Top Banner

of 49

Seismic Design of R.C and Steel

Jun 04, 2018

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/13/2019 Seismic Design of R.C and Steel

    1/49

  • 8/13/2019 Seismic Design of R.C and Steel

    2/49

  • 8/13/2019 Seismic Design of R.C and Steel

    3/49

  • 8/13/2019 Seismic Design of R.C and Steel

    4/49

  • 8/13/2019 Seismic Design of R.C and Steel

    5/49

  • 8/13/2019 Seismic Design of R.C and Steel

    6/49

    External Mom. 143.73 kNm Internal Mom. 227.33 kNm

    " 232.25 kNm " 82.72 kNm

    External Mom. 33.73 kNm Internal Mom. 201.95 kNm

    " 201.97 kNm " 33.75 kNm

    External Mom. -180.34 kNm Internal Mom. 157.28 kNm

    " 183.83 kNm " -164.6 kNm

    External Mom. -61.59 kNm Internal Mom. -98.92 kNm

    External Mom. -115.65 kNm Internal Mom. -115.61 kNm

    External Mom. 2.78 kNm Internal Mom. -5.38 kNm

    Linpro Analysis of Members to be designed

    Combo 3 = 1.2D + 1.6LBeam Member #12 - AB

    Beam Member #13 - BC

    Column Member #3 - BE

    Moments (kNm)

    Combo 1 = 1.2D + 0.5L 1.0E

    Beam Member #12 - AB

    Beam Member #13 - BC

    Column Member #3 - BE

  • 8/13/2019 Seismic Design of R.C and Steel

    7/49

    External Mom. 160.65 kNm Internal Mom. -200.16 kNm 781.89

    " -231.8 kNm " 83.45 kNm 699.69

    External Mom. 65.5 kNm Internal Mom. -170.18 kNm

    " -170.2 kNm " 65.51 kNm

    502.37

    420.16

    External Mom. -181.1 kNm Internal Mom. 158.76 kNm

    " 183.07 kNm " -163.12 kNm

    1017.38

    Combo 2 = 0.9D 1.0E

    Beam Member #12 - AB

    Beam Member #13 - BC

    Column Member #3 - BE

    Column Member

    Axial Loads (kN)

    Column Member

    Combo 1 = 1.2D + 0.

    Combo 2 = 0.9D

    Column Member

    Combo 3 = 1.2D

  • 8/13/2019 Seismic Design of R.C and Steel

    8/49

    kN

    KN

    kN

    KN

    kN

    3 - BE

    3 - BE

    5L 1.0E

    1.0E

    3 - BE

    1.6L

  • 8/13/2019 Seismic Design of R.C and Steel

    9/49

  • 8/13/2019 Seismic Design of R.C and Steel

    10/49

    Column span (height) (mm); (m) 5000 5

    Width, b (mm); (in) 450 18 OK

    Depth, h (mm); (in) 450 18 OK

    width/depth ratio 1 From Graph A7

    width/depth ratio check OK

    Ult. Axial load, Pu(kN); (kip) 1017.38 228.707

  • 8/13/2019 Seismic Design of R.C and Steel

    11/49

    Step 3 - Strong-Column-Weak-

    Beam Check

    Sidesway to left

    0.30 Beam mom. strength M-

    287.66

    0.15 Beam mom. strength M+

    188.50

    Axial load due to beam at joint 699.69 kN

    0.0105 0.0105

    OK as psi values 0.21

    1.05% From interaction graph

    2126.25 hence find Mn 0.14

    2272 Mn(kip-ft); (kNm) 246.65 334.41

    506.25 Mnis the column's mom. strengthDesign As A Column Check

    668.81 kNm

    571.40 kNm

    OK

    OK

    OK Sidesway to right

    OK Beam mom. strength M-

    287.66 kNm

    OK Beam mom. strength M 188.50 kNm

    Axial load due to beam at joint 781.89 kN

    0.0105

    as psi values 0.23

    From interaction graph

    = 0.14 (hence find Mn)

    Mn(kip-ft); (kNm) 246.645 334.41

    Check

    668.81 kNm

    571.40 kNmOK

    mn Main Steel

    olumn dimensions

    the rebar

  • 8/13/2019 Seismic Design of R.C and Steel

    12/49

    tep - a c. e traverse re ar or

    Confinement hoops

    Confinement zone Lo

    , max of

    d 450 mm

    h 450 mm

    (col. Height - beam depth)/6 733 mm

    450mm 450 mm

    Lo= 733 mm

    Det hc, cross section of column core not including cover

    hc 364 mm

    Consider hxas 250mm (10in)

    Max hoop spacing "sx"is the smallest

    out of (as shown below):

    sx = 4 + (14 - hx)/3 in inches 5.33 in 133.33 mm

    sx = depth/4 112.5 mm

    sx = 6 x column rebar diameter 114 mm

    hence max sx = 112.50 mm

    Try a spacing of 50mm or 2 in

    Achis the cross section of column core not including cover, but includes stirrups

    for our column Ach= 139876 mm

    hc= (total width h)-(concrete cover to centroid of stirrup)- (2 x stirrups half diameter)

  • 8/13/2019 Seismic Design of R.C and Steel

    13/49

    tep - a c. raverse e ar or

    Shear

    Lu 4.4 m

    Since sidesway to left and right is the same we will do one calc

    Mpr1 + Mpr2 476.16 kNm

    Vu 108.2182 kN

    0.75

    in psi units

  • 8/13/2019 Seismic Design of R.C and Steel

    14/49

    Step 1 - Beam Dimensions

    Span (m); (mm) 5.2 5200

    Width, b (mm); (in) 400 16

    Depth, D (mm); (in) 600 24

    Effective depth, d (mm); (in) 560 22.4

    Clear Span (mm); (in) 4750 190

    4d (mm); (in) 2240 89.6

    OK

    OK

    OK

    OK

    Step 2 --As(Top Main Rebar) Internal Support

    Substitute "a" in eqn above; solve As

    phi, 0.9

    fy(Mpa or Nmm-2); (ksi) 414 60.03

    f'c(Mpa or Nmm-2); (ksi) 25 3.625

    Quadratic formed below

    a 9073905.882b -208656c = Mu 227.33

    As + (m ); (mm ) 0.021848492 21848.49

    As - (m ); (mm ) 0.001146677 1146.677

    Area of steel to choose (mm ) 1146.68 mm

    Assume No. 25mm rebars 2.33 3 Bars

    Steel Provided 1473 mm2

    71.74 mm

    Step 3 - Check limits on As(Int. Supp)

    0.006575893

    0.003381643

    OK

    OK

  • 8/13/2019 Seismic Design of R.C and Steel

    15/49

  • 8/13/2019 Seismic Design of R.C and Steel

    16/49

    Step - 4-Asat external supports

    Substitute "a" in eqn above; solve As

    phi, 0.9

    fy(Mpa or Nmm-2); (ksi) 414 60.03

    f'c(Mpa or Nmm-2); (ksi) 25 3.625

    Quadratic formed below

    a 9073905.88

    b -208656

    c = Mu 232.25

    As + (m ); (mm ) 0.02182227 21822.27

    As - (m ); (mm ) 0.0011729 1172.902

    Area of steel to choose (mm ) 1172.90 mm

    Assume No. 25mm rebars 2.39 3 Bars

    Steel Provided 1473 mm2

    71.74 mm

    Check limits on As(Ext. Supp)

    0.00657589

    0.00338164OK

    OK

    Step 5 - Calc. min +ve Mom. strength

    Internal Supports+Mn

    287.66 kNm

    OK

    Therefore+Mn= Mn/2 143.83 kNm

    External Supports+Mn

    287.66 kNm

    OK

    Therefore+Mn= Mn/2 143.83 kNm

  • 8/13/2019 Seismic Design of R.C and Steel

    17/49

  • 8/13/2019 Seismic Design of R.C and Steel

    18/49

    Step 6 - Calc.+AsBottom Main Bars

    Substitute "a" in eqn above; solve As

    phi, 0.9

    fy(Mpa or Nmm-2); (ksi) 414 60.03

    f'c(Mpa or Nmm-2); (ksi) 25 3.625

    Quadratic formed below

    a 9073906

    b -208656

    c = Mu 160.65

    As + (m ); (mm ) 0.022198 22197.58

    As - (m ); (mm ) 0.000798 797.5922

    Area of steel to choose (mm ) 797.59 mm

    Assume No. 20mm rebars 2.54 3 Bars

    Steel Provided 942 mm2

    45.88 mm

    Check limits on As(Ext. Supp)

    0.004205

    0.003382OK

    OK

    Therefore+Mn, midspan

    188.50 kNm

    Mn =+Mn, midspan 188.50 kNm

    Empirical Rules

    71.92 kNm

    OK

    143.83 kNm

    Extend bottom mid span rebars to internal and external su

    Top Part of beam only

    Top Part of beam only

  • 8/13/2019 Seismic Design of R.C and Steel

    19/49

    Since the bottom midspan rebars are extended to the

    outer column as calculated for +Mn, mid-span then

    143.83kNm is ok. If not, additional steel would be needed

  • 8/13/2019 Seismic Design of R.C and Steel

    20/49

    Top Steel

    383.5 mm

    200 mm OK

    150 mm OK

    Bottom Steel

    306.8 mm

    160 mm OK

    150 mm OK

    span rebars to internal and external supports

    Step 7 - Calc. and check anchorage lengths for

    main rebars that end in the ext. column

    Note that the space referred to is the straight line from the inner column

    face to the outer face of the hook = 500 > 383.5mm: OK

    Rationale: Since I have 3 bars on the top external beam, I (multiply 3 bars

    by 25mm)+(383.50mm) and round it off by the nearest 50mm. This gives

    me the ditance I need for each of the 3 bars I designed for.

    Note that the space referred to is the straight line from the inner column

    face to the outer face of the hook = 400 > 306.80mm: OK

    Rationale: Since I have 3 bars at the bottom external beam, I (multiply 3

    bars by 20mm)+(383.50mm) and round it off by the nearest 50mm. This

    gives me the distance I need for each of the 3 bars I designed for.

  • 8/13/2019 Seismic Design of R.C and Steel

    21/49

  • 8/13/2019 Seismic Design of R.C and Steel

    22/49

    Step - 8 Calculate the Seismic Shear Rebar

    1.0

    1.25fy(Mpa or Nmm-2

    ) 517.5

    As1External Supports (mm2

    ) 1473

    As2Internal Supports (mm2) 1473

    a External Supports (mm) 71.74

    a Internal Supports (mm) 71.74

    d (mm) 560

    Mpr1 Ext. Supp. (kNm) 399.53

    Mpr2 Int. Supp. (kNm) 399.53

    wu= 1.2wD+ 1.6wL (kN/m)

    wD= Total Dead load from Frame Analysis 30.5 kN/m

    wL= Total Live load from Frame Analysis 15 kN/m

    Beam Span (m); (mm) 5.2 5200

    wu 60.6 kN/m

    Vu"+" 183.97 kN

    Vu"-" -123.37 kN

    Choose max. Vu 183.97 kN

    Checks153.67 kN

    91.98 kN

    Pu(gravity load) taken from analysis 781.89 kN

    300.00 kN

    (lbs); (kN) use psi to calc. 43157.07 191.97

    TRY ANOTHER CHECK

    USE Calc. Vc in kN

    40.0 kN

    Vs 53.32 kN

    Calc. stirrup spacing, s (mm)

    Av= stirrup area for 2 legs (mm2) 157 (10 mm )

    fyv= yield strength for stirrup (MPa) 275

    454 mm

  • 8/13/2019 Seismic Design of R.C and Steel

    23/49

  • 8/13/2019 Seismic Design of R.C and Steel

    24/49

    Step - 9 Check stirrup spacing

    d/4 (mm) 140 mm

    160 mm

    240 mm

    possible smax 300 mm

    Confinement zone = 2*600mm depth

    s must be less than smax within the confinement zone

    hence we choose the smallest = 140mm

  • 8/13/2019 Seismic Design of R.C and Steel

    25/49

    Step 1 - Beam Dimensions Step - 4-Asat external supports

    Span (m); (mm) 5.8 5800

    Width, b (mm); (in) 400 16

    Depth, D (mm); (in) 600 24 Substitute "a" in eqn above; solve As

    Effective depth, d (mm); (in) 560 22.4 phi,

    Clear Span (mm); (in) 5350 214 fy(Mpa or Nmm-2); (ksi)

    4d (mm); (in) 2240 89.6 f'c(Mpa or Nmm-2); (ksi)

    OK Quadratic formed below

    OK a

    OK b

    OK c = Mu

    As + (m ); (mm )Step 2 -

    -As(Top Main Rebar) Internal Support As - (m ); (mm )

    Area of steel to choose (mm )

    Assume No. 25mm rebars

    Substitute "a" in eqn above; solve As Steel Provided

    phi, 0.9

    fy(Mpa or Nmm-2); (ksi) 414 60.03

    f'c(Mpa or Nmm-2); (ksi) 25 3.625 Check limits on As(Ext. Supp)

    Quadratic formed below

    a 9073906b -208656c = Mu 201.95

    As + (m ); (mm ) 0.021983 21982.73

    As - (m ); (mm ) 0.001012 1012.437 Step 5 - Calc. min +ve Mom. strength

    Area of steel to choose (mm ) 1012.44 mm Internal Supports+Mn

    Assume No. 25mm rebars 2.06 3 Bars

    Steel Provided 1473 mm2

    71.74 mm Therefore+Mn= Mn/2

    Step 3 - Check limits on As(Int. Supp) External Supports+Mn

    0.006576

    0.003382

    OK Therefore+Mn= Mn/2

    OK

  • 8/13/2019 Seismic Design of R.C and Steel

    26/49

  • 8/13/2019 Seismic Design of R.C and Steel

    27/49

    Step 6 - Calc.+AsBottom Main Bars

    Substitute "a" in eqn above; solve As

    0.9 phi, 0.9

    414 60.03 fy(Mpa or Nmm-2); (ksi) 414 60.03

    25 3.625 f'c(Mpa or Nmm-2); (ksi) 25 3.625

    Quadratic formed below

    9073906 a 9073906

    -208656 b -208656

    201.97 c = Mu 65.5

    0.021983 21982.63 As + (m ); (mm ) 0.022677 22676.850.001013 1012.542 As - (m ); (mm ) 0.000318 318.3203

    1012.54 mm Area of steel to choose (mm ) 318.32 mm

    2.06 3 Bars Assume No. 20mm rebars 1.01 2 Bars

    1473 mm2

    Steel Provided 942 mm2

    71.74 mm 45.88 mm

    Check limits on As(Ext. Supp)

    0.006576 0.004205

    0.003382 0.003382OK OK

    OK OK

    Therefore+Mn, midspan

    188.50 kNm

    287.66 kNm Mn =+Mn, midspan 188.50 kNm

    OK

    143.83 kNm

    287.66 kNm Empirical Rules

    OK

    143.83 kNm 71.92 kNm

    OK

    143.83 kNm

    Extend bottom mid span

    Top Part of beam only

    Top Part of beam only

  • 8/13/2019 Seismic Design of R.C and Steel

    28/49

    Since the bottom midspan rebars are extended to the outer

    column as calculated for +Mn, mid-span then 143.83kNm is ok. If

    not, additional steel would be needed for the beam bottom

    steel.

  • 8/13/2019 Seismic Design of R.C and Steel

    29/49

    Top Steel

    383.5 mm

    200 mm OK

    150 mm OK

    Bottom Steel306.8 mm

    160 mm OK

    150 mm OK

    Note that the space referred to is the straight line from the inner column

    face to the outer face of the hook = 400 > 306.80mm: OK

    Rationale: Since I have 3 bars at the bottom external beam, I (multiply 3

    bars by 20mm)+(306.80mm) and round it off by the nearest 50mm. This

    gives me the distance I need for each of the 3 bars I designed for.

    rebars to internal and external supports

    Step 7 - Calc. and check anchorage lengths for

    main rebars that end in the ext. column

    Note that the space referred to is the straight line from the inner column

    face to the outer face of the hook = 500 > 383.5mm: OK

    Rationale: Since I have 3 bars on the top external beam, I (multiply 3 bars

    by 25mm)+(383.50mm) and round it off by the nearest 50mm. This gives

    me the ditance I need for each of the 3 bars I designed for.

  • 8/13/2019 Seismic Design of R.C and Steel

    30/49

  • 8/13/2019 Seismic Design of R.C and Steel

    31/49

    Step - 8 Calculate the Seismic Shear Rebar

    1.0

    1.25fy(Mpa or Nmm-

    ) 517.5

    As1External Supports (mm ) 1473

    As2Internal Supports (mm2) 1473

    a External Supports (mm) 71.74

    a Internal Supports (mm) 71.74

    d (mm) 560

    Mpr1 Ext. Supp. (kNm) 399.53

    Mpr2 Int. Supp. (kNm) 399.53

    wu= 1.2wD+ 1.6wL (kN/m)wD= Total Dead load from Frame Analysis 30.5 kN/m

    wL= Total Live load from Frame Analysis 15 kN/m

    Beam Span (m); (mm) 5.8 5800

    wu 60.6 kN/m

    Vu"+" 168.07 kN

    Vu"-" -107.47 kN

    Choose max. Vu 168.07 kN

    Checks137.77 kN

    84.03 kN

    Pu(gravity load) taken from analysis 781.89 kN

    300.00 kN

    (lbs); (kN) use psi to calc. 43157.07 191.97

    TRY ANOTHER CHECK

    USE Calc. Vc in kN

    24.1 kNVs 32.12 kN

    Calc. stirrup spacing, s (mm)

    Av= stirrup area for 2 legs (mm2) 157 (10 mm )

    fyv= yield strength for stirrup (MPa) 275

    753 mm

  • 8/13/2019 Seismic Design of R.C and Steel

    32/49

  • 8/13/2019 Seismic Design of R.C and Steel

    33/49

    Step - 9 Check stirrup spacing

    d/4 (mm) 140 mm

    160 mm

    240 mm

    possible smax 300 mm

    Confinement zone = 2*600mm depth

    s must be less than smax within the confinement zone

    hence we choose the smallest = 140mm

  • 8/13/2019 Seismic Design of R.C and Steel

    34/49

    b D b h Beam

    400 600 450 450

    Occupancy Category 1 & 2 3 4

    0.02hx 0.015hx 0.01hx

    0.02 0.015 0.01

    General Formula

    1st floor 5 m (hx1)2nd floor 8.8 m (hx2)

    roof 12.6 m (hx3)

    1st floor max drift 0.1 m

    2nd floor max drift 0.176 m

    roof max drift 0.252 m

    From our tabulated results, our nodes under earthquake load are node 4, 8 and 12

    Beam Column

    Max Drift Check

    hxis the height of the floor at which the earthquake load is acting

    Results Below are from LINPRO using the beam and column dimensions prescribed above

    Floor Heights

    =

  • 8/13/2019 Seismic Design of R.C and Steel

    35/49

    delta x 1 0.097669 OK

    delta x 2 0.052173 OK

    delta x 3 0.030685 OK

    N.B. If the drifts exceed the max drift, change occupancy level or beam and column dimensions

  • 8/13/2019 Seismic Design of R.C and Steel

    36/49

    Column

  • 8/13/2019 Seismic Design of R.C and Steel

    37/49

  • 8/13/2019 Seismic Design of R.C and Steel

    38/49

  • 8/13/2019 Seismic Design of R.C and Steel

    39/49

    External Mom. 67.6 kNm Internal Mom. 186.33 kNm

    " 56.22 kNm " 189.21 kNm

    External Mom. 18.93 kNm Internal Mom. 191.41 kNm

    " 18.94 kNm " 191.42 kNm

    External Mom. 113.01 kNm Internal Mom. 223.46 kNm

    " 230.15 kNm " 127.93 kNm

    External Mom. -61.59 kNm Internal Mom. -98.92 kNm

    External Mom. -115.65 kNm Internal Mom. -115.61 kNm

    External Mom. 2.78 kNm Internal Mom. -5.38 kNm

    Combo 3 = 1.2D + 1.6LBeam Member #12 - AB

    Beam Member #13 - BC

    Column Member #3 - BE

    Beam Member #12 - AB

    Beam Member #13 - BC

    Column Member #3 - BE

    Linpro Analysis of Members to be designed

    Moments (kNm)

    Combo 1 = 1.2D + 0.5L 1.0E

  • 8/13/2019 Seismic Design of R.C and Steel

    40/49

    External Mom. 90.96 kNm Internal Mom. 162.05 kNm 752.55

    " 80.51 kNm " 165.85 kNm 704.6

    External Mom. 51.54 kNm Internal Mom. 158.81 kNm

    " 51.55 kNm " 158.81 kNm

    477.78

    429.83

    External Mom. 116.17 kNm Internal Mom. 225.2 kNm

    " 124.77 kNm " 228.4 kNm

    1000.05

    Column Member

    Combo 3 = 1.2D

    Beam Member #12 - AB Column Member

    Beam Member #13 - BC

    Combo 2 = 0.9D

    Column Member

    Column Member #3 - BE

    Axial Loads (kN)

    Combo 2 = 0.9D 1.0E Combo 1 = 1.2D + 0.

  • 8/13/2019 Seismic Design of R.C and Steel

    41/49

    kN

    KN

    kN

    KN

    kN

    3 - BE

    1.6L

    3 - BE

    1.0E

    3 - BE

    5L 1.0E

  • 8/13/2019 Seismic Design of R.C and Steel

    42/49

  • 8/13/2019 Seismic Design of R.C and Steel

    43/49

    Step 1 - Check Beam Strength

    Mp (kip-ft); (kN-m)

    Step 1 - Select Beam Sizes Mu (kNm)

    W16x89 bMp (kN-m)

    Beam AB Span (m); (ft) 5.2 17.06

    Beam BC Span (m); (ft) 5.8 19.02

    Area (in2) 26.2

    Flange width (top) (mm); (in) 264.16 10.4

    Flange width (bot) (mm); (in) 264.16 10.4

    Flange thk (top) (mm); (in) 22.225 0.875

    Flange thk (bot) (mm); (in) 22.225 0.875

    Depth (mm); (in) 426.72 16.8

    ryy(radius of gyration) (mm); (in) 63.246 2.49

    tep - eam or oca

    buckling stability

    Web thickness 13.335 0.525 Flange check

    E (Mpa or N/mm-2); (ksi) 200 29000 Max ps

    fy(Mpa or N/mm2); (ksi) 0.345 50 bt/(2tf)

    Le(Unbraced Length) (mm); (m)

    - Assume one half length of

    longest beam

    2900 2.9

    bt/(2tf) < Max ps

    Zx (in3) 175

    Web Check

    Max ps

    Select Column Size h/twor d/tw

    W18x175 h/twor d/tw< Max ps

    Column BE Span 5 16.4

    Area (in2) 51.3

    Flange width (top) (mm); (in) 289.56 11.4

    Flange width (bot) (mm); (in) 289.56 11.4Step 3 - Chk Unbraced Lengthof Beam Compression Flanges

    Flange thk (top) (mm); (in) 40.386 1.59 Max Length (m)

    Flange thk (bot) (mm); (in) 40.386 1.59 Unbraced length check

    Depth (mm); (in) 508 20

    ryy(radius of gyration) (mm); (in) 70.104 2.76

    Web thickness 22.606 0.89

    E (Mpa or N/mm-2); (ksi) 200 29000

  • 8/13/2019 Seismic Design of R.C and Steel

    44/49

    fy(Mpa or N/mm2); (ksi) 0.345 50

    Le(Unbraced Length) (mm); (m)

    - Assume one half length of

    longest beam 2.9

    Zx (in3) 398

  • 8/13/2019 Seismic Design of R.C and Steel

    45/49

    Step 4 - Check the Strong-Column-

    Weak-Beam Behaviour

    729.17 988.62

    Ry 1.1

    191.42 Mp (kip-ft); (kN-m) 729.17 988.62

    889.76 D.L. (kN/m) 30.5

    OK L.L. (kN/m) 15

    1.2D.L. + 1.6L.L. (kN/m); (kip/ft) 60.6 4.15

    Left Beam

    Vp (kip); (kN) 136.59 607.59

    (kip-ft) 1091.73

    Right Beam

    Vp (kip); (kN) 127.82 568.58

    Beam Strength M*

    pb(kip-ft) 1078.28

    Sum of beam strengths (kip-ft) 2170.02

    7.22 M*pc col. strength (kip-ft)

    5.94 (kip-ft) 1548.95

    OK 3097.91 kip-ft

    Adjustment for avg C.L to avg clearcolumn height 1.09

    M*pc 3386.97

    59.00 1.56

    32 OK

    OK

    3.15

    OK

  • 8/13/2019 Seismic Design of R.C and Steel

    46/49

  • 8/13/2019 Seismic Design of R.C and Steel

    47/49

    Step 5 - Check Column Local Stability

    Flange check

    Max ps 7.22

    bt/(2tf) 3.58

    bt/(2tf) < Max ps OK

    Web Check

    h/twor d/tw 22.47

    h/twor d/tw< Max ps OK

    Step 6 - Check Column Zone Strength

    2

    c= Y 0.90

    Fcr (ksi) 34.32

    c Pn (kips); (kN) 1496.49 6656.72

    Pu/cPc Check 0.11 OK

  • 8/13/2019 Seismic Design of R.C and Steel

    48/49

  • 8/13/2019 Seismic Design of R.C and Steel

    49/49

    Step 7 - Check the beam-column panel

    zone

    For the 5.2m (17.07 ft) beam

    Lc (m); (ft) 4.692 15.39

    (kip-ft) 1874.36

    For the 5.8m (19.02 ft) beam

    Lc (m); (ft) 5.292 17.36

    (kip-ft) 1853.33

    Mf (kip-ft) 3727.69

    Ru (kip) 2808.9

    600 tp

    154.39

    formula 600tp + 154.39

    tp (in) 4.4

    in thick

    This can be either one or two plates 1.767117 in thick

    As the column web thickness is 0.89 in,

    the doubler plate thicknes required3.5