Top Banner
Section 12: Fatty Acid and Lipid Metabolism Chapter 27: Fatty Acid Degradation Chapter 28: Fatty Acid Synthesis By the end of this section, you should be able to: Ø Identify the repeated steps of fatty acid degradation. Ø Describe ketone bodies and their role in metabolism. Ø Explain how fatty acids are synthesized. Ø Explain how fatty acid metabolism is regulated.
53

Section 12: Fatty Acid and Lipid Metabolism

Nov 10, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Section 12: Fatty Acid and Lipid Metabolism

Section12: FattyAcidandLipidMetabolismChapter27:FattyAcidDegradationChapter28:FattyAcidSynthesis

Bytheendofthissection,youshouldbeableto:Ø Identifytherepeatedstepsoffattyaciddegradation.

ØDescribeketonebodiesandtheirroleinmetabolism.

Ø Explainhowfattyacidsaresynthesized.Ø Explainhowfattyacidmetabolismisregulated.

Page 2: Section 12: Fatty Acid and Lipid Metabolism

Lecture:Ch27-28-29

CHAPTER27FattyAcidSynthesis

CHAPTER28FattyAcidDegradation

Page 3: Section 12: Fatty Acid and Lipid Metabolism

Chapter27Outline

Page 4: Section 12: Fatty Acid and Lipid Metabolism

Fattyaciddegradationisakeyenergysourceformammalsduringhibernation.

• Fattyacidsarestoredinadiposetissueastriacylglycerols (TAG)inwhichfattyacidsarelinkedtoglycerolwithesterlinkages.

• Adiposetissueislocatedthroughoutthebody,withsubcutaneous(belowtheskin)andvisceral(aroundtheinternalorgans)depositsbeingmostprominent.

Page 5: Section 12: Fatty Acid and Lipid Metabolism

Thefattyacidsincorporatedintotriacylglycerolsinadiposetissuearemadeaccessibleinthreestages.

1. DegradationofTAG toreleasefattyacidsandglycerolintothebloodfortransporttoenergy-requiringtissues.

2. Activationofthefattyacidsandtransportintothemitochondriaforoxidation.

3. DegradationofthefattyacidstoacetylCoAforprocessingbythecitricacidcycle.

Lipiddegradation

Page 6: Section 12: Fatty Acid and Lipid Metabolism

• Triacylglycerolsarestoredinadipocytesasalipiddroplet.• Epinephrineandglucagon,actingthrough7TMreceptors,stimulatelipid

breakdownorlipolysis.• ProteinkinaseAphosphorylatesperilipin,whichisassociatedwiththelipid

droplet,andhormone-sensitivelipase.• Phosphorylationofperilipin resultsintheactivationofadipocytetriacylglyceride

lipase(ATGL).• ATGLinitiatesthebreakdownoflipids.Chanarin-Dorfmam syndrome,

characterizedbydryskin,enlargedliverandmuscle,andmildcognitivedisability,resultsifATGLactivityiscompromised.

• Theglycerolreleasedduringlipolysisisabsorbedbytheliverforuseinglycolysisorgluconeogenesis.

Page 7: Section 12: Fatty Acid and Lipid Metabolism

Triacylglycerols inadiposetissueareconvertedintofreefattyacidsinresponsetohormonalsignals

ThephosphorylationofperilipinrestructuresthelipiddropletandreleasesthecoactivatorofATGL.TheactivationofATGLbybindingwithitscoactivatorinitiatesthemobilization.Hormone-sensitivelipasereleasesafattyacidfromdiacylglycerol.Monoacylglycerol lipasecompletesthemobilizationprocess.

Abbreviations:7TM,seventransmembrane;ATGL,adiposetriglyceridelipase;CA,coactivator;HSlipase,hormone-sensitivelipase;MAGlipase,monoacylglycerol lipase;DAG,diacylglycerol;TAG,triacylglycerol.

Page 8: Section 12: Fatty Acid and Lipid Metabolism

Lipolysisgeneratesfattyacidsandglycerol

AcylCoAisanactivatedformoffattyacid

Page 9: Section 12: Fatty Acid and Lipid Metabolism

AfterbeingactivatedbylinkagetoCoA,thefattyacidistransferredtocarnitine,areactioncatalyzedbycarnitineacyltransferaseI,fortransportintothemitochondria.Atranslocasetransportstheacylcarnitineintothemitochondria.

Inthemitochondria,carnitineacyltransferaseIItransfersthefattyacidtoCoA.ThefattyacylCoAisnowreadytobedegraded.

Acylcarnitinetranslocase

ClinicalInsights:Muscle,kidney,andheartusefattyacidsasafuel.Pathologicalconditionsresultsiftheacyltransferaseorthetranslocasearedeficient.

Carnitinedeficienciescanbetreatedbycarnitinesupplementation.

Page 10: Section 12: Fatty Acid and Lipid Metabolism

Fattyaciddegradationconsistsoffourstepsthatarerepeated.1. Oxidationoftheβcarbon,catalyzedbyacyl

CoAdehydrogenase,generatestrans-Δ2-enoylCoAandFADH2.

2. Hydrationoftrans-Δ2-enoylCoAbyenoylCoAhydrataseyieldsL-3-hydroxyacylCoA.

3. OxidationofL-3-hydroxyacylCoAbyL-3-hydroxyacyldehydrogenasegenerates2-ketoacylCoAandNADH.

4. Cleavageofthe3-ketoacylCoAbythiolaseformsacetylCoAandafattyacidchaintwocarbonsshorter.

Fattyaciddegradationisalsocalledβ-oxidation.

Page 11: Section 12: Fatty Acid and Lipid Metabolism

Thereactionsequenceforthedegradationoffattyacids

Twocarbonunitsaresequentiallyremovedfromthecarboxylendofthefattyacid

Fattyacidsaredegradedbytherepetitionofafour-reactionsequenceconsistingofoxidation,hydration,oxidation,andthiolysis.

Page 12: Section 12: Fatty Acid and Lipid Metabolism
Page 13: Section 12: Fatty Acid and Lipid Metabolism

Thereactionforoneroundofβ-oxidationis:

ThecompletereactionforC16 palmitoylCoAis:

Processingoftheproductsofthecompletereactionbycellularrespirationwouldgenerate106moleculesofATP.

Page 14: Section 12: Fatty Acid and Lipid Metabolism

Answer:The steps are (1) oxidation by FAD; (2) hydration; (3) oxidation by NAD+; (4) thiolysis to yield acetyl CoA. In symbolic notation, the β-carbon atom is oxidized.

Page 15: Section 12: Fatty Acid and Lipid Metabolism

• β-oxidationalonecannotdegradeunsaturatedfattyacids.Whenmonounsaturatedfattyacidsaredegradedbyβ-oxidation,cis-Δ3-enoylCoAisformed,whichcannotbeprocessedbyacylCoAdehydrogenase.

• Cis-Δ3-enoylCoAisomerase convertsthedoublebondintotrans-Δ2-enoylCoA,anormalsubstrateforβ-oxidation.

• Whenpolyunsaturatedfattyacidsaredegradedbyβ-oxidation,cis-Δ3-enoylCoAisomeraseisalsorequired.2,4-DienoylCoAisalsogenerated,butcannotbeprocessedbythenormalenzymes.

• 2,4-DienoylCoAisconvertedintotrans-Δ3-enoylCoAby2,4-dienoylCoAreductase,andtheisomeraseconvertsthisproducttotrans-Δ2-enoylCoA,anormalsubstrate.

• Unsaturatedfattyacidswithoddnumbersofdoublebondsrequireonlytheisomerase.Evennumberofdoublebondsrequireboththeisomeraseandreductase.

Page 16: Section 12: Fatty Acid and Lipid Metabolism

β-OxidationoffattyacidswithoddnumbersofcarbonsgeneratespropionylCoAinthelastthiolysisreaction.

Propionylcarboxylase,abiotinenzyme,addsacarbontopropionylCoAtoformmethylmalonylCoA

SuccinylCoA,acitricacidcyclecomponent,issubsequentlyformedfrommethylmalonylCoAbymethylmalonylCoAmutase,avitaminB12 requiringenzyme.

Page 17: Section 12: Fatty Acid and Lipid Metabolism

• Ketonebodies—acetoacetate,3-hydroxybutyrate,andacetone— aresynthesizedfromacetylCoAinlivermitochondriaandsecretedintothebloodforuseasafuelbysometissuessuchasheartmuscle.

• 3-Hydroxybutyrateisformeduponthereductionofacetoacetate.Acetoneisgeneratedbythespontaneousdecarboxylationofacetoacetate.

• Intissuesusingketonebodies,3-hydroxybutyrateisoxidizedtoacetoacetate,whichisultimatelymetabolizedtotwomoleculesofacetylCoA.

Page 18: Section 12: Fatty Acid and Lipid Metabolism

Theformationofketonebodies

Theketonebodies—acetoacetate,D-3-hydroxybutyrate,andacetone—areformedfromacetylCoAprimarilyintheliver.Enzymescatalyzingthesereactionsare(1)3-ketothiolase,(2)hydroxymethylglutaryl CoAsynthase,(3)hydroxymethylglutaryl CoAcleavageenzyme,and(4)D-3-hydroxybutyratedehydrogenase.Acetoacetatespontaneouslydecarboxylates toformacetone

TheutilizationofD-3-hydroxybutyrateandacetoacetateasafuel

Ketogenicdiets, richinfatsandlowincarbohydratesbutwithadequateproteins,leadtoformationofsubstantialamountsofketonebodies.

Ketogenicdietsmayhavetherapeuticproperties:Forreasonsnotyetestablished,suchdietsreducetheseizuresinchildrensufferingfromdrug-resistantepilepsy.

Page 19: Section 12: Fatty Acid and Lipid Metabolism

FatsareconvertedintoacetylCoA,whichisthenprocessedbythecitricacidcycle.

Oxaloacetate,acitricacidcycleintermediate,isaprecursortoglucose.

However, acetylCoAderivedfromfatscannotleadtothenetsynthesisofoxaloacetateorglucosebecausealthoughtwocarbonsenterthecyclewhenacetylCoAcondenseswithoxaloacetate,twocarbonsarelostasCO2beforeoxaloacetateisregenerated.

High levels of acetoacetate in the blood signify an abundance of acetyl units and lead to a decrease in the rate of lipolysis in adipose tissue.

Page 20: Section 12: Fatty Acid and Lipid Metabolism

Answer:D-3-Hydroxybutyrate is more energy rich because its oxidation potential is greater than that of acetoacetate. After having been absorbed by a cell, d-3-hydroxybutyrate is oxidized to acetoacetate, generating high-energy electrons in the form of NADH. The acetoacetate is then cleaved to yield to acetyl CoA.

Page 21: Section 12: Fatty Acid and Lipid Metabolism

• Ketonebodiesaremoderatelystrongacids,andexcessproductioncanleadtoacidosis.

• Anoverproductionofketonebodiescanoccurwhendiabetes,aconditionresultingfromalackofinsulinfunction,isuntreated.Theresultingacidosisiscalleddiabeticketosis.

• Ifinsulinisabsentornotfunctioning,glucosecannotentercells.Allenergymustbederivedfromfats,leadingtotheproductionofacetylCoA.

• AcetylCoAbuildsupbecauseoxaloacetate,whichcanbegeneratedfromglucose,isnotavailabletoreplenishthecitricacidcycle.

• Moreover,fattyacidreleasedfromadiposetissueisenhancedintheabsenceofinsulinfunction.

Page 22: Section 12: Fatty Acid and Lipid Metabolism

Diabeticketosisresultswheninsulinisabsent

Intheabsenceofinsulin,fatsarereleasedfromadiposetissue,andglucosecannotbeabsorbedbytheliveroradiposetissue.Theliverdegradesthefattyacidsbyb-oxidation,butcannotprocesstheacetylCoAbecauseofalackofglucose-derivedoxaloacetate(OAA).Excessketonebodiesareformedandreleasedintotheblood. Abbreviation:CAC,citricacidcycle.

Page 23: Section 12: Fatty Acid and Lipid Metabolism

• Glucoseisthepredominantfuelforthebrain.

• Duringstarvation,proteindegradationisinitiallythesourceofcarbonsforgluconeogenesisintheliver.Theglucoseisthenreleasedintothebloodforthebraintouse.

• Afterseveraldaysoffasting,thebrainbeginstouseketonebodiesasafuel.

• Ketonebodyusecurtails(reduces)proteindegradationandthuspreventstissuefailure.Moreover,ketonebodiesaresynthesizedfromfats,thelargestenergystoreinthebody.

Page 24: Section 12: Fatty Acid and Lipid Metabolism

Fuelchoiceduringstarvation

Saturatedandtransunsaturatedfattyacids aresynthesizedcommerciallytoenhancetheshelflifeandheatstabilityoffatsforfoodpreparation.

Studiessuggestthatexcessconsumptionofthesefatsresultsinobesity,heartdiseaseandtype2diabetes.

Page 25: Section 12: Fatty Acid and Lipid Metabolism

Lecture:Ch27&Ch28

CHAPTER28FattyAcidSynthesis

Outline

Page 26: Section 12: Fatty Acid and Lipid Metabolism

1. ThefirststageoffattyacidsynthesisistransferofacetylCoAoutofthemitochondriaintothecytoplasm.CitrateistransportedintothecytoplasmandcleavedintooxaloacetateandacetylCoA.

2. ThesecondstateistheactivationofacetylCoAtoformmalonylCoA.

3. ThethirdstageistherepetitiveadditionandreductionoftwocarbonunitstosynthesizeC16 fattyacid.Synthesisoccursonanacylcarrierprotein,amolecularscaffold.

Citrate,synthesizedinthemitochondria,istransportedtothecytoplasmandcleavedbyATP-citratelyasetogenerateacetylCoAforfattyacidsynthesis.

Page 27: Section 12: Fatty Acid and Lipid Metabolism

ThetransferofacetylCoAtothecytoplasm

AcetylCoAistransferredfrommitochondriatothecytoplasm,andthereducingpotentialofNADHisconcomitantlyconvertedintothatofNADPHbythisseriesofreactions

PFK

Page 28: Section 12: Fatty Acid and Lipid Metabolism

• FattyacidsynthesisrequiresreducingpowerintheformofNADPH.

• SomeNADPHcanbeformedfromtheoxidationofoxaloacetate,generatedbyATP-citratelyase,bythecombinedactionofcytoplasmicmalatedehydrogenaseandmalicenzyme.

• Pyruvateformedbymalicenzymeentersthemitochondriawhereitisconvertedintooxaloacetatebypyruvatecarboxylase.

• Thesumofthereactionscatalyzedbymalatedehydrogenase,malicenzyme,andpyruvatecarboxylaseis:

• AdditionalNADPHissynthesizedbythepentosephosphatepathway.

Page 29: Section 12: Fatty Acid and Lipid Metabolism

PATHWAYINTEGRATION:Fattyacidsynthesis

Fattyacidsynthesisrequiresthecooperationofvariousmetabolicpathwayslocatedindifferentcellularcompartments.

Page 30: Section 12: Fatty Acid and Lipid Metabolism

• FattyacidsynthesisstartswiththecarboxylationofacetylCoAtomalonylCoA,theactivatedformofacetylCoA

• Malonyl CoAissynthesizedbyacetylCoAcarboxylase(ACC),abiotin-requiringenzyme.

TheformationofmalonylCoAoccursintwosteps:

(theactivatedformofacetylCoA)

(theactivatedformofCO2)

ACC

Page 31: Section 12: Fatty Acid and Lipid Metabolism

• Fattyacidsynthase,acomplexofenzymes,catalyzestheformationoffattyacidsfromfromacetylCoA,malonyl CoA,andNADPHiscalledfattyacidsynthase.

• Fattyacidsynthesisoccursontheacylcarrierprotein(ACP),apolypeptidelinkedtoCoA.IntermediatesarelinkedtothesulfhydrylgroupofthepantothenateattachedtoACP.

• AcetyltransacylaseandmalonyltransacylaseattachsubstratestotheACP.

• Thenextthreesteps—areduction,dehydration,andanotherreduction—converttheketogroupatcarbon3toamethylenegroup(-CH2-),formingbutyrylACP.

• NADPHisthesourceofreducingpower.

β-KetoacylsynthasecatalyzesthecondensationofacetylACPandmalonylACPtoformacetoacetylACP.

Page 32: Section 12: Fatty Acid and Lipid Metabolism

• ThesecondroundofsynthesisbeginswiththecondensationofmalonylCoAwiththenewlysynthesizedbutyrylACP,formingC6-β-ketoacylACP.

• Thereduction,dehydration,reductionsequenceisrepeated.

• SynthesiscontinuesuntilC16-acylACP,whichiscleavedbythioesterase toyieldpalmitate.

Page 33: Section 12: Fatty Acid and Lipid Metabolism

Thestoichiometryforthesynthesisofpalmitateis:

ThesynthesisoftherequiredmalonylCoAisdescribedbythefollowingreaction:

Thus,thestoichiometryforthesynthesisofpalmitatefromacetylCoAis:

Page 34: Section 12: Fatty Acid and Lipid Metabolism

• ThereactionsoffattyacidsynthesisaresimilarinE.coliandanimals.

• Inanimals,alloftheenzymesrequiredforfattyacidsynthesisarecomponentsofasinglepolypeptidechain.

• Thefunctionalenzymeiscomposedoftwoidenticalchains.

• Theenzymeconsistsoftwodistinctcompartments.

Ø Theselectingandcondensingcompartment,whichbindstheacetylandmalonylsubstratesandcondensesthem.

Ø Themodificationcompartment,whichcarriesoutthereductionanddehydrationactivitiesrequiredforelongation.

Page 35: Section 12: Fatty Acid and Lipid Metabolism

Animalfattyacidsynthasedomainstructure

Bindsacetylandmalonyl substrates

Page 36: Section 12: Fatty Acid and Lipid Metabolism
Page 37: Section 12: Fatty Acid and Lipid Metabolism

Answer:Acetyl CoA is the basic substrate for fatty acid synthesis. It is transported out of mitochondria in the form of citrate. After the formation of acetyl CoA, the resulting pyruvate is transported back into the mitochondria with a concomitant formation of NADPH, the reducing power for fatty acid synthesis. Additional NADPH can be generated by the pentose phosphate pathway. Malonyl CoA, the ultimate substrate for fatty acid synthesis is formed by the carboxylation of acetyl CoA.

Page 38: Section 12: Fatty Acid and Lipid Metabolism

• Tumorsrequirelargeamountsoffattyacidsynthesistoproduceprecursorsformembranesynthesis.

• β-Ketoacyl synthaseinhibitorsretardtumorgrowth.

• Micetreatedwithβ-Ketoacyl synthaseinhibitorsalsoshoweddramaticweightloss,suggestingthatsuchdrugsmaybeusedtotreatobesity.

• AcetylCoAcarboxylaseinhibitorsmayalsobepotentialchemotherapyagents.

Page 39: Section 12: Fatty Acid and Lipid Metabolism

• β-Hydroxybutyricacid,whenattachedtoACPorCoA,isasubstrateinfattyacidsynthesisanddegradation,andisaketonebodyaswell.

• Anisomerofthiskeybiochemical,γ-hydroxybutyricacidisapotent,illegaldrug.

Page 40: Section 12: Fatty Acid and Lipid Metabolism

• FattyacidsynthasecannotgeneratefattyacidslongerthanC16palmitate.

• Longerfattyacidsaresynthesizedbyenzymesattachedtotheendoplasmicreticulum.

• Theseenzymesextendpalmitatebyaddingtwocarbonunits,usingmalonylCoAasasubstrate.

Page 41: Section 12: Fatty Acid and Lipid Metabolism

• Enzymesboundtotheendoplasmicreticulumintroducedoublebondsintosaturatedfattyacids.

Forinstance:

• Mammalslacktheenzymesthatintroducedoublebondsbeyondcarbon9.

• Linoleateandlinolenateareessentialfattyacidsthatmustbeobtainedinthediet.

Page 42: Section 12: Fatty Acid and Lipid Metabolism

• Arachidonate,a20-carbonfattyacidwithfourdoublebonds,isderivedfromlinoleate.

• Arachidonateisaprecursorforavarietyofsignalmolecules20carbonslong,collectivelycalledtheeicosanoids.

• Thesesignalmolecules,whichincludeprostaglandins,arelocalhormonesbecausetheyareshortlivedandonlyaffectnearbycells.

Page 43: Section 12: Fatty Acid and Lipid Metabolism

Arachidonate isthemajorprecursorofeicosanoidhormones

Page 44: Section 12: Fatty Acid and Lipid Metabolism

Structuresofseveraleicosanoids

Page 45: Section 12: Fatty Acid and Lipid Metabolism

• AspirinpreventstheuseofarachidonateasasubstratefortheenzymethatgeneratesprostaglandinH2 .

• Blockingthisstepeffectsmanysignalingpathways,accountingforthewiderangeeffectsofaspirin.

Page 46: Section 12: Fatty Acid and Lipid Metabolism

AcetylCoAcarboxylase1and2aresubjecttoregulationonseverallevels.

Carboxylase1, acytoplasmicenzyme,isinhibitedwhenphosphorylatedbyAMP-activatedkinase(AMPK).Inhibitionduetophosphorylationisreversedbyproteinphosphatase2A.

Citrate activescarboxylasebyfacilitatingtheformationofactivepolymersofthecarboxylase.Citratemitigatesinhibitionduetophosphorylation.

PalmitoylCoA,theend-productoffattyacidsynthase,inhibitscarboxylasebycausingdepolymerizationoftheenzyme.

Carboxylase2,amitochondrialenzyme,inhibitsfattyaciddegradationbecauseitsproduct,malonylCoA,preventstheentryoffattyacylCoAintothemitochondriabyinhibitingcarnitineacyltransferase1.

Page 47: Section 12: Fatty Acid and Lipid Metabolism

ThecontrolofacetylCoAcarboxylase

Page 48: Section 12: Fatty Acid and Lipid Metabolism

DependenceofthecatalyticactivityofacetylCoAcarboxylaseontheconcentrationofcitrate.

Page 49: Section 12: Fatty Acid and Lipid Metabolism

• GlucagonandepinephrineinhibitcarboxylasebyenhancingAMPKactivity,bywhichtheypreventfattyacidsynthesis.

• Insulinstimulatesthedephosphorylationandactivationofcarboxylase,bywhichitstimulatesfattyacidsynthesis.

• Theenzymesoffattyacidsynthesisareregulatedbyadapativecontrol.Ifadequatefatsarenotpresentinthediet,thesynthesisofenzymesrequiredforfattyacidsynthesisisenhanced.

Page 50: Section 12: Fatty Acid and Lipid Metabolism
Page 51: Section 12: Fatty Acid and Lipid Metabolism

AnswerMalonyl CoA, the substrate for fatty acid synthesis, inhibits carnitine acyl transferase I, thus preventing the transport of fatty acids into mitochondria for degradation. Palmitoyl CoA inhibits acetyl CoA carboxylase, the transport of citrate into the cytoplasm, and glucose 6-phosphate dehydrogenase, the controlling enzyme of the pentose phosphate pathway.

Page 52: Section 12: Fatty Acid and Lipid Metabolism

• OnepathwayforethanolprocessingconsistsoftwostepsandleadstoexcessproductionofNADH:

• ExcessNADHinhibitsgluconeogenesisandenhanceslactateproduction,whichmayresultinlacticacidosis.

• ExcessNADHinhibitsfattyaciddegradationandstimulatesfattyacidsynthesis,leadingtotheaccumulationoffatsintheliver.

Page 53: Section 12: Fatty Acid and Lipid Metabolism

• LivercanconvertsomeoftheacetategeneratedbyaldehydedehydrogenaseintoacetylCoA,buttheacetylCoAcannotbeprocessedbythecitricacidcyclebecauseofthepaucityorlackofNAD+.

• Thebuild-upofacetylCoAcanleadtoketonebodysecretionbytheliver,whichexacerbatestheacidosiscausedbylactateaccumulation.

• Ifacetatecannotbeprocessed,acetaldehydeaccumulates.Acetaldehydeisveryreactiveandmodifiesreactivegroupsofproteins,causingalossofproteinfunction.

• Asproteindamageaccumulates,liverfunctioncanfail.