Top Banner
Satellite Engineering Universidad de Concepción November 2009 Gaëtan Kerschen Space Structures & Systems Lab University of Liège
78

Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

Aug 31, 2018

Download

Documents

nguyencong
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

Satellite EngineeringUniversidad de Concepción

November 2009

Gaëtan Kerschen

Space Structures & Systems LabUniversity of Liège

Page 2: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

Day 3: Satellite Propulsion

Satellite EngineeringUniversidad de Concepción

November 2009

Page 3: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

3

Launch Vehicles

The rest ? Mostly intercontinental ballistic missiles (ICBM)

Page 4: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

4

Launch Vehicle: Order of Magnitudes

90%: propellant

9%: structure

1%: payload

Page 5: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

5

Ascent Propulsion

Ascent propulsion is probably the factor over which a spacecraft designer has the least control.

Rarely is a mission so important that a specific engine or launch vehicle will be designed to fit its needs.

Yet it sets severe limits on payload, mass, volume and configuration !

Page 6: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

6

Satellite Propulsion. Why ?

570 kilograms of propellant on board; the propellant mass is almost half of the overall spacecraft weight !

Venus Express (ESA)

Page 7: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

7

Why ?

Venus Express (ESA)

Major spacecraft manoeuvres, like the injection into orbit around Venus, are performed by firing the main enginewhile minor manoeuvres are made using four pairs of thrusters located at the bottom corners of the spacecraft.

Page 8: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

8

Propulsion for Orbit Transfer

Apogee motor for orbit circularization (Eutelsat)

Page 9: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

9

Propulsion for Orbit Control

A nominal orbit is defined for the satellite. This is the orbit the satellite should maintain.

The orbit is controlled by applying forces to the satellite. Forces are applied by ΔV actuators.

Launch vehicle ~ 106 N, 10 minutes, ΔV~10 km/s

Apogee/perigee motors

~ 104 N, 1 minute, ΔV~2 km/s

Station keeping ~ [10-3 101] N, intermittent, ΔV~0.35 km/s (7 years)

Page 10: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

10

Propulsion for Orbit Control

6 thrusters for orbit control (Meteosat)

Page 11: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

11

Propulsion for Attitude Control

A nominal attitude is defined for the satellite. This is the attitude that the satellite should ideally maintain.

The satellite attitude is controlled by applying torques to the satellite. Torques are applied by attitude actuators.

Page 12: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

12

Attitude Control vs. Orbit Control

How many DOFs does a (rigid) satellite possess ?

Trajectory dynamics ⎯Orbit control

Linear momentum

Motion of the center of mass

Attitude dynamics ⎯Attitude control

Angular momentum

Motion relative to the center of mass

Next lectureFocus in this lecture

Page 13: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

13

Orbit and Attitude Are Interdependent

Examples:

1. In LEO, the attitude will affect the atmospheric drag which will affect the orbit

2. The orbit determines the spacecraft position which determines both the atmospheric density and the magnetic field strength, which will, in turn, affect the attitude

But this dynamic coupling is often ignored, and the time history of the spacecraft position is assumed to be known and to be an input for ADCS

Page 14: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

14

Outline

1. Basics of space propulsion

2. The different engines

3. Orbit transfer

4. Orbit control

5. When propulsion does not suffice

Page 15: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

15

1. Thrust: Theoretical Definition

The objective of a rocket engine is to produce thrust T:

Thrust is the result of all internal and external forces due to pressure and viscous effects developed by the fluid on all components of the engine.

, ,ax viscous int viscous extT pn dS F FΣ

= − −∫Not a helpful definition for a practical measure of thrust !

++

+

+ +

+ +

+

+-

T

Pressure imbalance at the nozzle exit

Page 16: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

16

1. Thrust: Useful Equation

( )ej e a eT mv p p A= + −

Nozzle exit pressureAmbient pressure

(use of momentum balance)

Thrust is greater in a vacuum than at sea level

Page 17: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

17

1. Thrust: Equivalent Exhaust Velocity

( )ej e a e eqT mv p p A mv= + − =

Page 18: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

18

1. Performance Index: Specific Impulse

0

0

( )[ / ]

t

sp eqt

T t dt TI v m smmdt

= ≈ =∫∫

Total impulse of the mission (change in momentum)

Conventional method of comparing propellants: the higher the specific impulse, the less propellant is needed to gain a given amount of momentum.

Page 19: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

19

1. Performance Index: Specific Impulse

0

0 00 0

( )[ ]

t

eqsp t

T t dt vTI sg m gg mdt

= ≈ =∫∫

Advantage of the definition: specific impulse is measured in seconds in any consistent system of units

Page 20: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

20

1. Performance Index: Specific Impulse

Theoretical specific impulse of some propellantsEnergetic oxidizer but very difficult to contain; no practical use so farStorable: liquids at room temperature

LH2+LOX: cryogenics but best performing practical propellants (Ariane V, SSME)

No oxidizer !

Page 21: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

21

1. ΔV Requirement ⎯ ΔV Budget

Thrust is not an essential quantity per se.

One of the main products of the mission design is a statement of the ΔV required for the mission (orbit transfer and orbit control):

ΔV (GTO ⇒ GEO) ≈ 1.5 km/s

In some cases, it is as important as power and mass budgets. For instance, it can be a principal design driver and impose complex trajectories for deep space probes !

Page 22: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

22

1. Tsiolkovsky’s Rocket Equation (1903)

dVT mdt

=

eqT mv= −

( )ln lnf i eq f iv v v m m− = − −

eqdmdV vm

= −

0ln lni ieq sp

f f

m mv v I gm m

⎛ ⎞ ⎛ ⎞Δ = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

Propellant needs

Mission requirement Clear impact

of Isp !

Useful to convert ΔV in terms of propellant needs !

Page 23: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

23

1. But… Coquilhat (1811-1890, Belgian)

Established the rocket equation in 1873 !

Trajectoires des fusées volantesdans le vide, Mémoires de la SociétéRoyale des Sciences de Liège.

Recent “discovery”.

Page 24: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

24

100 101 102 103 10410-4

10-3

10-2

10-1

100

Δ v (m/s)

Δ m

/m

Isp=300s

(1000,0.288)

1. Delta-V: Order of Magnitudes

Page 25: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

25

1. Digression: Single-Stage Rocket

[ ]

100ln ln 5 1.61100 80

5 7 km/s

ej ej ejv v v v⎛ ⎞Δ = = =⎜ ⎟−⎝ ⎠∈ −

80%: fuel

10%: dry mass

10%: payload

Vej = [3-4] km/s

What to conclude ?

Page 26: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

26

Outline

1. Basics of space propulsion

2. The different engines

3. Orbit transfer

4. Orbit control

5. When propulsion does not suffice

Page 27: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit
Page 28: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

28

2. Rocket Engines

Page 29: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

29

2.1 Chemical Engines

Generate thrust by accelerating a high-pressure gas to supersonic velocities in a converging-diverging nozzle.

The high-pressure gas is generated by high-temperature combustion/decomposition of propellants.

Solid, monopropellant and bipropellant systems.

Page 30: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

30

2.1 Chemical Engines: Monopropellant

Hot gases are obtained by decomposition of a single propellant and are expelled through a nozzle generating thrust.

Hydrazine is often used and is injected into a catalyst bed:Exothermic reaction: N2H4 ⇒ H2, N2 and NH3 (ammonia)

Page 31: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

31

2.1 Chemical Engines: Monopropellant

Stored easily (freezing point at 2ºC).

Simplicity (no oxidizer).

Medium performance.

Page 32: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

32

2.1 Chemical Engines: Monopropellant

Astrium CHT 400 N:

Hydrazine

Burn life: 30m

Length: 32cm

Ariane V attitude control system

Astrium CHT 1 N:

Hydrazine

Burn life: 50h

Length: 17cm

Attitude and orbit control of small satellites and deep space probes.

Herschel, Globalstar

Page 33: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

33

2.1 Chemical Engines: Bipropellant

An injector introduces the oxidizer and the fuel into the combustion chamber.

Continuous and rapid combustion then occurs.

Page 34: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

34

2.1 Chemical Engines: Bipropellant

Cryogenics (fluorine, oxygen and hydrogen) have never been used in satellites (storage reasons).

Nitrogen tetroxide (N2O4) and monomethylhydrazine(MMH) is the dominant combination.

Page 35: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

35

2.1 Chemical Engines: Bipropellant

Complexity and cost.

High-performance system.

Wide range of thrust capability.

Versatility (pulsing, restart, variable thrust).

Page 36: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

36

2.1 Chemical Engines: Bipropellant

Astrium S 400 N:

MMH (Fuel), N2O4-MON1-MON3 (Oxidizers)

For apogee orbit injection of GEO satellites and for planetary orbit maneuvers of of deep space probes

Venus Express, Artemis

Astrium S 10 N:

MMH (Fuel) N2O4-MON1-MON3 (Oxidizers)

Attitude and orbit control of large satellites and deep space probes

Venus Express, Arabsat

Page 37: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

37

2.1 Chemical Engines: Solid

The oxidizer and fuel are stored in the combustion chamber as a mechanical mixture in solid form.

When the propellants are ignited, they burn in place.

Page 38: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

38

2.1 Chemical Engines: Solid

Simplicity.

Reasonable performance.

No restart (single burn) ! Useful for orbit insertion or apogee kick motor.

Page 39: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

39

2.1 Chemical Engines: Solid

ATK Star 27 (TE-M-616) 27 kN:

Burn time: 34s

Length: 1.3m

Gross mass: 361 kg

Apogee motor (GOES,GPS)

Page 40: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

40

2.1 Comparison of Chemical Engines

Page 41: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

41

2.2 Electric Engines

Low-thrust propulsion.

Page 42: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

42

2.2 Electric Engines: Ion Engines

A cathode extracts electrons from the propellant which is ionized.

The ions are accelerated by a static electric field.

Propellant: Ar, Xe

Page 43: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

43

2.2 Ion Engine: Deep Space 1 (1998)

Page 44: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

44

2.2 Ion Engine: EADS Astrium

Astrium RITA 150 mN:

Xenon

Beam voltage: 1200V

Burn time: >20000h

Gross mass: 154 kg

Stationkeeping, orbit transfer, deep space trajectories

RITA-10 (Artemis)

Page 45: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

45

2.2 Chemical vs. Electric Engines

Astrium CHT 1N: 210sAstrium CHT 400N: 220s

Astrium S 10N: 291sAstrium S 400N: 318s.

ATK STAR 27: 288s

Astrium RITA-150: 3000-5000s

[Cold gas: ~50s Liquid oxygen/liquid hydrogen 455s ]

Monopropellant

Bipropellant

Solid

Electric

Page 46: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

46RITA, Astrium – The Ion Propulsion System for the Future

2.2 Chemical vs. Electric Engines

Page 47: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

47

Outline

1. Basics of space propulsion

2. The different engines

3. Orbit transfer

4. Orbit control

5. When propulsion does not suffice

Page 48: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

48

3. First Motivation

Without maneuvers, satellites could not go beyond the close vicinity of Earth.

For instance, a GEO spacecraft is usually placed on a transfer orbit (LEO or GTO).

Page 49: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

49

3. From GTO to GEO: One-Impulse

Ariane V is able to place heavy GEO satellites in GTO: perigee: 200-650 km and apogee: ~35786 km.

GTO

GEO

Page 50: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

50

For an orbit with a perigee at 320 km and an apogee at 35786 km, what is the velocity increment required to reach the geostationary orbit ?

24430 km2

a pr ra

+= =

10.13km/spv =

1.61km/sav =

GTO GEO

39800035786 6378

3.07km/s

circv =+

=

Answer: 1.46 km/s (apogee motor)

3. From GTO to GEO: One-Impulse

Page 51: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

51

3. Delta-V Budget: GEO

Page 52: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

52

The transfer between two coplanar circular orbits requires at least two impulses Δv1 and Δv2.

In 1925, Walter Hohmann conjectured that

The minimum-fuel impulsive transfer orbit is the elliptic orbit that is tangent to both orbits at its apse line.

The rigorous demonstration came some 40 years later !

3. Two-Impulse Transfer: Hohmann

Page 53: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

53

1vΔ

2vΔ

1r2r

( )2

11 1 2 1

2v rr r r r

μ μΔ = −

+

( )1

22 1 2 2

2v rr r r r

μ μΔ = − +

+

circvrμ

=2 1

ellipvr a

μ ⎛ ⎞= −⎜ ⎟⎝ ⎠

3. Two-Impulse Transfer: Hohmann

Page 54: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

54

3. Tangential Burns or Not ?

The major drawback to the Hohmann transfer is the long flight time.

Time of flight can be reduced at the expense of an acceptable increase in Δv.

A possible solution is a one-tangent burn. It comprises one tangential burn and one nontangential burn.

Page 55: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

55

3. Tangential Burns or Not ?

Vallado, Fundamental of Astrodynamics and Applications, Kluwer, 2001.

Page 56: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

56

Hohmann for interplanetary transfer

Dep.

Dep.

Dep.

Arr.

Arr.

Arr.

“ΔV1”

“ΔV2”

Page 57: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

57

3. Second Motivation: Plane Change

A launch site location restricts the initial orbit inclination for a satellite.

Which one is correct ? For a direct launch

1. launch site latitude ≤ desired inclination.

2. launch site latitude ≥ desired inclination.

Page 58: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

58

3. Hint

I

K

J

1 1ˆ( ).cos coszhi

h− − ⎛ ⎞×⎛ ⎞= = ⎜ ⎟⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠

r v Kr v

Page 59: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

59

3. Launch Azimuth

0 50 100 150 200 250 300 3500

50

100

150

200

Launch azimuth, degrees

Incl

inat

ion,

deg

rees

Lat 0 degLat 20 degLat 40 degLat 60 deg

Page 60: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

60

3. HST and Cape Canaveral

Hubble orbit inclination is 28.5º

What is the latitude of Kennedy Space Center (Cape Canaveral) ?

Page 61: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

61

3. Inclination Change

Cranking maneuver: with a single Δv maneuver, one wants to change only the inclination of the orbit plane.

Where should we apply this maneuver ?

Page 62: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

62

3. Inclination Change

The two orbit planes intersect in the equatorial plane. We can therefore change the inclination at an equator crossing, by a simple rotation of the velocity vector.

⊥vrv

⊥v

δ

View down the line of intersection of the two orbital planes

Page 63: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

63

3. Delta-V Computation

( )2 1 2 1 2 2 1 1ˆ ˆ ˆr r rv v v v⊥ ⊥ ⊥ ⊥Δ = − = − + −v v v u u u

( )22 2 22 1 1 2 1 12 cosr rv v v v v v v δ⊥ ⊥ ⊥ ⊥Δ = − + + −

1 2 1 2,r rv v v v⊥ ⊥= =

2 sin2

v v δΔ =

Page 64: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

64

3. Inclination Changes Are Expensive

0 10 20 30 40 50 60 70 80 900

0.5

1

1.5

δ, degrees

δ v

(% o

f v)

(24º , 41.6%)

(60º , 100%)

Page 65: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

65

3. Remark: Hubble Servicing

Too costly ! Instead, NASA has chosen to have another shuttle ready to lift off to retrieve the astronauts if needed.

Page 66: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

66

Outline

1. Basics of space propulsion

2. The different engines

3. Orbit transfer

4. Orbit control

5. When propulsion does not suffice

Page 67: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

67

4. First Motivation: Orbit Raising

ISS reboost due to atmospheric drag (ISS, Shuttle, Progress, ATV).

Page 68: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

68

4. Second Motivation: Stationkeeping

A GEO satellite orbit changes over time due to perturbations:

1. Inclination modified by the lunisolar attraction: N/S.

2. The longitude is modified by the tesseral terms of the geopotential: E/W.

Page 69: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

69

4. GEO Satellites: Longitude Drift

C2,2 corresponds to the equatorial ellipticity.

Page 70: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

70

4. GEO Satellites: Stationkeeping Box

A stationkeeping box is defined by a longitude and a maximum authorized distance for satellite excursions in longitude and latitude.

For instance, TC2: -8º ± 0.07º E/W ± 0.05º N/S

Page 71: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

71

4. GEO Satellites: Delta-V Budget

Page 72: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

72

Outline

1. Basics of space propulsion

2. The different engines

3. Orbit transfer

4. Orbit control

5. When propulsion does not suffice

Page 73: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

73

5. How to Go to Saturn ?

VVEJGA

Page 74: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

74

5. Gravity Assist

Also known as planetary flyby trajectory, slingshot maneuver and swingby trajectory.

Useful in interplanetary missions to obtain a velocity change without expending propellant.

This free velocity change is provided by the gravitational field of the flyby planet and can be used to lower the delta-v cost of a mission.

Page 75: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

75

5. Basic Principle

SOI

Planet’s sun relative velocity

Resultant Vin

Resultant Vout

, ,out in∞ ∞= −Δv v v

Page 76: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

76

5. Basic Principle

Inertial frame

Frame attached to the train

Inertial frame

Frame attached to the train

A gravity assists looks like an elastic collision, although there is no physical contact with the planet.

Page 77: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

77

V VE

JS

5. Cassini: Swingby Effects

Page 78: Satellite Engineering - ltas-vis.ulg.ac.be · Satellite Engineering Universidad de Concepción ... and impose complex trajectories for deep space probes ! 22 1. ... For apogee orbit

78

Satellite EngineeringUniversidad de Concepción

November 2009

Day 3: Satellite Propulsion