Top Banner
March 14, 2018 REPORT #E18-304 Secondary Glazing System (SGS) Moisture Analysis and Validation Prepared For NEEA: Rob Curry, Sr. Project Manager Prepared by: Robert Hart Ernest Orlando Lawrence Berkeley National Laboratory 1 Cyclotron Rd. Berkeley, CA 94720 510-486-4000 Northwest Energy Efficiency Alliance PHONE 503-688-5400 EMAIL [email protected]
37

Secondary Glazing System (SGS) Moisture Analysis and ... · completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would

Jan 14, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Secondary Glazing System (SGS) Moisture Analysis and ... · completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would

March 14, 2018 REPORT #E18-304

Secondary Glazing System (SGS) Moisture Analysis and Validation

Prepared For NEEA: Rob Curry, Sr. Project Manager

Prepared by: Robert Hart

Ernest Orlando Lawrence Berkeley National Laboratory 1 Cyclotron Rd. Berkeley, CA 94720 510-486-4000

Northwest Energy Efficiency Alliance PHONE 503-688-5400EMAIL [email protected]

Page 2: Secondary Glazing System (SGS) Moisture Analysis and ... · completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would

Disclaimer

ThisdocumentwaspreparedasanaccountofworksponsoredbytheUnitedStatesGovernment.Whilethisdocumentisbelievedtocontaincorrectinformation,neithertheUnitedStatesGovernmentnoranyagencythereof,norTheRegentsoftheUniversityofCalifornia,noranyoftheiremployees,makesanywarranty,expressorimplied,orassumesanylegalresponsibilityfortheaccuracy,completeness,orusefulnessofanyinformation,apparatus,product,orprocessdisclosed,orrepresentsthatitsusewouldnotinfringeprivatelyownedrights.Referencehereintoanyspecificcommercialproduct,process,orservicebyitstradename,trademark,manufacturer,orotherwise,doesnotnecessarilyconstituteorimplyitsendorsement,recommendation,orfavoringbytheUnitedStatesGovernmentoranyagencythereof,orTheRegentsoftheUniversityofCalifornia.TheviewsandopinionsofauthorsexpressedhereindonotnecessarilystateorreflectthoseoftheUnitedStatesGovernmentoranyagencythereoforTheRegentsoftheUniversityofCalifornia.

Page 3: Secondary Glazing System (SGS) Moisture Analysis and ... · completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would

1. EXECUTIVE SUMMARY ArefinedmethodologyforsimulatingthehygrothermalconditionsadjacenttoandonglasssurfacesisdevelopedandperformedfornineproductsasanextensiontotheworkpresentedinSecondaryGlazingSystem(SGS)Thermal,Solar,andEnergyPerformanceAnalysisandValidation(Hart2005).ExtensionstoBerkeleyLabTHERMandWINDOWsoftwaretoolsareimplementedandweintroducetheconceptofcondensationresistanceofunsealedgaps(CRU)indicesasacompaniontotheexistingNFRCCRratings.Thesemodelsarevalidatedthroughexperimentsbylocaltemperatureandmoisturepropagationmeasurements,andthereforeprovideaccuratedeterminationofCRUatpredeterminedhumidityratios.ThereportedCRUnumbersseemtobemostlyontheverylowend(i.e.,verypoorperformance)forallunsealedunitsduetotheuseofhumidityratiosthatarerepresentativeofindoorroomair.Thisindicatesthatfurtherresearchmightbeneededtoestablishexpectedmoisturecontentinunsealedgapsfordifferentproducttypesandtorelatethemtoindoorroomair,sothatmorerepresentativeCRUprocedurecanbedeveloped.FourSGSsystemsaremeasuredforairleakageandmoisturepropagationperformance.Theresultsvarygreatlybetweenproducts;frompreventingallairleakageandmostmoisturetransfertonoresistancetoairormoisturetransfer.ThemeasuredperformancedataiscombinedwiththeresultsofEnergyPlusannualenergysimulationstodeterminetrendsandrelativecondensationperformanceofnineSGSproducts.Wemaketheassumptionthattherearenomoisturesourcesorsinks,andthereisnoliquidtransportflux.Bothoftheseassumptionsaresignificantinthatcondensedmoistureisconsideredoutofthesystem,potentiallymisjudgingthecondensationtime.Withtheseassumptionsandknowingthatallbuildingsarecontrolledandperformdifferently,theresultspresentedhereshouldbeviewedonlyasindicatorsofrelativeperformancebetweenSGSproductsandnotabsolutecondensationpotential.TheresultsshowthatallSGSsystemscontainingunsealedglazingcavitiesincreasecondensationriskoversinglepanebasewindows.Condensationriskishighestonnorthfacingsurfaces,andlowestoneastfacing,butthetimedifferenceisrelativelysmall.Condensationalsooccursmostoftenduringunoccupiedhours.Finally,lowwatervapordiffusionresistancefactorstotheoutsidecoupledwithhighroom-sideresistancetypicallyresultsinthefewestcondensationhours,whiletheoppositecase(highresistancetotheoutsideandlowresistanceroom-side)resultsinthegreatestnumberofcondensationhours.FutureworkshouldincludeinstallationandmonitoringofSGSinrealbuildingstovalidatethesimulationresults.TheCRUmetricisintroducedasapreliminarystepwiththelong-termgoalofastandardizedmetricforcondensationpotentialofSGSandotherattachmentproducts.FurtherdevelopmentoftheCRUmetricshouldbedonetoensureallsignificantaspectsofSGSdesign,suchasresistancetoairleakage

Page 4: Secondary Glazing System (SGS) Moisture Analysis and ... · completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would

andmoisturetransfer,areconsideredandpresentedfairlywithrespecttotheexistingCRstandards.2. INTRODUCTION BackgroundTheNorthwestEnergyEfficiencyAlliance(NEEA)isinterestedinacceleratingtheadoptionofenergy-savingbuildingenvelopeproducts.ThemarketNEEAismostinterestedinrelativetosecondaryglazingsystems(SGS)consistsofexistingmulti-storyofficebuildingswithsingleglazed,non-thermallybrokenaluminumwindowframesconstructedbetweenthemid-1950sandthemid-1980s.Forthisproject,SGSproductsaredefinedasoneormorepaneglazingunitsdesignedforinsertionintoexistingcommercialstorefrontorcurtainwallsystemswithmonolithicglazing.TheSGSisinstalledfromtheinteriorwiththeintentofimprovingthethermalperformanceoftheexistingglazingsystem.Condensationhasbeenapersistentandoftenmisunderstoodproblemassociatedwithwindows.Itoccurswhenthesurfacetemperatureofawindowcomponentdropsbeloweitherthedewpointorfrostpointoftheairadjacenttothesurface.Incoldclimates,single-glazedwindowscharacteristicallysufferfromwatercondensationandtheformationoffrostontheinsidesurfaceoftheglassinwinter.Condensationcanalsobeaproblemontheinteriorsurfacesofwindowframes.Metalframes,inparticular,conductheatveryquickly,andwill“sweat”orfrostupincoolweather.Solvingthiscondensationproblemwasamajormotivationforthedevelopmentofthermalbreaksforaluminumwindows.Infiltrationeffectscanalsocombinewithcondensationtocreateproblems.Ifapathexistsforwarm,moisture-ladenairtomovethroughoraroundthewindowframes,themoisturewillcondensewhereverithitsitsdewpointtemperature,ofteninsidethebuildingwall.Framesmustbeproperlysealedwithinthewallopeningtopreventthispotentialproblem.Insomeinstances,theinfiltrationairwillbedry,suchasoncoldwinterdays,anditwillthushelpeliminatecondensationonthewindowsurfaces.CondensationriskhasbeenidentifiedbyNEEAasapotentialbarriertobroadSGSmarketpenetration.Somebuildinganalysissoftware,suchasWUFI(Fraunhofer2001),attempttopredictmoisturetransferandcondensationinbuildings.ThesetoolsthougharenotdirectlyapplicabletoSGSproducts.ThecondensationpotentialofSGSsystemsinrealbuildingsisunknown.AreporttitledSecondaryGlazingSystem(SGS)Thermal,Solar,andEnergyPerformanceAnalysisandvalidation,byR.Hartet.al.wasproducedin2015asafirststepintheanalysisofSGS.ThereportestablishedaninitialdatabaseofSGSproductperformance.ThisreportexpandsthatresearchintomoisturetransferandcondensationresistanceofSGS.Therearemultipleobjectivestothisreport,themostsubstantialbeingarefinedmethodologyforsimulatingthehygrothermalconditionsadjacenttoandonglasssurfaces.ExtensionstoBerkeleyLabTHERMand

Page 5: Secondary Glazing System (SGS) Moisture Analysis and ... · completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would

WINDOWsoftwaretoolsareimplementedandweintroducetheconceptofcondensationresistanceofunsealedgaps(CRU)indicesasacompaniontotheexistingNFRCCRratings.Thesemodelsarevalidatedthroughexperimentsbylocaltemperatureandmoisturepropagationmeasurements.AmethodologyforpredictingcondensationthroughannualenergymodelingsoftwareisdevelopedandusedtopredictcondensationinDOEprototypecommercialbuildingsfornineSGSproducts.ProductdefinitionsThenineproductsanalyzedinthisreportarethesameproductsdefinedinthepreviouslymentionedLBNLreportanditsappendices(Hart2015).Asingleclearglazednon-thermallybrokenaluminumcommercialstorefrontwindowframeisusedasthebaselineglazingsystem.Itisdesignatedasrepresentativeofcommercialwindowsconstructedbetweenthemid-1950sandthemid-1980s.ThegroupofSGSproductssimulatedrepresentsthediversityofcurrentcommerciallyavailableproducts.AlltestedSGSuseglassastheprimaryglazingmaterial.Glazingsvaryfromsinglepaneglasstotriplepanewithasuspendedcenterlayerfilm.Aminimumofonelow-ecoatingispresentinallsystems;withthemostinsulatingproductsutilizinginsulatedglazingunits(IGU)andmultiplelow-ecoatings.Mostsystemssupporttheglazingwithaluminumframingthatattachesdirectlytotheinsidedimensionsofthebasewindow,whileoneproductattachesdirectlytothebasewindowglassandanothermountsexternaltothebaseframe.AlphabeticdesignationsareusedthroughoutthisreportinordertomaintainanonymityoftestedSGS.AlltestedSGSproductscreateaninsulatingairspacebetweenthebasewindowglassandtheSGSglass.Forthepurposesofcondensationresistance,onlyhermeticallysealedanddesiccatedcavitiesareconsideredsealed.Allcavitiesthatarenothermeticallysealednordesiccatedareconsideredunsealed,meaningtheyallowmoisturetotransferfromeithertheroom-sideorexteriorenvironment.GoverningequationsMoisturetransferthroughwindowsprimarilyoccursbymoistairmovementanddiffusion.Moistairmovementoccursthroughleaksandcracksintheframe-wall,frame-glazing,andframe-sashinterfaces.Thedrivingmechanismformoistairmovementthroughwindowsistheairpressuredifferencefrominteriortoexteriorsurfaces.Pressureacrossthebuildingenvelopeoccursfromairdensitygradientsdrivenbyindoor-outdoortemperaturedifferences,bouncy(stackeffect)intallbuildings,wind,andunbalancedmechanicalsystems.Flowthroughbuildingcomponentscantypicallybedescribedbythepowerlawequation(Eq.1).Equations2and3relateairvolumeinthepowerlawequationtomoisture[ASHRAE2009].𝑉 = 𝑐 ∆𝑃 ! [1]

Page 6: Secondary Glazing System (SGS) Moisture Analysis and ... · completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would

𝑉 = !!!!!

! [2]

𝑊 = !!

!! [3]

whereV [m3] air volume 𝑉 [m3/s] airflowratec [m3/s-Pan] flowcoefficientn [-] pressureexponentP [Pa] ambientairpressureρ [kg/m3] airdensitymw [kg] masswatervaporma [kg] massairW [kgw/kga] HumidityratioMoisturediffusionisdrivenbythegradientofwatervaporpartialpressureintheair.Diffusionofmoisturefromareasofhighconcentrationtolowconcentrationonlybecomessignificantwhenlittletonoairmovementoccurs.Fick’sLaw,orthemoisturediffusionequation,isusedtopredictmoisturevapordiffusion.Thisequation(eq.4)isanalogoustotheheatequationorFourier’sLaw.Equations5and6relatevapordiffusiontowatervaporpartialpressure,airpressure,andtemperature[Kunzel1995].!"!"= −∇ ∙ 𝑔! + 𝑔! + 𝑆! [4]

where𝑔! = − !

!∇𝑃! [5]

𝛿 = 2.0 ∙ 10!! 𝑇!.!" 𝑃 [6]t [s] timegw [kg/m2s] liquidtransportfluxdensitygv [kg/m2s] vapordiffusionfluxdensitySw [kg/m2s] moisturesourceorsinkδ [kg/msPa] watervapordiffusioncoefficientinairµ [-] watervapordiffusionresistancefactorPw [Pa] watervaporpartialpressureT [K] ambientairtemperatureCondensationformsatthecoldestlocations,typicallythelowercornersoredgesofaninsulatedproductevenwhenthecenterofglazingisabovethelimitforcondensation.Generally,astheinsulatingvalueoftheglazingisimproved,theareawherecondensationcanoccurisdiminished.WithSGSproductsthough,condensationpotentialmayincreasewiththeinsulatingvalueoftheproduct.Thisisbecausethetemperatureoftheglassclosesttotheexteriorbecomescolderandis

Page 7: Secondary Glazing System (SGS) Moisture Analysis and ... · completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would

adjacenttoanun-desiccatedairspace.Condensationpotentialincreasesastheoutdoortemperatureisloweredandtheindoorrelativehumidityincreases.NFRChasdevelopedacondensationresistance(CR)valueforratinghowwellafenestrationproductcanresisttheformationofcondensationontheroomsidesurfaceoftheproductataspecificsetofenvironmentalconditions.TheCRcalculationmethodisdefinedintheNFRC500:ProcedureforDeterminingFenestrationProductCondensationResistanceValues(NationalFenestrationRatingCouncil,2013).ThecondensationresistancemodeloutlinedinNFRC500isdevelopedaroundcondensationonroom-sideexposedsurfacesbecausefactory-sealedinsulatedglazingutilizesapermanentsealtopreventtheintroductionofmoisturebetweenglass.Thevoidmaybefilledwithairordrygases,suchasargon.Adesiccantmaterialintheedgespacerbetweenthepanesisusedtoabsorbanyresidualmoistureintheunitwhenitisfabricatedoranysmallamountthatmightmigrateintotheunitovermanyyears.NFRC500anditsaccompanyinguserguideNFRC501(NationalFenestrationRatingCouncil,2013)containmoreinformationaboutcondensationresistance.TheNFRCCRratingisdesignedforcomparisonofroomsidecondensationpotential.Thecondensationresistanceofunsealedgaps(CRU)proceduredevelopedinthisreportisintendedtodothesameforproductswithunsealedglazingcavities,suchasSGS.TheimportantassumptionmadeinthedevelopmentofCRUisthatsamehumiditycontentofairwasassumedasinCRdetermination(30%,50%,and70%RHat70F),sothatnumbersarebettercomparabletoCR.3. ANALYSIS PROCEDURE Airmovement,localtemperatures,andmoisturediffusionintoandthroughSGSmustbecharacterizedinordertodescribemoisturepropagationandcondensationresistance.Themeasurementandsimulationanalysisproceduresdescribedinthefollowingsectiondetailthemethodsusedinthisreport.MeasurementsAirmovement,localtemperatures,andmoisturediffusionaremeasuredindependentlyusingthreedifferentmeasurementsproceduresdescribedinthefollowingsections.AirmovementAAMA/WDMA/CSA101/I.S.2/A440[AAMA2008]definesairleakageresistancecriterianewfenestrationproductsmustmeetforqualificationintheUS.ThisstandardthoughisnotnecessarilyrepresentativeoftheSGStargetmarketofinstalledsingle-panealuminumwindows.Todeterminetypicalairleakage,wemeasureabaselinesystemaswellasseveralassembledSGSutilizingthestandardtestmethodformeasuringairleakageforwindowsdefinedinASTME283[ASTM2012].Airflowmeasurementsaretakenforarangeofpressuresbetween50Paand

Page 8: Secondary Glazing System (SGS) Moisture Analysis and ... · completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would

230Pa.Thepressureusedforratingresidential(R)windowsat75Paisincluded.Thehigher300Papressureforratingarchitectural(AW)windowswasnotachievableinallcaseswithourtestequipmentandisthereforeomitted.MeasurementsareperformedwiththeWindMakerPLUStestkitmanufacturedbytheRMGroup.Figure1illustratesthelaboratoryset-up.CalibrationisperformedwiththeWindMakerCalibrationBoxmanufacturedtotheAAMA204-98[AAMA1998]specifications.Theresultsfromthistestarepresentedintheformofvolumetricflowrateperunitwindowarea,q[L/s-m2],asafunctionofdifferentialpressure,P[Pa].

Figure1.Schematicoflaboratorywindowairleakagemeasurements[ASTM2012]LocalTemperaturesThesimulatedCRandCRUvaluesarehighlydependentonaccuratepredictionofsurfacetemperatures.Toverifysimulatedsurfacetemperatures,thebasewindowandaselectionoffourSGSsystemsweretestedintheLBNLlaboratoryoverarangeofoutdoortemperaturesfrom15Cto-15Cwiththeroomtemperatureheldataconstant21C.ThermocoupleswereplacedattheCOGandEOGofsurface#2,ontheframeintheunsealedcavityspace,andtheCOGandEOGoftheroomsidesurface.AtypicalexampleofthethermocoupleplacementisgiveninFigure2.

Page 9: Secondary Glazing System (SGS) Moisture Analysis and ... · completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would

Figure2.Typicalthermocouple(TC)placementforvalidationtesting

MoisturetransferThereisnowindowindustrystandardformeasuringmoisturediffusionandexistingstandardprocedurestructures,suchasISO12572[ISO2001],areimpracticalforwindowsystems.Anewprocedureisthereforeusedinthisreport.Aspreviouslydiscussed,Fick’slawgovernsmoisturediffusion,wherethemoisturefluxisproportionaltotheconcentrationdifference.ThislawisanalogoustoFourier’sLawforheatconduction,wheretheheatfluxisproportionaltothetemperaturedifference.Forheattransfertheproportionalityconstantisdefinedasthethermalconductivity,whileinmoisturetransferitisdefinedasthepermeability.OurgoalistodeterminethewatervaporpermeabilityoftheSGSsystemsasafunctionoftheaveragewatervaporpartialpressure,Pw,betweentheindoorandoutdoorenvironment.Forthepurposesofouranalysis,wewillrepresentthepermeabilityasµ,orthewatervapordiffusionresistancefactorasdefinedinEquation5.µisaconvenienttermforanalysisanddescribestheratioofdiffusionthroughamaterialtothediffusionofmoistureinairatagiventemperatureandpressure.Themeasurementmethodweuseisanalogoustotypicalproceduresforthermaltesting.Tobegintesting,thesystemisallowedtocomeintoequilibrium.Themoisturecontentinonespaceisthenadjustedsuddenlybytheintroductionorremovalofwatervaportodisruptthebalance.Humidityandtemperaturesensors

TCCOG-U

TCEOG-U

TCFRAME-U

TCCOG-R

TCEOG-R

Page 10: Secondary Glazing System (SGS) Moisture Analysis and ... · completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would

areinstalledonbothsidesofthewindowandwithintheunsealedglazingcavitytomonitorthestateofeachairspace.WerecordthesevaluesinordertocalculatethepartialpressuresonallsidesoftheSGSasfunctionsoftime.Therateofchangeofmoistureinthegapiscorrelatedtothepartialpressuredifferencetodeterminethepermeability.Animportantaspectofdiffusiontestingistominimizeairmasstransfer.Aspreviouslystated,thetransferofmoistairmasstypicallydominatesmoisturetransferwhenitoccurs.Controllingthepressuredifferentialacrosstheunitremovesthedriverforairmasstransfer.Thisisaccomplishedbymaintainingthermalandairpressureequilibriumonbothsidesofthewindow.Thewatervapordiffusionresistancefactor,µ,isdeterminedfromthetestresultsutilizingtheproceduredescribedschematicallyinFigure3,whereφistherelativehumidity.CalculationsforspacepropertiesareperASHRAE2009,andµissolvedforwithequation7wherediffusionoccursbetweenonlytwospaces:

Figure3.Schematicofwatervapordiffusionresistancefactorcalculationfrom

measurementsSimulationSimulationisperformedtodeterminewhencondensationwithSGSmightoccurasastandardizedproductcomparisonviatheCRUmetricandinrealbuildingswithannualenergysimulations.

Name: Calculate water vapor diffusion resistance factor, mu, from IR lab measurements Date: 3/3/16

Tree Diagram

t?1 T1 P1

W1 Pw_1 W2 Pw_2

?1-2

Measurements

Water vapor diffusion resistance factor

Calculated Space 2 propertiesCalculated Space 1 properties

?2 T2 P2

? 1 ? 2

moving mean over 5 minutes to smooth readings

2nd order polynomial fit to W, P, ? as a functions of time

?1 ?2

Page 11: Secondary Glazing System (SGS) Moisture Analysis and ... · completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would

Condensation Resistance for Unsealed Glazing Gaps (CRU) TheNFRCCRvalueisanindicatorofcondensationperformanceontheinterior,orroomside,surfaceofaproductonly.Anewmodel,calledthecondensationresistanceforunsealedglazinggaps(CRU),isdevelopedaspartofthisreport.TheprimarydifferentiatorsbetweenthemodelsareshowninFigure4.TheNFRCCRsurfacesareadaptedtoincludetheleftandrightsidesofeachunsealedgapandtheframesurfacebetweenthem.

Figure4.A)NFRC500CRareas.B)ProposedCRUareas

WhenimplementingtheCRUmodeltherearetwosimulationlimitationsthatmustbeconsidered.First,themodelisbasedontheassumptionthattheunsealedairspacecanberepresentedasasealedcavitywithaconvectionairloop.Ourvalidationtestingconfirmsthatthesealedmodelassumptionissuitableforallproductsexaminedinthisreport.Second,themodelassumesnon-glazingsurfaceswithintheunsealedgapareadiabatic(noheattransferthroughthesurface).Figure5illustratesthisarea.Inpractice,thisassumptionresultsinsimulatedframetemperatureshigherthanrealwindowsbecausethecoldwashofairresultingfromtheconvectionloopontheouterglasspanetotheframesurfaceisnotaccountedfor.TheEOGsurfaceistypicallyofgreatestconcern,butincertainconfigurationstheframesurfacemaybethecondensationdriverandcondensationpotentialwillbeunderpredicted.Forthevalidationcasesexaminedinthisproject,thepredictedframetemperaturewas1.5Cwarmeronaveragethanmeasuredtemperature.

CRe [2.5” from sightline]

CRc

CRf

CRUe Left

CRUc Left

CRUf

CRUe Right

CRUc Right CRe

[2.5” from sightline]

CRc

CRf

Page 12: Secondary Glazing System (SGS) Moisture Analysis and ... · completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would

Figure5.SurfacesmarkedwithblackdashedlineareadiabaticintheCRUmodel.WholebuildingOurprocedureisbrokenintotwosteps;firstwholebuildingenergyanalysisisperformedin15-minutetimestepsforonerepresentativeyear,thenthesimulatedenvironmentalconditionsateachtimestepareusedtosimulatetheexpectedmoisturecontentandifcondensationriskinSGSforthesametimestepsoftherepresentativeyear.Allbuildingsareunique,thereforetheresultspresentedherearemeantforcomparativeanalysisbetweensimilarproductsandshouldnotbeconsideredasindicatorsofactualperformanceinanyoneparticularbuilding.EnergyPlusisanenergyanalysisandthermalloadsimulationprogram.Basedonthedescriptionofabuilding,EnergyPluscalculatesheatingandcoolingloadsnecessarytomaintainthermalcontrolsetpoints.Simultaneousintegrationofthese—andmanyother—detailsverifythattheEnergyPlussimulationperformsasarealbuildingwould(U.S.DepartmentofEnergy,2013).TheDOE,inconjunctionwiththreeofitsnationallaboratories,hasdevelopedcommercialreferencebuildings.ThesereferencebuildingsprovidecompletedescriptionsforwholebuildingenergyanalysisusingEnergyPlussimulationsoftware.Thereare16buildingtypesthatrepresentapproximately70%ofthecommercialbuildingsintheU.S.Thesemodulesprovideaconsistentbaselineof

CRU surface model

adiabatic

Page 13: Secondary Glazing System (SGS) Moisture Analysis and ... · completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would

comparison.Referencebuildingsareprovidedfornewconstruction,existingbuildingsconstructedafter1980,andexistingbuildingsconstructedbefore1980(USDepartmentofEnergy).Inadditiontothe16buildingtypes,16climatezones,whichrepresentallU.S.climates,wereusedtocreatethereferencebuildings.Theclimatesaresimulatedusingtypicalmeteorologicalyear(TMY)datasetsderivedfromthe1961-1990and1991-2005NationalSolarRadiationDataBasearchives.TheTMY3saredatasetsofhourlyvaluesofsolarradiationandmeteorologicalelementsfora1-yearperiod.Becausetheyrepresenttypicalratherthanextremeconditions,theyarenotsuitedfordesigningsystemstomeettheworst-caseconditionsoccurringatalocation(TheNationalRenewableEnergyLaboratory,2015).TheEnergyPlusprototypebuildingsandclimatesinvestigatedinthisstudywereselectedtomatchNEEAsrequirementsbasedontheirtargetmarketfortheSGSproducts.Table1summarizestheselectedbuildingandclimatesimulationparameters.

Table1.EnergyPlusprototypebuildingparametersParameter DescriptionConstructiontype Existingbuildingsconstructedbefore1980("pre-1980")

Buildingtype LargeOfficeMediumOfficeSmallOffice

Climatezone

Zone3:Oakland,CAZone4:Portland,ORZone5:Spokane,WAZone6:Missoula,MT

Thethreebuildingtypesandfourclimatezonescombinewithninewindowoptionsforatotalof108annualenergysimulations.AllbuildingHVACsystemsaresizedforthebasewindowsystemthenthesimulationsarererunwitheachSGSproduct.Surfacecondensationoccurswhenasurfacetemperatureisatorbelowthedewpointtemperatureofmoistairadjacenttothatsurface.TopredictcondensationofanSGSproductasafunctionoftimeinEnergyPlus,wethereforedeterminethesurfacetemperatureofeachsurfaceandthedewpointtemperatureoftheairadjacenttothatsurfaceateverytimestepweareinterestedin.Ifthedewpointtemperatureoftheadjacentairisbelowthatofthesurfaceweassumecondensationoccurredfortheentirelyofthattimestep.Agranularityof15-minutesisusedintheEnergyPlussimulations.SurfacetemperatureisdeterminedinEnergyPlususingtheComplexFenestrationCalculationModulewithwindowinputBSDFidffilesgeneratedinBerkeleyLabWINDOWandTHERM(Mitchell2013).Useofthismoduleallowsfor15-minutetime

Page 14: Secondary Glazing System (SGS) Moisture Analysis and ... · completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would

stepcenter-of-glass(COG)temperatureoutputforeachglazingsurfaceintheSGS.AnimportantassumptionmadeinthisanalysisisthattheCOGisthelowesttemperatureoneachsurface.Analysispresentedinthisreportshowsthattheedge-of-glass(EOG)inSGSproductsistypicallycolderthanCOGandbyasmuchas1.5°Cinextremeindoor-outdoortemperaturegradients.TheCOGsurfacetemperatureassumptionthereforereducesthetotaloverallpredictedcondensationtimefornearlyallSGSproducts.ExteriordewpointtemperatureisaninputfromtheTMYweatherdata.InteriorzonedewpointsarecalculatedbyEnergyPlusbasedontheinputweather,HVAC,buildingproperties,etc.DewpointsintheunsealedglazingcavitiescommonwithSGSproductsisperformedafterthecompletionoftheEnergyPlussimulationusingtheprocessdescribedschematicallyinFigure6.Adetailedstep-by-stepdescriptionofthealgorithmandtheequationsusedisprovidedinAppendix1.

Figure6.Schematicofalgorithmtodeterminesurfacecondensationfrom

EnergyPlusoutputs

Name: NEEA EnergyPlus Moisture model Date: 2/29/16

Tree Diagram

tTout? in Tin Pout Tdp_outwin TS2 TS3

Pws_in

Pw_in

Tdp_in

Pin

PBG

Pw_out

wout

TBG

? BG

?

w? BG

?in

?out

ENERGYPlus Outputs

Material Properties

Calculated Outdoor properties

Calculated Indoor properties

Calculated Between Glass properties

Condensation determination

Page 15: Secondary Glazing System (SGS) Moisture Analysis and ... · completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would

TheprocessistocomputetherequiredindoorandoutdoormoistairpropertiesforeachtimestepbasedontheEnergyPlusoutputs.Then,startingfromthefirstdatapointintheset,(January1at00:15inthiswork)calculatetheexpectedbetweenglassmoistairpropertiesofthenexttimestepiteratively.Equations7–9arethefundamentalequationsusedintheiterativeprocess.Equation7isbasedonEquation4withtheassumptionsthattherearenomoisturesourcesorsinks,andthereisnoliquidtransportflux.Bothoftheseassumptionsarepotentiallysignificantinthatcondensedmoistureisconsideredoutofthesystem,potentiallyunderestimatingthecondensationtime.Equation8isidenticaltoEquation6,andEquation9isusedtodeterminethebetweenglasspartialwaterpressureusedasaninputinthenexttimestepoftheiteration.𝑊 ∙ 𝜌! !! = 𝑊 ∙ 𝜌! !! + 𝛿 𝑡! − 𝑡!

!!_!"!!!_!"!!"∙!!! !!

+ !!_!"#!!!_!"!!"#∙!!! !!

[7]

𝛿 = 2.0 ∙ 10!! 𝑇!"!.!" !! 𝑃!" !! [8]𝑃!_!" =

!∙!!"!.!"#$%&! !!"

[9]Figure7showsboxplotsoftheoutdoor-indoorairpressuredifferentialforeach15-minutetimestepoftheTMYgroupedbyeachlocationandbuildingtype.Themeanandquartilesofthepressuredifferentialrangefrom0to5PaandwouldresultininsignificantpressuredrivenairflowthroughSGSsystems.Therefore,moistairmovementthroughtheSGSsystemsisassumednegligibleandisnotconsideredinthecondensationanalysis.

Page 16: Secondary Glazing System (SGS) Moisture Analysis and ... · completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would

Figure7.Boxplotsofoutdoor-indoorpressuredifferenceforeach15-minute

timestepOurtechniqueofdeterminingbetween-glassmoistairpropertiesaftertheEnergyPlussimulationiscompletedrequiresthatindoorspacesaresolargethatthesimulatedmoisturemassintoandoutofthebetweenglassSGSspaceforallSGSinaninteriorzonehasinsignificantimpactontheoverallinteriorzonemoisturecontent.ComparingthetotalmoisturemassintoandoutoftheSGStothetotalmoisturecontentinthezoneschecksthisassumption.Figure8showsboxplotsofthisratioforalltimestepsconsideredinthestudy.Onaverage,thechangeinSGSbetween-glassmoisturemassisapproximately3e-6percentofthetotalroommoisturemass.Thegivenassumptionthereforehasinsignificantimpactonthesimulationaccuracy.

−15

−10

−5

0

5

10

15

Spokane MT_Missoula Oakland Portland

Out

door−I

ndoo

r Pre

ssur

e [P

a]

Small Office

−15

−10

−5

0

5

10

15

Spokane MT_Missoula Oakland Portland

Out

door−I

ndoo

r Pre

ssur

e [P

a]

Medium Office

−15

−10

−5

0

5

10

15

Spokane MT_Missoula Oakland PortlandBuilding Location

Out

door−I

ndoo

r Pre

ssur

e [P

a]

Large Office

Student Version of MATLAB

Page 17: Secondary Glazing System (SGS) Moisture Analysis and ... · completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would

Figure8.RatioofmoisturecontentinZonetomoisturechangeinSGS.

4. RESULTS Thefollowingsectionoutlinestheresultsfromourmeasurementsandsimulations.MeasurementsAirmovementInitialairflowmeasurementswithbaseframeonlyresultedinnegligibleflowthroughthewindow.Thisresultisexpectedandtypicalfornewfixedtypeframessuchasthebaselinewindowusedforthisstudy.InordertoquantifytheimpactofSGSonairleakage,leakagepathsareartificiallyintroducedintothebaseframeby

−4

−3

−2

−1

0

1x 10−5

Spokane MT_Missoula Oakland PortlandWin

dow

moi

stur

e/Zo

ne m

oist

ure

[Kg/

Kg] Small Office

−8

−6

−4

−2

0

2x 10−5

Spokane MT_Missoula Oakland PortlandWin

dow

moi

stur

e/Zo

ne m

oist

ure

[Kg/

Kg] Medium Office

−8

−6

−4

−2

0

2

x 10−5

Spokane MT_Missoula Oakland PortlandBuilding Location

Win

dow

moi

stur

e/Zo

ne m

oist

ure

[Kg/

Kg] Large Office

Student Version of MATLAB

Page 18: Secondary Glazing System (SGS) Moisture Analysis and ... · completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would

removingmultiplesectionsofglazingsealattheheadandsillonbothsidesoftheglazing.Themodifiedbaseframeconstructionremaineduntouchedfortheremainderofairleakagetesting.Windowairleakageistypicallyreportedasanabsolutevolumeofflowperareaofwindow.Asadd-onproductsthough,SGSperformancecannotbeaccuratelymeasuredwithoutadefinedbaseline.SincenobaselinewindoworairleakageiscurrentlydefinedforSGS,ouranalysispresentsresultsasapercentreductioninairleakagevolumeperareaofwindow.Thisallowsforeasycomparisonbetweenproducts.Figure9showsthepercentairleakageimprovementforalltestedproductsoverarangeofpressures.Attheextremesofperformance,ProductGeliminatedallairleakagefortheentirerangeofpressuresmeasured,whileProductAhadnomeasureableimpacttoleakage.ProductEshowedflowreductionrangingbetween50–70percent,andProductIwaslesseffectivewith0–30percentreductioninairleakage.TheflowresolutionofourtestequipmentistheprimaryreasonforthelargejumpsinperformanceseeninProductI.

Figure9.ReductioninairleakageofSGSproductscomparedtobaseframe

LocaltemperaturesColdsideconditionswereheldforaminimumofonehourin5Cincrementsbetween15Cand-15C.Figures10-14showthesimulationpredictedsurfacetemperaturescomparedtothemeasuredsurfacetemperaturesforfourcases:Base,H,G,A,andIrespectively.TheBaseframeissingleglazingandthereforeonlyroomsidesurfacetemperaturesarerecordedandaNFRCCRispossibletogeneratewhile

40 60 80 100 120 140 160 180 200 220 240−20

0

20

40

60

80

100

120

Pressure differential [Pa]

Red

uctio

n of

bas

e fra

me

air l

eaka

ge [%

]

AEGI

Student Version of MATLAB

Page 19: Secondary Glazing System (SGS) Moisture Analysis and ... · completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would

aCRUnumberisnot.Theresultsshowagreementbetweensimulatedandmeasuredperformancewithin1Cthroughout.

Figure10.MeasuredsurfacetemperaturesonbasewindowProductHinFigure11createsatriplepaneIGUbysealinganddesiccatingtheairspacebetweenthebasewindowandSGSglazing.Thus,theNFRCCRcalculationmethodologyusedforthebasewindowappliestothisproductaswell.ThecreatedtriplepaneIGUishighlyinsulatingsothetimetoreachsteadystatetemperaturesonmostsurfacesisgreaterthantheallottedthreehoursateachcoldsidecondition.Theextendeddurationatthefinalcoldsidestatethoughshowsthatthesimulatedandmeasuredsurfacetemperaturesagainmatchwithin1Cforallsurfaces.

Page 20: Secondary Glazing System (SGS) Moisture Analysis and ... · completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would

Figure11.MeasuredsurfacetemperaturesonproductHProductsG,A,andIinFigures12-14introducetheuseofthenewlydevelopedCRUmodel.TheCOG-UandEOG-Utemperaturesmatchwithin1C,similartotheNFRCCRmodelsabove.TheFRAMEtemperaturesthougharenotwithinthistolerance,anddifferencesofupto2Cshown.Thisdiscrepancyistheresultofusinganequivalentconductivityforthegasspacebelowthetopmostbaseframesightline.Theexplanationforthissimulationmethodisgivenintheprevioussection.Theequivalentconductivityassumptionalwaysresultsinunderpredictionofthesillframetemperature(incaseswhereTcoldislessthanTroom).

Page 21: Secondary Glazing System (SGS) Moisture Analysis and ... · completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would

Figure12.MeasuredsurfacetemperaturesonproductG

Page 22: Secondary Glazing System (SGS) Moisture Analysis and ... · completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would

Figure13.MeasuredsurfacetemperaturesonproductA

Page 23: Secondary Glazing System (SGS) Moisture Analysis and ... · completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would

Figure14.MeasuredsurfacetemperaturesonproductIMoisturetransferDetailedmeasurementsforproductGarepresentedinFigure15toillustratetheprocessusedtodeterminethewatervapordiffusionresistancefactor,µ.Figure15ashowstheadjacentroomairhumidityisbroughtquicklyto100%andthenheldatthatpointwhilemoistureisallowedtodiffuseintothebetween-glassspace.Figure15bshowsthecalculatedpartialwatervaporpressuresofeachspace.Figure15cshowsthecalculatedmoisturecontentofthebetweenglassspaceandapolynomialfittothemeasurements.Thepolynomialfitisthenusedtodetermineµ,asisshowninFigure15d.Theaverageµisdeterminedfromalldatapriortoanyinflectionpointofmoisturecontent,orwhenthebetween-glassspacebecomessaturated.Thisinflectionpointcanbeseenatapproximately2600minutesinFigure15c.

CW01

0 500 1000 1500 2000 2500−20

−15

−10

−5

0

5

10

15

20

25

Time from start [min]

Tem

pera

ture

[C]

Tcold

COG−UFRAMEEOG−U

0 500 1000 1500 2000 2500−20

−15

−10

−5

0

5

10

15

20

25

Time from start [min]

Tem

pera

ture

[C]

COG−U measuredCOG−U simulated

0 500 1000 1500 2000 2500−20

−15

−10

−5

0

5

10

15

20

25

Time from start [min]

Tem

pera

ture

[C]

FRAME measuredFRAME simulated

0 500 1000 1500 2000 2500−20

−15

−10

−5

0

5

10

15

20

25

Time from start [min]

Tem

pera

ture

[C]

EOG−U measuredEOG−U simulated

Page 24: Secondary Glazing System (SGS) Moisture Analysis and ... · completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would

Figure15a-d.VapordiffusionmeasurementandcalculationdetailsforproductG.

TheprocessdescribedaboveisrepeatedforallproductslistedinTable2.Ventdirectiontotheoutsidedescribesvapordiffusionthroughthebaseframe.Thecalculateddiffusioncoefficientfortwotestsislessthan1,meaningcalculatedmoisturediffusionisfasterthandiffusionthroughair.Thisresultisnotpossiblewithoutsomeunaccountedforpressuredifferenceorairmovement.Avalueofoneisthereforeusedtorepresentas-measuredperformanceofthesetestsinthesubsequentbuildingsimulations.Basedonthepreviousairflowmeasurements,theproductsperformasexpected.ProductAdidnotreduceairflowandalsoshowednoresistancetomoistureflow.ProductGprovidedthegreatestresistancetoairflowandthegreatestresistancetomoistureflow.

0 500 1000 1500 2000 2500 30000

10

20

30

40

50

60

70

80

90

100

110

Time from start [min]

Rel

ativ

e H

umid

ity

0 500 1000 1500 2000 2500 30001200

1400

1600

1800

2000

2200

2400

Time from start [min]

Parti

al W

ater

Vap

or P

ress

ue

0 500 1000 1500 2000 2500 30000.009

0.01

0.011

0.012

0.013

0.014

0.015

0.016

Time from start [min]

BG m

oist

ure

[Kg]

0 200 400 600 800 1000−10

−8

−6

−4

−2

0

2

4

6

8

10W

ater

vap

our r

esis

tanc

e fa

ctor

, mu

[−]

Time from start [min]

RoomBG Room

BG

measuredfit

Student Version of MATLAB

Page 25: Secondary Glazing System (SGS) Moisture Analysis and ... · completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would

Table2.Vapordiffusionmeasurementsummary

ProductVentDirection

Outside InsideBase 0.3 -A 10.6 0.6G - 2.3I - 1.8

SimulationCondensationresistanceThesimulatedCRandCRUvaluesforeachwindowareshowninTable5.WheretheCRUcalculationisnotapplicablebecausethesystemdoesnotcontainanunsealedgap,thefieldisleftblank.ItisclearfromtheCRU–Ventedtotheinteriorboundarycondition(BC)thatthecondensationresistanceissignificantlydecreasedwhenanSGSproductventssolelytoroomair.TheprimarydriverforlowCRUvaluesisthetemperaturereductiononthebasewindowglasscoupledwiththehighdewpointofroomair.ThesignificantsurfacetemperaturereductionscanbeseeninthetestresultswhencomparingFigures10(basewindow)toFigures12-14.ManyrealbuildingbasewindowsarenotcompletelysealedtooutsideairinfiltrationsotheCRUfortheunsealedgapventedtoamixtureofexteriorandinteriorairisalsoofinterest.

Table5.SimulatedCRandCRUProduct CR CRU

VentedtointeriorBCBase 12.2 -A 21.6 1.96B 27.0 -C 26.8 -D 26.8 -E 22.1 1.38F 22.0 4.23G 26.0 4.24I 23.9 3.64J 24.5 3.57

Figure16showsthesimulatedCRUforproductFoverarangeofunsealedgapairhumidityratios.Thehumidityratioofthesimulatedexteriorboundaryconditionisaround0.001Kg(H2O)/Kg(dryair)asshownbythesolidblackverticalline,soaCRUof100isexpectedforallhumidityratiosbelowthatlevelsincenocondensationcanoccur.SincetheSGSproductshowninsulatesthebasewindowglassandreducesitstemperature,thereisahighlynon-lineardropinCRUoncethehumidity

Page 26: Secondary Glazing System (SGS) Moisture Analysis and ... · completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would

ratioisincreasedabovetheexteriorhumidityratio.ThisdropexplainstherelativelylowCRUnumbersreportedinTable5.

Figure16.CRUforProductFasafunctionofunsealedgaphumidityratioWholebuildingTheannualwholebuildingcondensationsimulationresultscanbeparsedinmanyways.Threedifferentmethodsarepresentedhere.ThelargeofficeinMissoulaMtwithproductAisusedtorepresentatypicalresultoftheanalysisinthefollowingfigures.Figure7showstheaccumulated15-minutetimestepswhencondensationoccurstoprovideanideaoftotalcondensationriskovertime.Forthecaseshown,andtypicallyforallunitsexamined,weobservethatcondensationriskisgreatestwithinthefirstandlast100daysofthecalendaryear.Eastfacingwindowshavethelowestcondensationrisk,whilenorthfacinghasthegreatestrisk.Northfacingwindowsarerarelyexposedtodirectsunandtheassociatedsurfaceheating,sothisresultalignswithourintuition.South,east,andwestwindowsperformsimilarlyinwinterandfall(first50daysandlast100daysofyear).Eastwindowsthoughshowfewersummercondensationhours.

Page 27: Secondary Glazing System (SGS) Moisture Analysis and ... · completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would

Figure17.Accumulatedcondensationtime.Largeoffice,MissoulaM,productA.

Thereducedcondensationhoursoneastwindowsinsummercanbeattributedtosolarheatingofthosewindowsfrommorningsun.Figure18showsthisbysplittingthecumulativecondensationhoursbyhourofdayanddirection.Forthemajorityofhoursallfoursurfacesaresimilar.From7am–10amthough,boththesouthandeastfacingwindowshavesignificantlyfewercondensedhoursthannorthandwestfacing.Theeastfacingwindowsalsoshowfewercondensedhoursrelativetosouthfacing,primarilyinthe7amand8amhours.AnadditionalsignificantobservationmadefromFigure18isthedaytonightcondensationdeviationforallorientations.Fromlatemorningtolateafternoonlittletonocondensationoccurs.Startinginlateafternoon,thelikelihoodofcondensationincreaseseachhouruntilitreachesapeakinhours4and5.Athour6condensationriskquicklydiminishesuntilhour11wheretheriskreturnstominimal.Thestrongestcorrelationtothecondensationpatternseenistheoutdoor

BuildingType:LgOffice, Location:MT_Missoula, WindowType:A

0 100 200 300 4000

100

200

300

400

500

600

700

Time from January 1 (day)

Cum

ulat

ive

cond

ensa

tion

time

[hr]

South

BotMidTop

0 100 200 300 4000

100

200

300

400

500

600

700

Time from January 1 (day)

Cum

ulat

ive

cond

ensa

tion

time

[hr]

East

BotMidTop

0 100 200 300 4000

100

200

300

400

500

600

700

Time from January 1 (day)

Cum

ulat

ive

cond

ensa

tion

time

[hr]

North

BotMidTop

0 100 200 300 4000

100

200

300

400

500

600

700

Time from January 1 (day)

Cum

ulat

ive

cond

ensa

tion

time

[hr]

West

BotMidTop

Student Version of MATLAB

Page 28: Secondary Glazing System (SGS) Moisture Analysis and ... · completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would

airtemperature.ThiscorrelationisshowninFigure18withalinegraphoftheinversetomeantemperatureateachhour.Eachbuildingisrunona7am–10pmHVACscheduleandthereisnovisiblecorrelationseenintheHVACscheduletocondensationrisk.

Figure18.Cumulativecondensationhoursbyhourofdayanddirection.Largeoffice,

midfloor,MissoulaM,productA.Thedetailedanalysisshownaboveisusefulforunderstandingcondensationtrendsinallproducts.Tounderstandhowproductscomparerelativetoeachothersummarizedresultsareused.Oneofthelargestissueswithcondensationisviewduringoccupiedperiods.Summarizedcondensationhoursbasedonatypicalbuildingschedulewithopenhoursof7am–7pmandthemeasuredmoisturediffusionpropertiesareprovidedinFigures19-21.Themeasuredwatervapordiffusionresistancefactorsareusedintheanalysis.Wheremeasuredfactorsarenotavailablearepresentativevalueofµin=2isusedforroomsidediffusionandµout=10.6foroutsidediffusion.ThefiguresshowthatlittletonocondensationoccursonthebasewindoworproductsB,C,andD.Eachoftheseproductshasasealedcavity,oraroom-sidecondensationsurface.Forallotherproducts,condensationhoursaredominantlyduringnon-businesshours.TheSGSproductU-factorcorrelatesmostcloselywithcondensationhours,whereloweru-factorshavehighercondensationpotential.ThisobservationappliesonlytotheSGSproductswithunsealedcavities.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 240

50

100

150

200

250

300

Time of day (hour)

Cum

ulat

ive

cond

ensa

tion

time

over

one

yea

r (ho

ur)

SouthEastNorthWest

Student Version of MATLAB

Page 29: Secondary Glazing System (SGS) Moisture Analysis and ... · completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would

Figure19.Smallofficetotalcondensationhoursbasedontypicalbuildingschedule.

Small Office

Base A B C D E F G I0

200

400

600

800

1000

1200

1400

1600

1800

window type

Cum

ulat

ive

Con

dens

atio

n Ti

me

[Hou

r]Missoula MT

0

999

0 0 0

1.08e+03

609

560 635

Base A B C D E F G I0

200

400

600

800

1000

1200

1400

1600

1800

Cum

ulat

ive

Con

dens

atio

n Ti

me

[Hou

r]

window type

Oakland CA

11.5

776

0 0 0

814

586

570 651

Base A B C D E F G I0

200

400

600

800

1000

1200

1400

1600

1800

Cum

ulat

ive

Con

dens

atio

n Ti

me

[Hou

r]

window type

Portland OR

5.5

858

0 0 0

918

581

547 623

Base A B C D E F G I0

200

400

600

800

1000

1200

1400

1600

1800

Cum

ulat

ive

Con

dens

atio

n Ti

me

[Hou

r]

window type

Spokane WA

11

744

0 0 0

863

392

356 413

7:00am − 7:00pmNon−buisness hours

Student Version of MATLAB

Page 30: Secondary Glazing System (SGS) Moisture Analysis and ... · completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would

Figure20.Mediumofficetotalcondensationhoursbasedontypicalbuilding

schedule.

Medium Office

Base A B C D E F G I0

200

400

600

800

1000

1200

1400

1600

1800

window type

Cum

ulat

ive

Con

dens

atio

n Ti

me

[Hou

r]

Missoula MT

0

1.1e+03

0 0 0

1.2e+03

660

610 696

Base A B C D E F G I0

200

400

600

800

1000

1200

1400

1600

1800

Cum

ulat

ive

Con

dens

atio

n Ti

me

[Hou

r]

window type

Oakland CA

18.8

865

0 0 0

916

623

599 684

Base A B C D E F G I0

200

400

600

800

1000

1200

1400

1600

1800

Cum

ulat

ive

Con

dens

atio

n Ti

me

[Hou

r]

window type

Portland OR

11.8

935

0 0 0

1e+03

600

574 664

Base A B C D E F G I0

200

400

600

800

1000

1200

1400

1600

1800C

umul

ativ

e C

onde

nsat

ion

Tim

e [H

our]

window type

Spokane WA

21

882

0 0 0

1.01e+03

450

409 488

7:00am − 7:00pmNon−buisness hours

Student Version of MATLAB

Page 31: Secondary Glazing System (SGS) Moisture Analysis and ... · completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would

Figure21.Largeofficetotalcondensationhoursbasedontypicalbuildingschedule.Thepreviousresultswereformeasuredwatervapordiffusionresistancefactors.Inordertoillustratetheimpactofµoncondensationhours,Figure22showsacomparisonofnon-businesshourtotalcondensationbasedonfivedifferentµinandµoutcombinationsinlargeofficebuildings.Theplotsshowthatlowresistancetotheoutsidecoupledwithhighroom-sideresistancetypicallyresultsinthefewestcondensationhours,whiletheoppositecase(highresistancetotheoutsideandlowresistanceroom-side)resultsinthegreatestnumberofcondensationhours.Inthecasewhereresistanceisquitehighinbothdirections,theinitialmoisturecontentofthespaceisveryimportant.Intheextreme,noinitialmoisturecontentispresent(similartoasealedcavity)andcondensationneveroccurs.Lowinitialmoistureis

Large Office

Base A B C D E F G I0

200

400

600

800

1000

1200

1400

1600

1800

window type

Cum

ulat

ive

Con

dens

atio

n Ti

me

[Hou

r]

Missoula MT

0

1.04e+03

0 0 0

1.16e+03

556

557 69

0Base A B C D E F G I

0

200

400

600

800

1000

1200

1400

1600

1800

Cum

ulat

ive

Con

dens

atio

n Ti

me

[Hou

r]

window type

Oakland CA

4.75

576

0 0 0

631

332

338 430

Base A B C D E F G I0

200

400

600

800

1000

1200

1400

1600

1800

Cum

ulat

ive

Con

dens

atio

n Ti

me

[Hou

r]

window type

Portland OR

4.25

774

0 0 0

868

407

414 515

Base A B C D E F G I0

200

400

600

800

1000

1200

1400

1600

1800C

umul

ativ

e C

onde

nsat

ion

Tim

e [H

our]

window type

Spokane WA

12

810

0 0 0

954

369

370 466

7:00am − 7:00pmNon−buisness hours

Student Version of MATLAB

Page 32: Secondary Glazing System (SGS) Moisture Analysis and ... · completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would

usedinthisanalysisat1/10oftheroommoistureonthefirst15-minutetimestepofJanuary1.

Figure22.Condensationtimefordifferentinsideandoutsidewatervapordiffusion

resistancefactorcombinations.LargeOffice,non-businesshours.5. SUMMARY & CONCLUSIONS ArefinedmethodologyforsimulatingthehygrothermalconditionsadjacenttoandonglasssurfacesisdevelopedandperformedfornineproductsasanextensiontotheworkpresentedinHart,2005.ExtensionstoBerkeleyLabTHERMandWINDOWsoftwaretoolsareimplementedandweintroducetheconceptofcondensationresistanceofunsealedgaps(CRU)indicesasacompaniontotheexistingNFRCCRratings.Thesemodelsarevalidatedthroughexperimentsbylocaltemperatureandmoisturepropagationmeasurements,andthereforeprovideaccuratedetermination

Large Office

A E F G I0

100

200

300

400

500

600

700

800

900

1000

window type

Cum

ulat

ive

Con

dens

atio

n Ti

me

[Hou

r]

Missoula MT

Measuredµin=1 µout=1

µin=1000 µout=1

µin=1 µout=1000

µin=1000 µout=1000

A E F G I0

100

200

300

400

500

600

700

800

900

1000

Cum

ulat

ive

Con

dens

atio

n Ti

me

[Hou

r]window type

Oakland CA

A E F G I0

100

200

300

400

500

600

700

800

900

1000

Cum

ulat

ive

Con

dens

atio

n Ti

me

[Hou

r]

window type

Portland OR

A E F G I0

100

200

300

400

500

600

700

800

900

1000

Cum

ulat

ive

Con

dens

atio

n Ti

me

[Hou

r]

window type

Spokane WA

Student Version of MATLAB

Page 33: Secondary Glazing System (SGS) Moisture Analysis and ... · completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would

ofCRUatpredeterminedhumidityratios.ThereportedCRUnumbersseemtobemostlyontheverylowend(i.e.,verypoorperformance)forallunsealedunitsduetotheuseofhumidityratiosthatarerepresentativeofindoorroomair.Thisindicatesthatfurtherresearchmightbeneededtoestablishexpectedmoisturecontentinunsealedgapsfordifferentproducttypesandtorelatethemtoindoorroomair,sothatmorerepresentativeCRUprocedurecanbedeveloped.FourSGSsystemsaremeasuredforairleakageandmoisturepropagationperformance.Theresultsvarygreatlybetweenproducts;frompreventingallairleakageandmostmoisturetransfertonoresistancetoairormoisturetransfer.ThemeasuredperformancedataiscombinedwiththeresultsofEnergyPlusannualenergysimulationstodeterminetrendsandrelativecondensationperformanceofnineSGSproducts.Wemaketheassumptionthattherearenomoisturesourcesorsinks,andthereisnoliquidtransportflux.Bothoftheseassumptionsaresignificantinthatcondensedmoistureisconsideredoutofthesystem,potentiallymisjudgingthecondensationtime.Withtheseassumptionsandknowingthatallbuildingsarecontrolledandperformdifferently,theresultspresentedhereshouldbeviewedonlyasindicatorsofrelativeperformancebetweenSGSproductsandnotabsolutecondensationpotential.TheresultsshowthatallSGSsystemscontainingunsealedglazingcavitiesincreasecondensationriskoversinglepanebasewindows.Condensationriskishighestonnorthfacingsurfaces,andlowestoneastfacing,butthetimedifferenceisrelativelysmall.Condensationalsooccursmostoftenduringunoccupiedhours.Finally,lowwatervapordiffusionresistancefactorstotheoutsidecoupledwithhighroom-sideresistancetypicallyresultsinthefewestcondensationhours,whiletheoppositecase(highresistancetotheoutsideandlowresistanceroom-side)resultsinthegreatestnumberofcondensationhours.FutureworkshouldincludeinstallationandmonitoringofSGSinrealbuildingstovalidatethesimulationresults.TheCRUmetricisintroducedasapreliminarystepwiththelong-termgoalofastandardizedmetricforcondensationpotentialofSGSandotherattachmentproducts.FurtherdevelopmentoftheCRUmetricshouldbedonetoensureallsignificantaspectsofSGSdesign,suchasresistancetoairleakageandmoisturetransfer,areconsideredandpresentedfairlywithrespecttotheexistingCRstandards.6. ACKNOWLEDGEMENT ThisworkwassupportedbytheNorthwestEnergyEfficiencyAlliance(NEEA)andtheAssistantSecretaryforEnergyEfficiencyandRenewableEnergy,BuildingTechnologiesProgram,oftheU.S.DepartmentofEnergyunderContractNo.DE-AC02-05CH11231.

Page 34: Secondary Glazing System (SGS) Moisture Analysis and ... · completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would

7. REFERENCES AmericanArchitecturalManufacturersAssociation(AAMA),2008.AAMA/WDMA/CSA101/I.S.2/A440NAFS–NorthAmericanFenestrationStandard/SpecificationforWindows,Doors,andSkylights.Schaumburg,Il.AAMA,1998.GuidelinesForAAMAAccreditationOfIndependentLaboratoriesPerformingOn-SiteTestingOfFenestrationProducts.Schaumburg,Il.AmericanSocietyofHeating,Refrigerating,andAir-ConditioningEngineers,Inc.(ASHRAE),2009.HandbookofFundamentals,Atlanta,GA.ASTMStandardE283,2012.StandardTestMethodforDeterminingtheRateofAirLeakageThroughExteriorWindows,CurtainWalls,andDoorsUnderSpecifiedPressureDifferencesAcrosstheSpecimen,ASTMInternational,WestConshohocken,PA.Fraunhofer-Gesellschaft,2001.WUFIBIO.TheFraunhoferInstituteforBuildingPhysics.München,Germany.Hart,Robert,H.Goudey,R.Mitchell,M.Yazdanian,D.C.Curcija.2015.SecondaryGlazingSystem(SGS)Thermal,Moisture,andSolarPerformanceAnalysisandvalidation.NorthwestEnergyEfficiencyAlliance.Report#E15-293.ISO12572,2001.Hygrothermalperformanceofbuildingmaterialsandproducts--Determinationofwatervapourtransmissionproperties.Kunzel,HartwigM.,1995.SimultaneousHeatandMoistureTransportinBuildingComponents.TheFraunhoferInstituteofBuildingPhysics.München,Germany.Mitchell,R.,Kohler,C.,Curcija,D.,Zhu,L.,Vidanovic,S.,Czarnecki,S.,etal.(2013).THERM6.3/WINDOW6.3NFRCSimulationManual.LawrenceBerkeleyNationalLaboratory.Berkeley,CA:UniversityofCalifornia.U.S.DepartmentofEnergy.(2013,October30).EnergyPlusEnergySimulationSoftware.RetrievedJanuary12,2015,fromUSDOEEnergyEfficiency&RenewableEnergywebsite:http://apps1.eere.energy.gov/buildings/energyplus/energyplus_about.cfmTheNationalRenewableEnergyLaboratory.(2015,January19).NationalSolarRadiationDataBase.RetrievedJanuary21,2015,fromRenewableResourceDataCenter:http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3/

Page 35: Secondary Glazing System (SGS) Moisture Analysis and ... · completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would

8. APPENDIX 1 Thenumericalprocesstodetermineifcondensationoccursbetween-glassisdescribedinthissection.Thisprocessisusedtodeveloptheresultspresentedinthesimulationsectionoftheresults.Unlessotherwisenoted,allreferencedequationsaretakenfromASHRAE2009andpresentedintheformF#.#for(F)undamentals,chapter.equation.1. WindowmodelsaredefinedusingBSDFidfinputsforEnergyPlus.Thisis

requiredtoobtainglasssurfacetemperatures.ThesefileswereproducedinBerkeleyLabWINDOW7.3forthiswork.

2. 15-minutetimestepEnergyPlussimulationisperformed.Thefollowingoutputsarerequiredforallsimulations.Zonedataisrequiredforeachperimeterzone.

t Date/TimeTout Environment:SiteOutdoorAirDrybulbTemperature[C]Tout_dp Environment:SiteOutdoorAirDewpointTemperature[C]Pout Environment:SiteOutdoorAirBarometricPressure[Pa]Tin ZoneAirTemperature[C]ϕin ZoneAirRelativeHumidity[%]win ZoneMeanAirHumidityRatio[kgWater/kgDryAir]TS2 SurfaceWindowBackFaceTemperatureLayer1[C]TS3 SurfaceWindowFrontFaceTemperatureLayer2[C]

3. Foreach15minutetimestep:3.1. CalculatePws_in by using the following equations F1.5-6, given the input of

Tin [K] from Energy Plus: For−100<T>0°C

ln𝑃!" = 𝐶! 𝑇 + 𝐶! + 𝐶!𝑇 + 𝐶!𝑇! + 𝐶!𝑇! + 𝐶!𝑇! + 𝐶! ln𝑇 For0<T>200°C

ln𝑃!" = 𝐶! 𝑇 + 𝐶! + 𝐶!"𝑇 + 𝐶!!𝑇! + 𝐶!"𝑇! + 𝐶!" ln𝑇

where

C1=−5.6745359E+03C2=6.3925247E+00C3=−9.6778430E–03C4=6.2215701E−07C5=2.0747825E−09C6=−9.4840240E−13C7=4.1635019E+00C8=−5.8002206E+03C9=1.3914993E+00C10=−4.8640239E−02C11=4.1764768E−05C12=−1.4452093E−08

Page 36: Secondary Glazing System (SGS) Moisture Analysis and ... · completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would

C13=6.5459673E+00Pws [Pa] saturationpressure

3.2. CalculatePw_inbyusingequationF1.24,giventheinputofϕin[-]fromEnergy

Plus:

𝜙 =𝑃!𝑃!" !,!

3.3. CalculateTin_dpbyusingequationF1.39-40,giventheinputofPw_infrom3.2:

ForTdp≤0°C

𝑇!" = 6.09+ 12.608𝛼 + 0.4959𝛼! For0<Tdp>93°C

𝑇!" = 𝐶!" + 𝐶!"𝛼 + 𝐶!"𝛼! + 𝐶!"𝛼! + 𝐶!"𝑃!!.!"#$whereα=ln(Pw);C14=6.54C15=14.526C16=0.7389C17=0.09486C18=0.4569

3.4. CalculatePinbyusingequationF1.22,giventheinputofPw_infrom3.2andwinfromEnergyPlus:

𝑃 = 𝑃! 1+

𝑤0.621945

3.5. CalculatePBGbytakingtheaverageofPinfrom3.4andPoutfromEnergyPlus:

𝑃!" =𝑃!" + 𝑃!"#

2

3.6. CalculatePw_outbyusingtheinputofTout_dpfromEnergyPlusandequationfrom3.1,wherePw=Pws(Tdp).

3.7. CalculateWoutbyusingtheinputsofPoutfromE+andPw_outfrom3.6,and

equationfrom3.4rearrangedtosolveforW.

𝑊 = 0.621945𝑃!

𝑃 − 𝑃!

Page 37: Secondary Glazing System (SGS) Moisture Analysis and ... · completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would

3.8. CalculateTBGbytakingtheaveragetemperaturebetweenTS2andTS3fromEnergyPlus.

𝑇!" =𝑇!! + 𝑇!!

2

3.9. CalculationofTBG_dewisaniterativeprocessbyloopingthrough3.9.1–3.9.3foreachtimestep.

3.9.1. WρBGateachtimestepissolvedforbyutilizingthefollowing

equations:

𝑊 ∙ 𝜌! !! = 𝑊 ∙ 𝜌! !! + 𝛿 𝑡! − 𝑡!𝑃!_!" − 𝑃!_!"𝜇!" ∙ Δ𝑥! !!

+𝑃!_!"# − 𝑃!_!"𝜇!"# ∙ Δ𝑥! !!

𝛿 = 2.0 ∙ 10!! 𝑇!"!.!" !! 𝑃!" !!

att=1

𝑊!" =𝑊!" +𝑊!"#

2

𝑊 ∙ 𝜌! =𝑊!" ∙ 𝜌!

𝑃! =𝑃 ∙𝑊!"

0.621945+ 𝑊!"

3.9.2. CalculateWBGateachtimestepbydividingWρBGbytheairdensity.

𝑊 =𝑊 ∙ 𝜌!𝜌!

3.9.3. CalculatePw_BGateachtimestepbyequationfrom3.4rearrangedto

solveforpartialwaterpressure.

𝑃!_!" =𝑃 ∙𝑊!"

0.621945+ 𝑊!"

3.10. AfterPw_BGisdeterminedforeachtimestep,TBG_dewissolvedforusing

equationfrom3.3.

3.11. SurfacecondensationisthendeterminedbycomparingTBG_dewtotheglasssurfacetemperatureateachtimestep.Ifsurfacetemperatureisbelowthespacedewpointtemperaturethesurfacecontainscondensationatthattimestep.