/ps/slides_iwasep.pdfSeveral Methods for Computing Determinants of Large Sparse Matrices Ilse Ipsen North Carolina State University

Block-Diagonal Approximations

If M = D + O is Hermitian positive-definite then

• Hadamard-Fischer: det(M)≤ det(D)

• Relative error:

0 <det(D) − det(M)

det(D)≤ cρ ecρ

where ρ ≡ maxj |λj(D−1O)|

c ≡ −n ln(1 − ρ), n is order of M

IWASEP – p.5

Page 6: Several Methods for Computing Determinants of …ipsen/ps/slides_iwasep.pdfSeveral Methods for Computing Determinants of Large Sparse Matrices Ilse Ipsen North Carolina State University

Block-Diagonal Approximations

M = D + O with ρ ≡ maxj |λj(D−1O)| < 1

|det(D) − det(M)|

|det(D)|≤ cρ ecρ

where c ≡ −n ln (1 − ρ), n is order of M

Block-diagonal approximation det(D) good

if eigenvalues of D−1O close to zero

IWASEP – p.6

Page 7: Several Methods for Computing Determinants of …ipsen/ps/slides_iwasep.pdfSeveral Methods for Computing Determinants of Large Sparse Matrices Ilse Ipsen North Carolina State University

Diagonal Approximation

M strictly row diagonally dominant

|∏

mii − det(M)|

|∏

mii|≤ cρ ecρ

where

ρ ≤ maxi

j 6=i

∣∣∣∣

mij

mii

∣∣∣∣

Product of diagonal elements good approximation

if M strongly diagonally dominantIWASEP – p.7

Page 8: Several Methods for Computing Determinants of …ipsen/ps/slides_iwasep.pdfSeveral Methods for Computing Determinants of Large Sparse Matrices Ilse Ipsen North Carolina State University

Zone Determinant Expansion

[Lee & II 2003]

If D non-singular and ρ(D−1O) < 1 then

det(M) = det(D + O) = det(D) det(I + D−1O)︸ ︷︷ ︸

expand

det(I + D−1O) = exp(trace(log(I + D−1O))

)

= exp

(∞∑

i=1

(−1)i

itrace((D−1O)i)

)

IWASEP – p.8

Page 9: Several Methods for Computing Determinants of …ipsen/ps/slides_iwasep.pdfSeveral Methods for Computing Determinants of Large Sparse Matrices Ilse Ipsen North Carolina State University

Zone Determinant Expansion

M = D + O with ρ ≡ maxj |λj(D−1O)| < 1

Zm ≡ ln det(D) +m∑

i=1

(−1)i

itrace((D−1O)i)

Bound for Logarithm:

| ln(det(M)) − Zm| ≤ cρm

where c ≡ −n ln(1 − ρ)

IWASEP – p.9

Page 10: Several Methods for Computing Determinants of …ipsen/ps/slides_iwasep.pdfSeveral Methods for Computing Determinants of Large Sparse Matrices Ilse Ipsen North Carolina State University

Zone Determinant Expansion

M = D + O with ρ ≡ maxj |λj(D−1O)| < 1

Zm ≡ ln det(D) +m∑

i=1

(−1)i

itrace((D−1O)i)

| det(M) − eZm|

|eZm|≤ cρm ecρm

where c ≡ −n ln(1 − ρ)

IWASEP – p.10

Page 11: Several Methods for Computing Determinants of …ipsen/ps/slides_iwasep.pdfSeveral Methods for Computing Determinants of Large Sparse Matrices Ilse Ipsen North Carolina State University

Summary: Zone Determinant Exp.

M = D + O with D block diagonalρ ≡ maxj |λj(D

−1O)| < 1

Zm ≡ ln det(D) +m∑

i=1

(−1)i

itrace((D−1O)i)

Z0 = ln det(D) block diagonal approximation

Zm ≈ ln det(M) eZm ≈ det(M) Error ∼ ρmeρm

IWASEP – p.11

Page 12: Several Methods for Computing Determinants of …ipsen/ps/slides_iwasep.pdfSeveral Methods for Computing Determinants of Large Sparse Matrices Ilse Ipsen North Carolina State University

Principal Minors of Inverses

M Hermitian positive-definite, of order n

M =

(Mn−1 ∗

∗ ∗

)

M−1 =

(∗ ∗

∗ σ

)

det(M) =1

σdet(Mn−1)

Cholesky: M = LL∗ 1

σ= L2

nn

IWASEP – p.12

Page 13: Several Methods for Computing Determinants of …ipsen/ps/slides_iwasep.pdfSeveral Methods for Computing Determinants of Large Sparse Matrices Ilse Ipsen North Carolina State University

Cholesky Factorization

M = LL∗ =

L11

∗ L22

∗ ∗ L33

L11 ∗ ∗

L22 ∗

L33

M−1 = L−∗L−1 =

1L11

∗ ∗1

L22

∗1

L33

1L11

∗ 1L22

∗ ∗ 1L33

σ = (M−1)33 =(

1L33

)2

IWASEP – p.13

Page 14: Several Methods for Computing Determinants of …ipsen/ps/slides_iwasep.pdfSeveral Methods for Computing Determinants of Large Sparse Matrices Ilse Ipsen North Carolina State University

Principal Minors of Inverses

M =

(Mn−1 ∗

∗ ∗

)

M−1 =

(∗ ∗

∗ σn

)

det(M) = det(Mn−1)/σn

Mn−1 =

(Mn−2 ∗

∗ ∗

)

M−1n−1 =

(∗ ∗

∗ σn−1

)

det(Mn−1) = det(Mn−2)/σn−1

det(M) =1

σn

1

σn−1det(Mn−2)

IWASEP – p.14

Page 15: Several Methods for Computing Determinants of …ipsen/ps/slides_iwasep.pdfSeveral Methods for Computing Determinants of Large Sparse Matrices Ilse Ipsen North Carolina State University

Summary: Principal Minors

M Hermitian positive-definite, of order n

M =

( i n − ii Mi ∗n − i ∗ ∗

)

M−1i =

(∗ ∗

∗ σi

)

det(M) =n∏

i=1

1

σi

Cholesky: Mi = LiL∗i

1

σi= ((Li)ii)

2

IWASEP – p.15

Page 16: Several Methods for Computing Determinants of …ipsen/ps/slides_iwasep.pdfSeveral Methods for Computing Determinants of Large Sparse Matrices Ilse Ipsen North Carolina State University

Sparse Inverse Approximations

[Reusken 2002], [Lee & II 2004]

Hermitian positive-definite M

• Exact: det(M) =∏

1σi

σi last diagonal element of M−1i

Mi = M(1 : i, 1 : i)

• Approximate: ∆ =∏

1σi

σi last diagonal element of S−1i

Si principal submatrix of Mi

IWASEP – p.16

Page 17: Several Methods for Computing Determinants of …ipsen/ps/slides_iwasep.pdfSeveral Methods for Computing Determinants of Large Sparse Matrices Ilse Ipsen North Carolina State University

Diagonal Approximation

M =

M11 M12 M13 M14 M15 M16

M21 M22 M23 M24 M25 M26

M31 M32 M33 M34 M35 M36

M41 M42 M43 M44 M54 M46

M51 M52 M53 M54 M55 M56

M61 M62 M63 M64 M65 m66

Si = Mii det(M) ≈∏

i

Mii

IWASEP – p.17

Page 18: Several Methods for Computing Determinants of …ipsen/ps/slides_iwasep.pdfSeveral Methods for Computing Determinants of Large Sparse Matrices Ilse Ipsen North Carolina State University

Block Diagonal Approximation

i = 1:

M =

M11 M12 M13 M14 M15 M16

M21 M22 M23 M24 M25 M26

M31 M32 M33 M34 M35 M36

M41 M42 M43 M44 M54 M46

M51 M52 M53 M54 M55 M56

M61 M62 M63 M64 M65 M66

S1 = M11 σ1 = 1/M11

IWASEP – p.18

Page 19: Several Methods for Computing Determinants of …ipsen/ps/slides_iwasep.pdfSeveral Methods for Computing Determinants of Large Sparse Matrices Ilse Ipsen North Carolina State University

Block Diagonal Approximation

i = 2:

M =

M11 M12 M13 M14 M15 M16

M21 M22 M23 M24 M25 M26

M31 M32 M33 M34 M35 M36

M41 M42 M43 M44 M54 M46

M51 M52 M53 M54 M55 M56

M61 M62 M63 M64 M65 M66

S2 = M22 σ2 = 1/M22

IWASEP – p.19

Page 20: Several Methods for Computing Determinants of …ipsen/ps/slides_iwasep.pdfSeveral Methods for Computing Determinants of Large Sparse Matrices Ilse Ipsen North Carolina State University

Block Diagonal Approximation

i = 3:

M =

M11 M12 M13 M14 M15 M16

M21 M22 M23 M24 M25 M26

M31 M32 M33 M34 M35 M36

M41 M42 M43 M44 M54 M46

M51 M52 M53 M54 M55 M56

M61 M62 M63 M64 M65 M66

S3 =

(M22 M23

M32 M33

)

σ3 = (S−13 )22

IWASEP – p.20

Page 21: Several Methods for Computing Determinants of …ipsen/ps/slides_iwasep.pdfSeveral Methods for Computing Determinants of Large Sparse Matrices Ilse Ipsen North Carolina State University

Block Diagonal Approximation

i = 4:

M =

M11 M12 M13 M14 M15 M16

M21 M22 M23 M24 M25 M26

M31 M32 M33 M34 M35 M36

M41 M42 M43 M44 M54 M46

M51 M52 M53 M54 M55 M56

M61 M62 M63 M64 M65 M66

S4 =

M22 M23 M24

M32 M33 M34

M42 M43 M44

σ4 = (S−14 )33

IWASEP – p.21

Page 22: Several Methods for Computing Determinants of …ipsen/ps/slides_iwasep.pdfSeveral Methods for Computing Determinants of Large Sparse Matrices Ilse Ipsen North Carolina State University

Block Diagonal Approximation

i = 5:

M =

M11 M12 M13 M14 M15 M16

M21 M22 M23 M24 M25 M26

M31 M32 M33 M34 M35 M36

M41 M42 M43 M44 M54 M46

M51 M52 M53 M54 M55 M56

M61 M62 M63 M64 M65 M66

S5 = M55 σ5 = 1/M55

IWASEP – p.22

Page 23: Several Methods for Computing Determinants of …ipsen/ps/slides_iwasep.pdfSeveral Methods for Computing Determinants of Large Sparse Matrices Ilse Ipsen North Carolina State University

Block Diagonal Approximation

i = 6:

M =

M11 M12 M13 M14 M15 M16

M21 M22 M23 M24 M25 M26

M31 M32 M33 M34 M35 M36

M41 M42 M43 M44 M54 M46

M51 M52 M53 M54 M55 M56

M61 M62 M63 M64 M65 M66

S6 =

(M55 M56

M65 M66

)

σ6 = (S−16 )22

IWASEP – p.23

Page 24: Several Methods for Computing Determinants of …ipsen/ps/slides_iwasep.pdfSeveral Methods for Computing Determinants of Large Sparse Matrices Ilse Ipsen North Carolina State University

Observing Sparsity

T3 =

3/2 −1

−1 3/2 −1

−1 3/2

det(T3) =3

8

3/2 −1

−1 3/2 −1

−1 3/2

3/2 −1

−1 3/2 −1

−1 3/2

3/2 −1

−1 3/2 −1

−1 3/2

∆ =3

2

(5

6

)2

= det(T3) +2

3

IWASEP – p.24

Page 25: Several Methods for Computing Determinants of …ipsen/ps/slides_iwasep.pdfSeveral Methods for Computing Determinants of Large Sparse Matrices Ilse Ipsen North Carolina State University

Summary: Sparse Inverse Approx.

M =

(Mi ∗

∗ ∗

)

Hermitian positive-definite

For i = 1 . . . n

• Si is principal submatrix of Mi

(must contain row and column i of Mi)

• σi is trailing diagonal element of S−1i

∆ =n∏

i=1

1

σi

IWASEP – p.25

Page 26: Several Methods for Computing Determinants of …ipsen/ps/slides_iwasep.pdfSeveral Methods for Computing Determinants of Large Sparse Matrices Ilse Ipsen North Carolina State University

Properties

M Hermitian positive-definite

• Any sparse inverse approximation ∆ =∏

1σi

is an upper bound for det(M)

det(M) ≤ ∆

• Monotonicity

Sn×n =

(∗ ∗

∗ Sm×m

)1

(S−1n×n)nn

≤1

(S−1m×m)mm

IWASEP – p.26

Page 27: Several Methods for Computing Determinants of …ipsen/ps/slides_iwasep.pdfSeveral Methods for Computing Determinants of Large Sparse Matrices Ilse Ipsen North Carolina State University

Properties

M Hermitian positive-definite• Larger submatrix ⇒ better approximation

M =

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ Sn

Sn ≡

(∗ ∗

∗ Sn

)

∆ uses last diagonal element of S−1n

∆ uses last diagonal element of S−1n

det(M) ≤ ∆ ≤ ∆

IWASEP – p.27

Page 28: Several Methods for Computing Determinants of …ipsen/ps/slides_iwasep.pdfSeveral Methods for Computing Determinants of Large Sparse Matrices Ilse Ipsen North Carolina State University

Properties

M = D + O Hermitian positive-definite

• Any sparse inverse approximation ∆ =∏

1σi

at least as accurate as diagonal approximation

det(M) ≤ ∆ ≤∏

i

Mii

• Sparse inverse approximations can be lessaccurate than a block diagonal approximation

det(M) ≤ det(D) ≤ ∆ is possible

IWASEP – p.28

Page 29: Several Methods for Computing Determinants of …ipsen/ps/slides_iwasep.pdfSeveral Methods for Computing Determinants of Large Sparse Matrices Ilse Ipsen North Carolina State University

Tridiagonal Toeplitz Matrices

Tn =

2 −1

−1 2...

... ... −1−1 2

det(Tn) = n + 1

• Sparse Inverse: S1 = 2, Si = T2, ∆ = 2(

32

)n−1

• Blockdiagonal: Tn = D + O, det(D) =(

nk + 1

)k

• Block diagonal better for blocks of order ≥ 4

det(M) ≤ det(D) ≤ ∆ for n/k ≥ 4

IWASEP – p.29

Page 30: Several Methods for Computing Determinants of …ipsen/ps/slides_iwasep.pdfSeveral Methods for Computing Determinants of Large Sparse Matrices Ilse Ipsen North Carolina State University

2D Laplacian

M =

Tm −Im

−Im Tm. . .

. . . . . . −Im

−Im Tm

m2 × m2

Tm =

4 −1

−1 4 . . .. . . . . . −1

−1 4

IWASEP – p.30

Page 31: Several Methods for Computing Determinants of …ipsen/ps/slides_iwasep.pdfSeveral Methods for Computing Determinants of Large Sparse Matrices Ilse Ipsen North Carolina State University

2D Laplacian (n = 9)

4 −1 0 −1 0 0 0 0 0

−1 4 −1 0 −1 0 0 0 0

0 −1 4 0 0 −1 0 0 0

−1 0 0 4 −1 0 −1 0 0

0 −1 0 −1 4 −1 0 −1 0

0 0 −1 0 −1 4 0 0 −1

Sparse inverse approximation: i = 1

IWASEP – p.31

Page 32: Several Methods for Computing Determinants of …ipsen/ps/slides_iwasep.pdfSeveral Methods for Computing Determinants of Large Sparse Matrices Ilse Ipsen North Carolina State University

2D Laplacian (n = 9)

4 −1 0 −1 0 0 0 0 0

−1 4 −1 0 −1 0 0 0 0

0 −1 4 0 0 −1 0 0 0

−1 0 0 4 −1 0 −1 0 0

0 −1 0 −1 4 −1 0 −1 0

0 0 −1 0 −1 4 0 0 −1

Sparse inverse approximation: i = 2

IWASEP – p.32

Page 33: Several Methods for Computing Determinants of …ipsen/ps/slides_iwasep.pdfSeveral Methods for Computing Determinants of Large Sparse Matrices Ilse Ipsen North Carolina State University

2D Laplacian (n = 9)

4 −1 0 −1 0 0 0 0 0

−1 4 −1 0 −1 0 0 0 0

0 −1 4 0 0 −1 0 0 0

−1 0 0 4 −1 0 −1 0 0

0 −1 0 −1 4 −1 0 −1 0

0 0 −1 0 −1 4 0 0 −1

Sparse inverse approximation: i = 3

IWASEP – p.33

Page 34: Several Methods for Computing Determinants of …ipsen/ps/slides_iwasep.pdfSeveral Methods for Computing Determinants of Large Sparse Matrices Ilse Ipsen North Carolina State University

2D Laplacian (n = 9)

4 −1 0 −1 0 0 0 0 0

−1 4 −1 0 −1 0 0 0 0

0 −1 4 0 0 −1 0 0 0

−1 0 0 4 −1 0 −1 0 0

0 −1 0 −1 4 −1 0 −1 0

0 0 −1 0 −1 4 0 0 −1

Sparse inverse approximation: i = 4

IWASEP – p.34

Page 35: Several Methods for Computing Determinants of …ipsen/ps/slides_iwasep.pdfSeveral Methods for Computing Determinants of Large Sparse Matrices Ilse Ipsen North Carolina State University

2D Laplacian (n = 9)

4 −1 0 −1 0 0 0 0 0

−1 4 −1 0 −1 0 0 0 0

0 −1 4 0 0 −1 0 0 0

−1 0 0 4 −1 0 −1 0 0

0 −1 0 −1 4 −1 0 −1 0

0 0 −1 0 −1 4 0 0 −1

Sparse inverse approximation: i = 5

IWASEP – p.35

Page 36: Several Methods for Computing Determinants of …ipsen/ps/slides_iwasep.pdfSeveral Methods for Computing Determinants of Large Sparse Matrices Ilse Ipsen North Carolina State University

2D Laplacian (n = 9)

4 −1 0 −1 0 0 0 0 0

−1 4 −1 0 −1 0 0 0 0

0 −1 4 0 0 −1 0 0 0

−1 0 0 4 −1 0 −1 0 0

0 −1 0 −1 4 −1 0 −1 0

0 0 −1 0 −1 4 0 0 −1

Sparse inverse approximation: i = 6

IWASEP – p.36

Page 37: Several Methods for Computing Determinants of …ipsen/ps/slides_iwasep.pdfSeveral Methods for Computing Determinants of Large Sparse Matrices Ilse Ipsen North Carolina State University

Relative Errors

Block diagonal D, blocks of order mSparse inverse approximation ∆

n ln det(M) error error error errorln(D) ln(∆) D1/n ∆1/n

900 1.1e+3 0.11 0.06 0.15 0.0710000 1.2e+4 0.12 0.07 0.16 0.0940000 4.7e+4 0.13 0.07 0.16 0.09

Accuracy for both methods: 1 digit

IWASEP – p.37

Page 38: Several Methods for Computing Determinants of …ipsen/ps/slides_iwasep.pdfSeveral Methods for Computing Determinants of Large Sparse Matrices Ilse Ipsen North Carolina State University

Neutron Matter Simulations

0 50 100 150 200 250 300 350 400 450 500

0

50

100

150

200

250

300

350

400

450

500

nz = 4608

Interaction matrix M IWASEP – p.38

Page 39: Several Methods for Computing Determinants of …ipsen/ps/slides_iwasep.pdfSeveral Methods for Computing Determinants of Large Sparse Matrices Ilse Ipsen North Carolina State University

LU Decomposition

With complete pivoting

0 50 100 150 200 250 300 350 400 450 500

0

50

100

150

200

250

300

350

400

450

500

nz = 46080 50 100 150 200 250 300 350 400 450 500

0

50

100

150

200

250

300

350

400

450

500

nz = 397360 50 100 150 200 250 300 350 400 450 500

0

50

100

150

200

250

300

350

400

450

500

nz = 43559

IWASEP – p.39

Page 40: Several Methods for Computing Determinants of …ipsen/ps/slides_iwasep.pdfSeveral Methods for Computing Determinants of Large Sparse Matrices Ilse Ipsen North Carolina State University

Interaction Matrix M

order n = 512

# non-zeros 9n

structure complex non-Hermitiannorm ‖M‖F ≈ 49.5

condition number ‖M‖1‖M−1‖1 ≈ 177

non-normality ‖M ∗M − MM ∗‖F ≈ 57

eigenvalues complexdeterminant det(M) = 8.5 · 1065 + 1.4 · 1064ı

ln(det(M)) = 151.8 + 0.02ı

IWASEP – p.40

Page 41: Several Methods for Computing Determinants of …ipsen/ps/slides_iwasep.pdfSeveral Methods for Computing Determinants of Large Sparse Matrices Ilse Ipsen North Carolina State University

Eigenvalues of M

−7 −6 −5 −4 −3 −2 −1 0 1−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

IWASEP – p.41

Page 42: Several Methods for Computing Determinants of …ipsen/ps/slides_iwasep.pdfSeveral Methods for Computing Determinants of Large Sparse Matrices Ilse Ipsen North Carolina State University

Non-Zero 8 × 8 blocks of M

0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 448 0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

nz = 24

448 non-zero blocks, 24 non-zero entries/block IWASEP – p.42

Page 43: Several Methods for Computing Determinants of …ipsen/ps/slides_iwasep.pdfSeveral Methods for Computing Determinants of Large Sparse Matrices Ilse Ipsen North Carolina State University

Zone Determinant Expansion

M = D + O

• D block diagonal, blocks of size 8 × 8

• D−1O is checkerboard matrixtrace(D−1O)j = 0 for odd j

• Spectral radius ρ(D−1O

)≈ .66

• Expansions:Z0 = ln det(D)

Zj = ln det(D) +∑j

i=1(−1)i

i trace((D−1O)i)

IWASEP – p.43

Page 44: Several Methods for Computing Determinants of …ipsen/ps/slides_iwasep.pdfSeveral Methods for Computing Determinants of Large Sparse Matrices Ilse Ipsen North Carolina State University

D−1O And (D−1O)2

0 50 100 150 200 250 300 350 400 450 500

0

50

100

150

200

250

300

350

400

450

500

nz = 245760 50 100 150 200 250 300 350 400 450 500

0

50

100

150

200

250

300

350

400

450

500

nz = 65536

IWASEP – p.44

Page 45: Several Methods for Computing Determinants of …ipsen/ps/slides_iwasep.pdfSeveral Methods for Computing Determinants of Large Sparse Matrices Ilse Ipsen North Carolina State University

Accuracy

j error error error error<(Zj) =(Zj) Zj ρj eZj

0 5.100 0.0017 5.100 163.02822 0.482 0.0025 0.482 0.44 0.38234 0.091 0.0016 0.091 0.19 0.09516 0.023 0.0008 0.023 0.08 0.02238 0.007 0.0003 0.007 0.04 0.0066

Absolute error for Zj ≈ ln det(M)

Relative error for eZj ≈ det(M)

IWASEP – p.45

Page 46: Several Methods for Computing Determinants of …ipsen/ps/slides_iwasep.pdfSeveral Methods for Computing Determinants of Large Sparse Matrices Ilse Ipsen North Carolina State University

Zone Determinant Expansion

M = D + O, ρ = ρ(D−1O)

• Error in logarithm: | ln det(M) − Zj| < ρj

• Accuracy:1 digit for Z0 = ln det(D), 3 digits for Z2

1 digit for eZ2 ≈ det(M)

• Storage:Z2: 49n non-zerosGE with complete pivoting: 162 non-zerosGE with partial pivoting: 342 non-zeros

IWASEP – p.46

Page 47: Several Methods for Computing Determinants of …ipsen/ps/slides_iwasep.pdfSeveral Methods for Computing Determinants of Large Sparse Matrices Ilse Ipsen North Carolina State University

Summary

• Two methods for computing determinants:Zone determinant expansionSparse inverse approximation

• Sparse inverse approximation:only Hermitian positive-definite matrices

• Zone determinant expansion:relative error boundsefficient for neutron matter simulations

• 2D Laplacian:Block diagonal approximation competitive withsparse inverse approximation

IWASEP – p.47