Top Banner
/centre for analysis, scientific computing and applications Unsteady Problems Scalar Conservation Laws and Godunov’s Scheme K. Malakpoor CASA Center for Analysis, Scientific Computing and Applications Department of Mathematics and Computer Science 7-July-2005
38

Scalar Conservation Laws and Godunov's Scheme · GF NPY_]PQZ]LYLWd^T^ ^NTPY_TQTNNZX[`_TYRLYOL[[WTNL_TZY^ Unsteady Problems Scalar Conservation Laws and Godunov’s Scheme K. …

Aug 30, 2018

Download

Documents

dinhnhan
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Scalar Conservation Laws and Godunov's Scheme · GF NPY_]PQZ]LYLWd^T^ ^NTPY_TQTNNZX[`_TYRLYOL[[WTNL_TZY^ Unsteady Problems Scalar Conservation Laws and Godunov’s Scheme K. …

/centre for analysis, scientific computing and applications

Unsteady Problems

Scalar Conservation Laws and Godunov’sScheme

K. Malakpoor

CASACenter for Analysis, Scientific Computing and Applications

Department of Mathematics and Computer Science

7-July-2005

Page 2: Scalar Conservation Laws and Godunov's Scheme · GF NPY_]PQZ]LYLWd^T^ ^NTPY_TQTNNZX[`_TYRLYOL[[WTNL_TZY^ Unsteady Problems Scalar Conservation Laws and Godunov’s Scheme K. …

/centre for analysis, scientific computing and applications

Unsteady Problems

Conservation equations. Mass conservation

ρt +∇ · (ρv) = 0.

Two-dimensional Euler equation

ut + f1(u)x + f2(u)y = 0,

u =

ρ

ρν1ρν2e

, f1(u) =

ρν1

ρν21 + p

ρν1ν2ν1(e + p)

f2(u) =

ρν2

ρν1ν2ρν2

2 + pν2(e + p)

p = (γ − 1)ρε, e = ρε + 1/2ρ(ν2

1 + ν22).

Page 3: Scalar Conservation Laws and Godunov's Scheme · GF NPY_]PQZ]LYLWd^T^ ^NTPY_TQTNNZX[`_TYRLYOL[[WTNL_TZY^ Unsteady Problems Scalar Conservation Laws and Godunov’s Scheme K. …

/centre for analysis, scientific computing and applications

Unsteady Problems

Conservation equations. Mass conservation

ρt +∇ · (ρv) = 0.

Two-dimensional Euler equation

ut + f1(u)x + f2(u)y = 0,

u =

ρ

ρν1ρν2e

, f1(u) =

ρν1

ρν21 + p

ρν1ν2ν1(e + p)

f2(u) =

ρν2

ρν1ν2ρν2

2 + pν2(e + p)

p = (γ − 1)ρε, e = ρε + 1/2ρ(ν2

1 + ν22).

Page 4: Scalar Conservation Laws and Godunov's Scheme · GF NPY_]PQZ]LYLWd^T^ ^NTPY_TQTNNZX[`_TYRLYOL[[WTNL_TZY^ Unsteady Problems Scalar Conservation Laws and Godunov’s Scheme K. …

/centre for analysis, scientific computing and applications

Unsteady Problems

Finite Volume Schemes

ut +∇ · f (u) = 0 in Ω× [0, T ]

Discretization of space

Ci

x

t

1−ix ix 1+ix

1+nt

nt

Ω =⋃

Ωi , Ωj ∩ Ωk = ∅, forj 6= k

boundary ∂Ωj piecewise smooth.

Page 5: Scalar Conservation Laws and Godunov's Scheme · GF NPY_]PQZ]LYLWd^T^ ^NTPY_TQTNNZX[`_TYRLYOL[[WTNL_TZY^ Unsteady Problems Scalar Conservation Laws and Godunov’s Scheme K. …

/centre for analysis, scientific computing and applications

Unsteady Problems

Finite VolumeIntegration over Ωj × [tn, tn+1]

|Ωj |un+1j = |Ωj |un

j −∫ tn+1

tn

∫∂Ωj

f (u(x , t)) · ndSdt

Finite Volume Scheme in One-DimensionIntegrating over [xi−1/2, xi+1/2]× [tn, tn+1]∫ tn+1

tn

∫ xi+1/2

xi−1/2

ut(x , t) +

∫ tn+1

tn

∫ xi+1/2

xi−1/2

f (u(x , t))x dxdt = 0.

Page 6: Scalar Conservation Laws and Godunov's Scheme · GF NPY_]PQZ]LYLWd^T^ ^NTPY_TQTNNZX[`_TYRLYOL[[WTNL_TZY^ Unsteady Problems Scalar Conservation Laws and Godunov’s Scheme K. …

/centre for analysis, scientific computing and applications

Unsteady Problems

Finite VolumeIntegration over Ωj × [tn, tn+1]

|Ωj |un+1j = |Ωj |un

j −∫ tn+1

tn

∫∂Ωj

f (u(x , t)) · ndSdt

Finite Volume Scheme in One-DimensionIntegrating over [xi−1/2, xi+1/2]× [tn, tn+1]∫ tn+1

tn

∫ xi+1/2

xi−1/2

ut(x , t) +

∫ tn+1

tn

∫ xi+1/2

xi−1/2

f (u(x , t))x dxdt = 0.

Page 7: Scalar Conservation Laws and Godunov's Scheme · GF NPY_]PQZ]LYLWd^T^ ^NTPY_TQTNNZX[`_TYRLYOL[[WTNL_TZY^ Unsteady Problems Scalar Conservation Laws and Godunov’s Scheme K. …

/centre for analysis, scientific computing and applications

Unsteady Problems

Finite Volume Scheme in Conservation formWe know that the weak solution satisfies in∫ xi+1/2

xi−1/2

[u(x , tn+1)− u(x , tn+1)] = −∫ tn+1

tn

[f (u(xi+1/2, t))dt − f (u(xi−1/2, t))dt

]

un+1i = un

i −∆t∆x

(gni+1/2 − gn

i−1/2)

with

uni approximates

1∆x

∫ xi+1/2

xi−1/2

u(x , tn)dx ,

gi+1/2 approximates1∆t

∫ tn+1

tnf (u(xi+1/2, t))dt ,

Page 8: Scalar Conservation Laws and Godunov's Scheme · GF NPY_]PQZ]LYLWd^T^ ^NTPY_TQTNNZX[`_TYRLYOL[[WTNL_TZY^ Unsteady Problems Scalar Conservation Laws and Godunov’s Scheme K. …

/centre for analysis, scientific computing and applications

Unsteady Problems

Linear Advection Equation

ut + aux = 0, a ∈ R

Solution:

C : x = x(t) withdx(t)

dt= a, (characteristics)

A function u = u(x(t), t) satisfies

ddt

u(x(t), t) = ut + aux

u Solution ⇒ u = constant along C.

Page 9: Scalar Conservation Laws and Godunov's Scheme · GF NPY_]PQZ]LYLWd^T^ ^NTPY_TQTNNZX[`_TYRLYOL[[WTNL_TZY^ Unsteady Problems Scalar Conservation Laws and Godunov’s Scheme K. …

/centre for analysis, scientific computing and applications

Unsteady Problems

Linear Advection Equation

ut + aux = 0, a ∈ R

Solution:

C : x = x(t) withdx(t)

dt= a, (characteristics)

A function u = u(x(t), t) satisfies

ddt

u(x(t), t) = ut + aux

u Solution ⇒ u = constant along C.

Page 10: Scalar Conservation Laws and Godunov's Scheme · GF NPY_]PQZ]LYLWd^T^ ^NTPY_TQTNNZX[`_TYRLYOL[[WTNL_TZY^ Unsteady Problems Scalar Conservation Laws and Godunov’s Scheme K. …

/centre for analysis, scientific computing and applications

Unsteady Problems

Solution of Initial Value Problem

u(x , 0) = q(x) for all x ∈ R

u(x , t) = q(x − at) for all x , t .

Page 11: Scalar Conservation Laws and Godunov's Scheme · GF NPY_]PQZ]LYLWd^T^ ^NTPY_TQTNNZX[`_TYRLYOL[[WTNL_TZY^ Unsteady Problems Scalar Conservation Laws and Godunov’s Scheme K. …

/centre for analysis, scientific computing and applications

Unsteady Problems

Upwind Scheme

x

t

1−ix ix 1+ix

1+nt

nt

a > 0 :un+1

i − uni

∆t+ a

uni − un

i−1

∆x= 0

stable for:∆t∆x

a < 1 (CFL-Condition)

Page 12: Scalar Conservation Laws and Godunov's Scheme · GF NPY_]PQZ]LYLWd^T^ ^NTPY_TQTNNZX[`_TYRLYOL[[WTNL_TZY^ Unsteady Problems Scalar Conservation Laws and Godunov’s Scheme K. …

/centre for analysis, scientific computing and applications

Unsteady Problems

CIR-MethodCourant, Isaacson, Rees (1946)

un+1i = un

i − a∆t∆x

un

i − uni−1 for a > 0,

uni+1 − un

i for a < 0,

Reformulation

un+1i = un

i − a∆t

2∆x(un

i+1 − uni−1), central difference

+|a|∆t2∆x

(uni+1 − 2un

i + uni−1), dissipation

Page 13: Scalar Conservation Laws and Godunov's Scheme · GF NPY_]PQZ]LYLWd^T^ ^NTPY_TQTNNZX[`_TYRLYOL[[WTNL_TZY^ Unsteady Problems Scalar Conservation Laws and Godunov’s Scheme K. …

/centre for analysis, scientific computing and applications

Unsteady Problems

CIR-MethodCourant, Isaacson, Rees (1946)

un+1i = un

i − a∆t∆x

un

i − uni−1 for a > 0,

uni+1 − un

i for a < 0,

Reformulation

un+1i = un

i − a∆t

2∆x(un

i+1 − uni−1), central difference

+|a|∆t2∆x

(uni+1 − 2un

i + uni−1), dissipation

Page 14: Scalar Conservation Laws and Godunov's Scheme · GF NPY_]PQZ]LYLWd^T^ ^NTPY_TQTNNZX[`_TYRLYOL[[WTNL_TZY^ Unsteady Problems Scalar Conservation Laws and Godunov’s Scheme K. …

/centre for analysis, scientific computing and applications

Unsteady Problems

Reformulation of the CIR-Method, Godunov’s Ideaun piecewise constant

uni (x) = un

i for x ∈ [xi−1/2, xi+1/2].

Page 15: Scalar Conservation Laws and Godunov's Scheme · GF NPY_]PQZ]LYLWd^T^ ^NTPY_TQTNNZX[`_TYRLYOL[[WTNL_TZY^ Unsteady Problems Scalar Conservation Laws and Godunov’s Scheme K. …

/centre for analysis, scientific computing and applications

Unsteady Problems

1.Solve the initial value problemut + aux = 0, u(x , 0) = un(x), for x ∈ Run(x) = un

i for x ∈ [xi−1/2, xi+1/2]

2. Average the exact solution

uni :=

1∆x

∫ xi+1/2

xi−1/2

u(x ,∆t)dx

CFL-condition:∆t∆x

a ≤ 1

Page 16: Scalar Conservation Laws and Godunov's Scheme · GF NPY_]PQZ]LYLWd^T^ ^NTPY_TQTNNZX[`_TYRLYOL[[WTNL_TZY^ Unsteady Problems Scalar Conservation Laws and Godunov’s Scheme K. …

/centre for analysis, scientific computing and applications

Unsteady Problems

1.Solve the initial value problemut + aux = 0, u(x , 0) = un(x), for x ∈ Run(x) = un

i for x ∈ [xi−1/2, xi+1/2]

2. Average the exact solution

uni :=

1∆x

∫ xi+1/2

xi−1/2

u(x ,∆t)dx

CFL-condition:∆t∆x

a ≤ 1

Page 17: Scalar Conservation Laws and Godunov's Scheme · GF NPY_]PQZ]LYLWd^T^ ^NTPY_TQTNNZX[`_TYRLYOL[[WTNL_TZY^ Unsteady Problems Scalar Conservation Laws and Godunov’s Scheme K. …

/centre for analysis, scientific computing and applications

Unsteady Problems

Reformulation of the CIR-MethodIntegration over [xi−1/2, xi+1/2]× [tn, tn+1]∫ tn+1

tn

∫ xi+1/2

xi−1/2

u(x , t) dxdt +

∫ tn+1

tn

∫ xi+1/2

xi−1/2

au(x , t) dxdt = 0

∆xun+1i −∆xun

i = ∆tgni+1/2 −∆tgn

i−1/2

with

uni approximates

1∆x

∫ xi+1/2

xi−1/2

u(x , tn)dx ,

gi+1/2 approximates1∆t

∫ tn+1

tnau(xi+1/2, t)dt ,

numerical flux: gi+1/2 = g(ui , ui+1).

Page 18: Scalar Conservation Laws and Godunov's Scheme · GF NPY_]PQZ]LYLWd^T^ ^NTPY_TQTNNZX[`_TYRLYOL[[WTNL_TZY^ Unsteady Problems Scalar Conservation Laws and Godunov’s Scheme K. …

/centre for analysis, scientific computing and applications

Unsteady Problems

Reformulation of the CIR-MethodIntegration over [xi−1/2, xi+1/2]× [tn, tn+1]∫ tn+1

tn

∫ xi+1/2

xi−1/2

u(x , t) dxdt +

∫ tn+1

tn

∫ xi+1/2

xi−1/2

au(x , t) dxdt = 0

∆xun+1i −∆xun

i = ∆tgni+1/2 −∆tgn

i−1/2

with

uni approximates

1∆x

∫ xi+1/2

xi−1/2

u(x , tn)dx ,

gi+1/2 approximates1∆t

∫ tn+1

tnau(xi+1/2, t)dt ,

numerical flux: gi+1/2 = g(ui , ui+1).

Page 19: Scalar Conservation Laws and Godunov's Scheme · GF NPY_]PQZ]LYLWd^T^ ^NTPY_TQTNNZX[`_TYRLYOL[[WTNL_TZY^ Unsteady Problems Scalar Conservation Laws and Godunov’s Scheme K. …

/centre for analysis, scientific computing and applications

Unsteady Problems

Scalar Conservation Laws

ut + f (u)x = 0,

Quasilinear form:

ut + a(u)ux = 0

Example: Burger’s equation, f (u) =12

u2

ut + uux = 0

Characteristics: C : x = x(t) withdf (u)

du= a(u)

u = constant along C.

Page 20: Scalar Conservation Laws and Godunov's Scheme · GF NPY_]PQZ]LYLWd^T^ ^NTPY_TQTNNZX[`_TYRLYOL[[WTNL_TZY^ Unsteady Problems Scalar Conservation Laws and Godunov’s Scheme K. …

/centre for analysis, scientific computing and applications

Unsteady Problems

Scalar Conservation Laws

ut + f (u)x = 0,

Quasilinear form:

ut + a(u)ux = 0

Example: Burger’s equation, f (u) =12

u2

ut + uux = 0

Characteristics: C : x = x(t) withdf (u)

du= a(u)

u = constant along C.

Page 21: Scalar Conservation Laws and Godunov's Scheme · GF NPY_]PQZ]LYLWd^T^ ^NTPY_TQTNNZX[`_TYRLYOL[[WTNL_TZY^ Unsteady Problems Scalar Conservation Laws and Godunov’s Scheme K. …

/centre for analysis, scientific computing and applications

Unsteady Problems

Scalar Conservation Laws

ut + f (u)x = 0,

Quasilinear form:

ut + a(u)ux = 0

Example: Burger’s equation, f (u) =12

u2

ut + uux = 0

Characteristics: C : x = x(t) withdf (u)

du= a(u)

u = constant along C.

Page 22: Scalar Conservation Laws and Godunov's Scheme · GF NPY_]PQZ]LYLWd^T^ ^NTPY_TQTNNZX[`_TYRLYOL[[WTNL_TZY^ Unsteady Problems Scalar Conservation Laws and Godunov’s Scheme K. …

/centre for analysis, scientific computing and applications

Unsteady Problems

Scalar Conservation Laws

ut + f (u)x = 0,

Quasilinear form:

ut + a(u)ux = 0

Example: Burger’s equation, f (u) =12

u2

ut + uux = 0

Characteristics: C : x = x(t) withdf (u)

du= a(u)

u = constant along C.

Page 23: Scalar Conservation Laws and Godunov's Scheme · GF NPY_]PQZ]LYLWd^T^ ^NTPY_TQTNNZX[`_TYRLYOL[[WTNL_TZY^ Unsteady Problems Scalar Conservation Laws and Godunov’s Scheme K. …

/centre for analysis, scientific computing and applications

Unsteady Problems

Riemann ProblemExample 1:

ut + uux = 0, u(x , 0) =

1, x < 0,

−1, x > 0.

t

1−=ru1=lu

1−=t

x1=

t

x

evawkcohs

Page 24: Scalar Conservation Laws and Godunov's Scheme · GF NPY_]PQZ]LYLWd^T^ ^NTPY_TQTNNZX[`_TYRLYOL[[WTNL_TZY^ Unsteady Problems Scalar Conservation Laws and Godunov’s Scheme K. …

/centre for analysis, scientific computing and applications

Unsteady Problems

Riemann ProblemExample 2:

ut + uux = 0, u(x , 0) =

−1, x < 0,

1, x > 0.

x

t

1=ru1−=lu

evawnoitcaferar

Page 25: Scalar Conservation Laws and Godunov's Scheme · GF NPY_]PQZ]LYLWd^T^ ^NTPY_TQTNNZX[`_TYRLYOL[[WTNL_TZY^ Unsteady Problems Scalar Conservation Laws and Godunov’s Scheme K. …

/centre for analysis, scientific computing and applications

Unsteady Problems

Solution of the Riemann problem

Case f ′′(u) > 0,

ul > ur : Shock wave u(x , t) =

ul , x/t < s,

ur , x/t > s.with

s =f (ur )− f (ul)

ur − ul.

ul < ur : rarefaction wave

u(x , t) =

ul , x/t < a(ul),

ur , x/t > a(ur ),

a−1(x/t), else

Page 26: Scalar Conservation Laws and Godunov's Scheme · GF NPY_]PQZ]LYLWd^T^ ^NTPY_TQTNNZX[`_TYRLYOL[[WTNL_TZY^ Unsteady Problems Scalar Conservation Laws and Godunov’s Scheme K. …

/centre for analysis, scientific computing and applications

Unsteady Problems

Solution of the Riemann problem

Case f ′′(u) > 0,

ul > ur : Shock wave u(x , t) =

ul , x/t < s,

ur , x/t > s.with

s =f (ur )− f (ul)

ur − ul.

ul < ur : rarefaction wave

u(x , t) =

ul , x/t < a(ul),

ur , x/t > a(ur ),

a−1(x/t), else

Page 27: Scalar Conservation Laws and Godunov's Scheme · GF NPY_]PQZ]LYLWd^T^ ^NTPY_TQTNNZX[`_TYRLYOL[[WTNL_TZY^ Unsteady Problems Scalar Conservation Laws and Godunov’s Scheme K. …

/centre for analysis, scientific computing and applications

Unsteady Problems

Godunov’s Method:

un+1i = un

i −∆t∆x

(gni+1/2 − gn

i−1/2)

with the numerical flux

g(ul , ur ) =

f (ul), for ul > ur , s > 0,

f (ur ), for ul > ur , s < 0,

f (ul), for ul < ur , a(ul) > 0,

f (ur ), for ul < ur , a(ur ) < 0,

a−1(0), else.

with ul := ui and ur := ui+1

Page 28: Scalar Conservation Laws and Godunov's Scheme · GF NPY_]PQZ]LYLWd^T^ ^NTPY_TQTNNZX[`_TYRLYOL[[WTNL_TZY^ Unsteady Problems Scalar Conservation Laws and Godunov’s Scheme K. …

/centre for analysis, scientific computing and applications

Unsteady Problems

Higher Order, Generalized Godunov’s Scheme

To compute the numerical flux gi+1/2, one has to solve theRiemann problem ut + f (u)x = 0, t ≥ tn,

u(x , tn) =

un

i + (x − xi)sni , x < xi+1/2,

uni+1 + (x − xi+1)sn

i+1, x > xi+1/2,

where sni and sn

i+1 called slopes, are constants.

x

nu

+)1-i(u-iu

iu-)1i(u +

+iu

Page 29: Scalar Conservation Laws and Godunov's Scheme · GF NPY_]PQZ]LYLWd^T^ ^NTPY_TQTNNZX[`_TYRLYOL[[WTNL_TZY^ Unsteady Problems Scalar Conservation Laws and Godunov’s Scheme K. …

/centre for analysis, scientific computing and applications

Unsteady Problems

Second order accuracy in space:

u(x , tn) = u(xi , tn) + (x − xi)ux(x , tn) +O((x − xi)2)

sni = ux(xi , tn) +O((x − xi)

2)

Taylor expansion in time:

u(x , t + ∆t/2) = u(x , t) +∆t2

ut(x , t) +O(∆t2), ut = −f (u)x

u(x , t +∆t2

) = u(x , t)− ∆t2

f (u(x , t))x +O(∆t2)

⇒ un+1i± = un

i± −∆t∆x

(f (uni+)− f (un

i−))

Page 30: Scalar Conservation Laws and Godunov's Scheme · GF NPY_]PQZ]LYLWd^T^ ^NTPY_TQTNNZX[`_TYRLYOL[[WTNL_TZY^ Unsteady Problems Scalar Conservation Laws and Godunov’s Scheme K. …

/centre for analysis, scientific computing and applications

Unsteady Problems

Second order accuracy in space:

u(x , tn) = u(xi , tn) + (x − xi)ux(x , tn) +O((x − xi)2)

sni = ux(xi , tn) +O((x − xi)

2)

Taylor expansion in time:

u(x , t + ∆t/2) = u(x , t) +∆t2

ut(x , t) +O(∆t2), ut = −f (u)x

u(x , t +∆t2

) = u(x , t)− ∆t2

f (u(x , t))x +O(∆t2)

⇒ un+1i± = un

i± −∆t∆x

(f (uni+)− f (un

i−))

Page 31: Scalar Conservation Laws and Godunov's Scheme · GF NPY_]PQZ]LYLWd^T^ ^NTPY_TQTNNZX[`_TYRLYOL[[WTNL_TZY^ Unsteady Problems Scalar Conservation Laws and Godunov’s Scheme K. …

/centre for analysis, scientific computing and applications

Unsteady Problems

MUSCL-ProcedureBoundary Values at tn

uni± = un

i ±∆x2

sni

tn → tn+1/2

un+1/2i± = un

± −∆t

2∆x(f (un

i+)− f (uni−))

FV-scheme:

un+1i = un

i −∆t∆x

(gn+1/2i+1/2 − gn+1/2

i−1/2 )

with gn+1/2i+1/2 = g(un+1/2

i+ , un+1/2(i+1)−).

Page 32: Scalar Conservation Laws and Godunov's Scheme · GF NPY_]PQZ]LYLWd^T^ ^NTPY_TQTNNZX[`_TYRLYOL[[WTNL_TZY^ Unsteady Problems Scalar Conservation Laws and Godunov’s Scheme K. …

/centre for analysis, scientific computing and applications

Unsteady Problems

MUSCL-ProcedureBoundary Values at tn

uni± = un

i ±∆x2

sni

tn → tn+1/2

un+1/2i± = un

± −∆t

2∆x(f (un

i+)− f (uni−))

FV-scheme:

un+1i = un

i −∆t∆x

(gn+1/2i+1/2 − gn+1/2

i−1/2 )

with gn+1/2i+1/2 = g(un+1/2

i+ , un+1/2(i+1)−).

Page 33: Scalar Conservation Laws and Godunov's Scheme · GF NPY_]PQZ]LYLWd^T^ ^NTPY_TQTNNZX[`_TYRLYOL[[WTNL_TZY^ Unsteady Problems Scalar Conservation Laws and Godunov’s Scheme K. …

/centre for analysis, scientific computing and applications

Unsteady Problems

MUSCL-ProcedureBoundary Values at tn

uni± = un

i ±∆x2

sni

tn → tn+1/2

un+1/2i± = un

± −∆t

2∆x(f (un

i+)− f (uni−))

FV-scheme:

un+1i = un

i −∆t∆x

(gn+1/2i+1/2 − gn+1/2

i−1/2 )

with gn+1/2i+1/2 = g(un+1/2

i+ , un+1/2(i+1)−).

Page 34: Scalar Conservation Laws and Godunov's Scheme · GF NPY_]PQZ]LYLWd^T^ ^NTPY_TQTNNZX[`_TYRLYOL[[WTNL_TZY^ Unsteady Problems Scalar Conservation Laws and Godunov’s Scheme K. …

/centre for analysis, scientific computing and applications

Unsteady Problems

LimitersDefine ∆−un

i = uni − un

i−1, ∆+uni = un

i+1 − uni and

rni = ∆−un

i /∆+uni .

Define a coefficient function Φ(rni ) with

sni ∆x = Φ(rn

i )∆+uni

The coefficient Φ(rni ) is often referred to as the limiter.

A limiter has to satisfy

0 ≤Φ(rn

i )

rni

≤ 2 and 0 ≤ Φ(rni ) ≤ 2,∀i .

Page 35: Scalar Conservation Laws and Godunov's Scheme · GF NPY_]PQZ]LYLWd^T^ ^NTPY_TQTNNZX[`_TYRLYOL[[WTNL_TZY^ Unsteady Problems Scalar Conservation Laws and Godunov’s Scheme K. …

/centre for analysis, scientific computing and applications

Unsteady Problems

Minmod limiter: Φ(r) = min (r , 1).Davis limiter: Φ(r) = min (2r , 1/2(1 + r), 2).

Harmonic limiter: Φ(r) =2r

1 + r

Jameson limiter: Φ(r) = 1/2(1 + r)[1−

∣∣∣∣ 1− r1 + |r |

∣∣∣∣q], q > 0.

Page 36: Scalar Conservation Laws and Godunov's Scheme · GF NPY_]PQZ]LYLWd^T^ ^NTPY_TQTNNZX[`_TYRLYOL[[WTNL_TZY^ Unsteady Problems Scalar Conservation Laws and Godunov’s Scheme K. …

/centre for analysis, scientific computing and applications

Unsteady Problems

Generalized Godunov’s SchemeLet us consider a general transport equation ofconvection-diffusion-reaction type in the divergence form

∂u∂t

+∇ · f (u,∇u) = S(u).

A generalized Godunov scheme has the form:

ZΩα

(un+1 − un) dΩ +

Z tn+1

tndtZ

∂Ωα

f (Et u,∇Et u) · n dΓ =

Z tn+1

tndtZ

ΩαS(u)dΩ.

Ωα denotes an element of the mesh and Et is an approximationevolution operator over a time segment t ∈ [tn, tn+1].

Page 37: Scalar Conservation Laws and Godunov's Scheme · GF NPY_]PQZ]LYLWd^T^ ^NTPY_TQTNNZX[`_TYRLYOL[[WTNL_TZY^ Unsteady Problems Scalar Conservation Laws and Godunov’s Scheme K. …

/centre for analysis, scientific computing and applications

Unsteady Problems

Numerical Scheme for Convection-Diffusion-Reaction Problems1

∂c∂t

+∂

∂x[−D

∂c∂x

+ vc] = S(c), v > 0, D > 0, x ∈ [0, L].

2

cn+1i −∆t/2S(cn+1

i ) = cni −

∆t∆x

[gni+1/2−gn

i−1/2]+∆t/2S(cni ).

wheregn

i+1/2 = vcn+1/2i+1/2 − Dsn

i ,

and sni is again the slope of the local linear recovery.

Page 38: Scalar Conservation Laws and Godunov's Scheme · GF NPY_]PQZ]LYLWd^T^ ^NTPY_TQTNNZX[`_TYRLYOL[[WTNL_TZY^ Unsteady Problems Scalar Conservation Laws and Godunov’s Scheme K. …

/centre for analysis, scientific computing and applications

Unsteady Problems

Numerical Scheme for Convection-Diffusion-Reaction Problems1

∂c∂t

+∂

∂x[−D

∂c∂x

+ vc] = S(c), v > 0, D > 0, x ∈ [0, L].

2

cn+1i −∆t/2S(cn+1

i ) = cni −

∆t∆x

[gni+1/2−gn

i−1/2]+∆t/2S(cni ).

wheregn

i+1/2 = vcn+1/2i+1/2 − Dsn

i ,

and sni is again the slope of the local linear recovery.