Top Banner
Acenes, Fullerenes and Carbon Nanotubes Glen P. Miller Department of Chemistry and Materials Science Program University of New Hampshire Columbia University September 17, 2008
41
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Seminar at Columbia 09-17-08

Acenes, Fullerenes and Carbon Nanotubes

Glen P. Miller Department of Chemistry and Materials Science Program

University of New Hampshire

Columbia University September 17, 2008

Page 2: Seminar at Columbia 09-17-08

Acenes: Polycyclic aromatic hydrocarbons composed of

linearly annelated benzene rings

(Clar, E. Polycyclic Hydrocarbons; Academic Press Inc: London, 1964; Vol. 1, pp 4-5)

Page 3: Seminar at Columbia 09-17-08

Acene Applications

Page 4: Seminar at Columbia 09-17-08
Page 5: Seminar at Columbia 09-17-08

Acene Degradation:Competing Photo-Oxidation Mechanisms

Page 6: Seminar at Columbia 09-17-08

Substituent Effects on Acene Longevity

Page 7: Seminar at Columbia 09-17-08

Kinetics of Photo-Oxidation

“Substituent Effects in Pentacenes: Gaining Control Over HOMO-LUMO Gaps and Photo-oxidative Resistances,” submitted to JACS

Page 8: Seminar at Columbia 09-17-08

Kinetics of Photo-Oxidation

“Substituent Effects in Pentacenes: Gaining Control Over HOMO-LUMO Gaps and Photo-oxidative Resistances,” submitted to JACS

Page 9: Seminar at Columbia 09-17-08

Evidence for Singlet Oxygen Chemistry

Page 10: Seminar at Columbia 09-17-08

Lessons Learned: Location, Location, Location

Page 11: Seminar at Columbia 09-17-08

Lessons Learned:Steric Resistance is Important

“Substituent Effects in Pentacenes: Gaining Control Over HOMO-LUMO Gaps and Photo-oxidative Resistances,” submitted to JACS

Page 12: Seminar at Columbia 09-17-08

Lessons Learned: ED and EW Groups Offer Unique Electronic Effects

“Substituent Effects in Pentacenes: Gaining Control Over HOMO-LUMO Gaps and Photo-oxidative Resistances,” submitted to JACS

Page 13: Seminar at Columbia 09-17-08

Steric & Electronic Effects Combined

“Substituent Effects in Pentacenes: Gaining Control Over HOMO-LUMO Gaps and Photo-oxidative Resistances,” submitted to JACS

Page 14: Seminar at Columbia 09-17-08

Arylthio and Alkylthio Substituted Pentacenes are the Big Winners

Page 15: Seminar at Columbia 09-17-08

Thin-Film Characteristics

“Substituent Effects in Pentacenes: Gaining Control Over HOMO-LUMO Gaps and Photo-oxidative Resistances,” submitted to JACS

Page 16: Seminar at Columbia 09-17-08

HOMO & LUMO Energies

Page 17: Seminar at Columbia 09-17-08

HOMO & LUMO Energies and Gapspentacenederivative

(t1/2)

E1/2 [O]a

(mV)E1/2

[red]a

(mV)

EHOMO

(eV)ELUMO

(eV)Eg,EChem

(eV)low energymax (nm)

Eg,optical (eV)c

EHOMO,DFT, ELUMO,DFT

(eV)

Eg,DFT (eV)

1 (1140) 849, 1093

-1099 -5.17 -3.36 1.81 624, 575, 534 1.86 -5.20, -3.03 2.17

2 (750) 755, 936

-1229, -1726

-5.07 -3.26 1.81 617, 570, 529 1.88 -5.08, -2.89 2.19

3 (620) 899 -1227 -5.21 -3.24 1.97 605, 559, 520 1.94 --- ---

4 (520) 789 -1054 -5.11 -3.42 1.69 643, 591, 548 1.81 -5.08, -3.07 2.01

5 (220) 713 -1485 -5.03 -2.99 2.04 605, 558, 520 1.95 --- ---

6 (40) 695 -1478 -5.01 -3.00 2.01 604, 557, 518 1.96 -4.93, -2.71 2.22

7 (13) 638, 1372

-1543 -4.95 -2.93 2.02 618, 569, 529 1.90 --- ---

8 (9.0) 627, 1224

-1430 -4.93 -3.07 1.86 600, 554, 515 1.93 --- ---

9 (8.5) 682 -1396 -5.00 -3.08 1.92 604, 558, 519 1.94 -4.86, -2.63 2.23

10 (7.3) 536, 1171

-1521 -4.86 -2.97 1.89 602, 556, 518 1.92 --- ---

11 (6.6) 464, 1081

-1651 -4.78 -2.84 1.94 583, 539, 501 2.01 --- ---

12 (3.7) 635, 1183

-1407 -4.95 -3.07 1.88 621, 573, 532 1.88 -4.80, -2.59 2.21

Pentacene(7.5)f

582, 537, 501 2.08 -2.67, -4.96 2.29

Page 18: Seminar at Columbia 09-17-08

Pent.HOMO (Expt.)

LUMO (Expt.)

Gap (Expt.)

HOMO (DFTtzv)

LUMO (DFTtzv)

Gap (DFTtzv)

HOMO (DFTdzv)

LUMO (DFTdzv)

Gap (DFTdzv)

1 -5.17 -3.36 1.81 -5.20 -3.03 2.17 -4.78 -2.7 2.08

2 -5.07 -3.26 1.81 -5.08 -2.89 2.19 -4.69 -2.59 2.10

3 -5.11 -3.42 1.69 -5.08 -3.07 2.01

4 -5.01 -3.00 2.01 -4.93 -2.71 2.22 -4.54 -2.39 2.15

5 -5.00 -3.08 1.92 -4.86 -2.63 2.23 -4.49 -2.33 2.16

6 -4.95 -3.07 1.88 -4.80 -2.59 2.21 -4.43 -2.27 2.16

MAD=0.07 MAD=0.38 MAD=0.32 MAD=0.45 MAD=0.70 MAD=0.24

Blue Cells = Electrochemically Derived ValuesGreen Cells = Computationally Predicted ValuesYellow Cells = Mean Absolute Deviations (MAD)

All Energies Reported in eV DFTtzv = B3LYP/6-311+G**DFTdzv = B3LYP/6-31G*

Computing HOMO & LUMO Energies

Page 19: Seminar at Columbia 09-17-08

• TZV basis set used with B3LYP gives accurate HOMO energies for variety of substituted pentacenes

• LUMO energy levels are systematically wrong

• HOMO-LUMO Gaps for DZV B3LYP are closer to experiment by “cancellation of errors”

Computing HOMO & LUMO Energies

Page 20: Seminar at Columbia 09-17-08

HOMO-LUMO Energy Gaps for [n]Acenes: (n = 2-9) B3LYP/6-31G*

Page 21: Seminar at Columbia 09-17-08

Ring # [n] HOMO (eV) LUMO (eV) Gap

2 -6.14 -1.41 4.73

3 -5.57 -2.04 3.53

4 -5.20 -2.46 2.74

5 -4.94 -2.76 2.18

6 -4.74 -2.98 1.76

7 -6.72 -5.31 1.41

8 -6.02 -4.62 1.40

9 -6.72 -5.56 1.16

B3LYP/6-311+G**//B3LYP/6-31G*

HOMO LUMO Gap

-6.09 -1.40 4.69

-5.53 -2.02 3.51

-5.16 -2.44 2.72

-4.90 -2.74 2.16

-4.71 -2.96 1.75

-4.70 -2.98 1.72

-4.67 -3.03 1.64

-4.62 -3.08 1.54

B3LYP/6-31G*

Green = Closed-Shell Solutions Blue = Open-Shell Solutions

Comparing Basis-Sets for [n]Acenes: 6-31G* vs. 6-311+G**

n

Page 22: Seminar at Columbia 09-17-08

Ring # [n] HOMO (eV) LUMO (eV) Gap

2 -6.14 -1.41 4.73

3 -5.57 -2.04 3.53

4 -5.20 -2.46 2.74

5 -4.94 -2.76 2.18

6 -4.74 -2.98 1.76

7 -4.74 -3.00 1.74

8 -4.70 -3.05 1.65

9 -4.66 -3.11 1.55

B3LYP/6-31G*

Green = Closed-Shell Solutions Blue = Open-Shell Solutions

n

HOMO LUMO Gap

-6.09 -1.40 4.69

-5.53 -2.02 3.51

-5.16 -2.44 2.72

-4.90 -2.74 2.16

-4.71 -2.96 1.75

-4.70 -2.98 1.72

-4.67 -3.03 1.64

-4.62 -3.08 1.54

B3LYP/6-311+G**//B3LYP/6-31G*

Comparing Basis-Sets for [n]Acenes: 6-31G* vs. 6-311+G**

Page 23: Seminar at Columbia 09-17-08

Approaching “Band-Gap Engineering”: Substituent Effects on Pentacene Derivatives

R

R

R HOMO LUMO GAP-O- 3.72 4.13 0.41

-NH2 -4.10 -2.45 1.65

-OH -4.89 -2.78 2.11

-H -4.96 -2.67 2.29

-SCH3 -5.08 -2.89 2.19

-CN -5.70 -3.76 1.94

-CCH -5.05 -3.12 1.93

-CHO -5.50 -3.66 1.84

-S+(CH3)2 -10.94 -9.20 1.74

6,13-Disubstituted Pentacenes:Geometries, Energies and Surfaces Computed from B3LYP/6-311+G**

Recall:Hexacene Gap = 1.8Heptacene Gap = 1.7

Page 24: Seminar at Columbia 09-17-08

Exploiting Substituent Effects to Prepare Large, Persistent Acenes

Page 25: Seminar at Columbia 09-17-08

C60

C60 – Pentacene Monoadduct

J. Mack and G. P. Miller, Fullerene Science & Technology 1997, 5, 607

Fullerene-Acene Chemistry

Page 26: Seminar at Columbia 09-17-08

G. P. Miller, J. Briggs, J. Mack, P. A. Lord, M. M. Olmstead, A. L. Balch, Organic Letters 2003, 5, 4199

Fullerene-Acene Chemistry

Page 27: Seminar at Columbia 09-17-08

C60

85% Isolated6,13-Diphenylpentacene

Fullerene-Acene Chemistry

G. P. Miller and J. Mack, Organic Letters 2000, 2, 3979

Page 28: Seminar at Columbia 09-17-08

3.2 Å

1.55 Å2.26 Å

123.9o154.5o

G. P. Miller, J. Mack, and J. Briggs, Organic Letters 2000, 2, 3983

Fullerene-Fullerene Stacking

Page 29: Seminar at Columbia 09-17-08

Fullerene-Fullerene Stacking

G. P. Miller, J. Briggs, J. Mack, P. A. Lord, M. M. Olmstead, A. L. Balch, Organic Letters 2003, 5, 4199

Page 30: Seminar at Columbia 09-17-08

-Stacking in Graphite: d = 3.35 Å

Page 31: Seminar at Columbia 09-17-08

Spacial Dependence of [60]Fullerene-[60]Fullerene -Stacking Interactions

O

O

O

O

+

O

O

C60

1

1.1

G. P. Miller and J. Briggs, Tetrahedron Letters 2004, 45, 477

Page 32: Seminar at Columbia 09-17-08

cis,cis-Tris[60]Fullerene Adduct

G. P. Miller and J. Briggs, Organic Letters 2003, 5, 4203

More Fullerene-Acene Chemistry:Kaur, I. and Miller, G. P., New J. Chem. 2008, 32, 459-463.

J. E. Rainbolt, G. P. Miller, J. Org. Chem. 2007, 72, 3020–3030A.J. Athans, J. B. Briggs, W. Jia, G. P. Miller, J. Mat. Chem. 2007, 17, 2636–2641

J. Briggs and G. P. Miller, Comptes Rendus Chimie 2006, 9, 916

O

O

Ph

Ph

Ph

Ph

O

Ph

Ph

O

O

+

Ph

Ph

Ph

Ph

DDQ

C60

HI

AcOH

Page 33: Seminar at Columbia 09-17-08

BrBr

Ph

Ph

Ph

Ph

Ph

Ph

Ph

Ph

Ph

Ph

CH2Br

CH2Br

Nonacene

Cyclodecacene

DDQC60

N2dark

AlCl3 /N2Pd/C

Path Forward: Making Cyclacenes Using Fullerene-Acene Chemistry

Page 34: Seminar at Columbia 09-17-08

Path Forward: Making SWNCs Using Cyclacenes

Page 35: Seminar at Columbia 09-17-08

SWNCs with Uniform, Tunable Properties: Band-Gap Engineering

G. P. Miller, S. Okana, D. Tománek, J. Chem. Phys. 2006, 124, 121102

Page 36: Seminar at Columbia 09-17-08

Other Nanostructured

Carbons

Page 37: Seminar at Columbia 09-17-08

Fullerene Nanotubes

Page 38: Seminar at Columbia 09-17-08

[60]Fullerene Nanotubes

Rauwerdink, K., Liu, J.-F., Kintigh, J. and Miller, G. P., Microscopy Research & Technique, 2007, 70, 513-521

Page 39: Seminar at Columbia 09-17-08

Functionalized Fullerenes & Fullerene Nanotubes for OPVs

Page 40: Seminar at Columbia 09-17-08

Functionalized Fullerenes & Fullerene Nanotubes for OPVs

Page 41: Seminar at Columbia 09-17-08

Acknowledgements