Top Banner
Screened Poisson Surface Reconstruction Misha Kazhdan Johns Hopkins University Hugues Hoppe Microsoft Research
34

Screened Poisson Surface Reconstruction Misha Kazhdan Johns Hopkins University Hugues Hoppe Microsoft Research.

Dec 17, 2015

Download

Documents

Emily Stafford
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Screened Poisson Surface Reconstruction Misha Kazhdan Johns Hopkins University Hugues Hoppe Microsoft Research.

Screened PoissonSurface Reconstruction

Misha KazhdanJohns Hopkins University

Hugues HoppeMicrosoft Research

Page 2: Screened Poisson Surface Reconstruction Misha Kazhdan Johns Hopkins University Hugues Hoppe Microsoft Research.

Motivation3D scanners are everywhere:• Time of flight• Structured light• Stereo images• Shape from shading• Etc.

http://graphics.stanford.edu/projects/mich/

Page 3: Screened Poisson Surface Reconstruction Misha Kazhdan Johns Hopkins University Hugues Hoppe Microsoft Research.

Geometryprocessing

Motivation

Parameterization

Decimation

Filtering

etc.

Surfacereconstruction

Page 4: Screened Poisson Surface Reconstruction Misha Kazhdan Johns Hopkins University Hugues Hoppe Microsoft Research.

Implicit Function FittingGiven point samples:– Define a function with value zero at the points.– Extract the zero isosurface. >0

<0

0

F(q)Sample points

F(q)<0

F(q)>0

F(q) =0

Page 5: Screened Poisson Surface Reconstruction Misha Kazhdan Johns Hopkins University Hugues Hoppe Microsoft Research.

Related work

[Kazhdan et al. 2006]

[Hoppe et al. 1992] [Curless and Levoy 1996]

[Calakli and Taubin 2011][Alliez et al. 2007]

[Carr et al. 2001]

… and many more …

Page 6: Screened Poisson Surface Reconstruction Misha Kazhdan Johns Hopkins University Hugues Hoppe Microsoft Research.

Poisson Surface Reconstruction [2006]– Oriented points samples of indicator gradient.– Fit a scalar field to the gradients.

∇ 𝜒=𝑉

𝜒 (𝑞) 𝑉 (𝑞 )

𝜒=min𝐹

‖∇𝐹−𝑉‖2

(q)=-0.5

(q)=0.5

Page 7: Screened Poisson Surface Reconstruction Misha Kazhdan Johns Hopkins University Hugues Hoppe Microsoft Research.

Poisson Surface Reconstruction [2006]1. Compute the divergence2. Solve the Poisson equation

𝑉 (𝑞 )

∇⋅ Δ−1

𝜒 (𝑞)

Page 8: Screened Poisson Surface Reconstruction Misha Kazhdan Johns Hopkins University Hugues Hoppe Microsoft Research.

Poisson Surface Reconstruction [2006]1. Compute the divergence2. Solve the Poisson equation

Discretize over an octree Update coarse fine

coarse

fine

+

+

+

+

Solution Correction

𝑉 (𝑞 )

Δ−1

𝜒 (𝑞)

∇⋅

Page 9: Screened Poisson Surface Reconstruction Misha Kazhdan Johns Hopkins University Hugues Hoppe Microsoft Research.

Poisson Surface Reconstruction [2006]

Properties: Supports noisy, non-uniform data Over-smoothes Solver time is super-linear

Page 10: Screened Poisson Surface Reconstruction Misha Kazhdan Johns Hopkins University Hugues Hoppe Microsoft Research.

Screened Poisson Reconstruction• Higher fidelity – at same triangle count• Faster – solver time is linear

Screened PoissonPoisson

Page 11: Screened Poisson Surface Reconstruction Misha Kazhdan Johns Hopkins University Hugues Hoppe Microsoft Research.

Outline• Introduction

• Better / faster reconstruction

• Evaluation

• Conclusion

Page 12: Screened Poisson Surface Reconstruction Misha Kazhdan Johns Hopkins University Hugues Hoppe Microsoft Research.

Better ReconstructionAdd discrete interpolation to the energy:

– encouraged to be zero at samples

Adds a bilinear SPD term to the energy Introduces inhomogeneity into the system

𝐸 ( 𝜒 )=∫‖∇ 𝜒 (𝑞)−𝑉 (𝑞)‖2ⅆ𝑞  Gradient fitting Sample interpolation

[Carr et al.,…,Calakli and Taubin]

+𝜆∑𝑝∈𝑃

‖𝜒 (𝑝 )−0‖2

Page 13: Screened Poisson Surface Reconstruction Misha Kazhdan Johns Hopkins University Hugues Hoppe Microsoft Research.

Better ReconstructionDiscretization:Choose basis to represent :

𝜒 (𝑞)=∑𝑖=1

𝑛

𝑥𝑖𝐵𝑖 (𝑞 )

𝐵𝑖− 1 (𝑞 ) 𝐵𝑖 (𝑞) 𝐵𝑖+1 (𝑞 ) 𝐵𝑖+2 (𝑞 )

𝑥𝑖 −1

𝑥𝑖

𝑥𝑖+1

𝑥𝑖+2

Page 14: Screened Poisson Surface Reconstruction Misha Kazhdan Johns Hopkins University Hugues Hoppe Microsoft Research.

Better ReconstructionDiscretization:For an octree, use B-splines:– centered on each node– scaled to the node size

Page 15: Screened Poisson Surface Reconstruction Misha Kazhdan Johns Hopkins University Hugues Hoppe Microsoft Research.

Better ReconstructionPoisson reconstruction:To compute , solve:

with coefficients given by:

Screened

^

𝐿𝑥=𝑏

𝑏𝑖=∫ ⟨∇𝐵𝑖 (𝑞 ) ,𝑉 (𝑞 ) ⟩ ⅆ𝑞𝐿𝑖𝑗=∫ ⟨∇𝐵 𝑖 (𝑞 ) ,∇𝐵 𝑗 (𝑞 ) ⟩ⅆ𝑞+𝜆∑

𝑝∈𝑃

𝐵𝑖 (𝑝 )𝐵 𝑗 (𝑝)Bi

Bj

Page 16: Screened Poisson Surface Reconstruction Misha Kazhdan Johns Hopkins University Hugues Hoppe Microsoft Research.

Poisson reconstruction:Sparsity is unchangedEntries are data-dependent

Better Reconstruction

𝑏𝑖=∫ ⟨∇𝐵𝑖 (𝑞 ) ,𝑉 (𝑞 ) ⟩ ⅆ𝑞

Screened

^

𝐿𝑖𝑗=∫ ⟨∇𝐵 𝑖 (𝑞 ) ,∇𝐵 𝑗 (𝑞 ) ⟩ⅆ𝑞+𝜆∑𝑝∈𝑃

𝐵𝑖 (𝑝 )𝐵 𝑗 (𝑝)Bi

Bj

Bj

Bi

Page 17: Screened Poisson Surface Reconstruction Misha Kazhdan Johns Hopkins University Hugues Hoppe Microsoft Research.

Faster Screened ReconstructionObservation:At coarse resolutions, no need to screen as precisely. Use average position,

weighted by point count.Bj

Bi BjBi

BjBi

Page 18: Screened Poisson Surface Reconstruction Misha Kazhdan Johns Hopkins University Hugues Hoppe Microsoft Research.

Faster ReconstructionSolver inefficiency:Before updating, subtract constraints met at all coarser levels of the octree. complexity

coarse

fine

+

+

+

Solution Correction

𝜒 (𝑞)

Page 19: Screened Poisson Surface Reconstruction Misha Kazhdan Johns Hopkins University Hugues Hoppe Microsoft Research.

Faster Reconstruction

Regular multigrid:Function spaces nest can upsample coarser

solutions to finer levels

Page 20: Screened Poisson Surface Reconstruction Misha Kazhdan Johns Hopkins University Hugues Hoppe Microsoft Research.

Faster Reconstruction

Adaptive multigrid: Function spaces do not nest coarser solutions need to

be stored explicitly

Page 21: Screened Poisson Surface Reconstruction Misha Kazhdan Johns Hopkins University Hugues Hoppe Microsoft Research.

Faster Reconstruction

Naive enrichment: Complete octree

Page 22: Screened Poisson Surface Reconstruction Misha Kazhdan Johns Hopkins University Hugues Hoppe Microsoft Research.

Faster Reconstruction

Observation:Only upsample the part ofthe solution visible to the finer basis.

Page 23: Screened Poisson Surface Reconstruction Misha Kazhdan Johns Hopkins University Hugues Hoppe Microsoft Research.

Faster Reconstruction

Enrichment:Iterate fine coarse

Identify support of next-finer levelAdd visible functions

Page 24: Screened Poisson Surface Reconstruction Misha Kazhdan Johns Hopkins University Hugues Hoppe Microsoft Research.

Faster Reconstruction

Original Enriched

Page 25: Screened Poisson Surface Reconstruction Misha Kazhdan Johns Hopkins University Hugues Hoppe Microsoft Research.

Faster Reconstruction

Adaptive Poisson solver: Update coarse fine

Get supported solution

Adjust constraints

Solve residual

+

+

+

+

+

+

+

+

+

+

+

Solution Correction Visible Solution

𝜒 (𝑞)

Page 26: Screened Poisson Surface Reconstruction Misha Kazhdan Johns Hopkins University Hugues Hoppe Microsoft Research.

Outline• Introduction

• Better / faster reconstruction

• Evaluation

• Conclusion

Page 27: Screened Poisson Surface Reconstruction Misha Kazhdan Johns Hopkins University Hugues Hoppe Microsoft Research.

AccuracyPoisson Screened Poisson

𝑥

𝑧 z

𝑥

SSD [Calakli & Taubin]

z

𝑥

𝑧 𝑧

Page 28: Screened Poisson Surface Reconstruction Misha Kazhdan Johns Hopkins University Hugues Hoppe Microsoft Research.

AccuracyPoisson Screened Poisson SSD [Calakli & Taubin]

𝑥

𝑧

𝑥

𝑧

𝑥

𝑧

Page 29: Screened Poisson Surface Reconstruction Misha Kazhdan Johns Hopkins University Hugues Hoppe Microsoft Research.

Performance

Input: 2x106 points

Solver Time Space

Poisson 89 sec 422 MB

Poisson (optimized) 36 sec604 MB

Screened Poisson 44 sec

SSD [Calakli & Taubin] 3302 sec 1247 MB

Page 30: Screened Poisson Surface Reconstruction Misha Kazhdan Johns Hopkins University Hugues Hoppe Microsoft Research.

Input: 5x106 points

Performance

Solver Time Space

Poisson 412 sec 1498 MB

Poisson (optimized) 149 sec2194 MB

Screened Poisson 172 sec

SSD [Calakli & Taubin] 19,158 sec 4895 MB

Page 31: Screened Poisson Surface Reconstruction Misha Kazhdan Johns Hopkins University Hugues Hoppe Microsoft Research.

Limitations Assumes clean data

Poisson Screened Poisson

𝑥

𝑧

Page 32: Screened Poisson Surface Reconstruction Misha Kazhdan Johns Hopkins University Hugues Hoppe Microsoft Research.

Summary

Screened Poisson reconstruction:

Sharper reconstructions

Optimal-complexity solver

Page 33: Screened Poisson Surface Reconstruction Misha Kazhdan Johns Hopkins University Hugues Hoppe Microsoft Research.

Future Work• Robust handling of noise• (Non-watertight reconstruction)• Extension to full multigrid

Page 34: Screened Poisson Surface Reconstruction Misha Kazhdan Johns Hopkins University Hugues Hoppe Microsoft Research.

Data:Aim@Shape, Digne et al., EPFL,Stanford Shape Repository

Code:Berger et al., Calakli et al.,Manson et al.

Funding:NSF Career Grant (#6801727)

Thank You!

http://www.cs.jhu.edu/~misha/Code/PoissonRecon