Top Banner
SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние и перспективы Dr Andrew A. Tronin Dr Andrew A. Tronin Head of department Scientific Research Centre for Scientific Research Centre for Ecological Safety Ecological Safety Russian Academy of Sciences Russian Academy of Sciences 18, Korpusnaya str., St-Petersburg 18, Korpusnaya str., St-Petersburg 197110, Russia 197110, Russia Phone: 7-812-230-78-34 Phone: 7-812-230-78-34 Fax: 7-812-235-43-61 Fax: 7-812-235-43-61 E-mail: E-mail: [email protected] [email protected] http://www.srces.spb.org/tronin/ http://www.srces.spb.org/tronin/
52

SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

Dec 24, 2015

Download

Documents

Clifton Lynch
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK

Космические методы исследования землетрясений. Современное

состояние и перспективы

Dr Andrew A. TroninDr Andrew A. TroninHead of department

Scientific Research Centre for Ecological SafetyScientific Research Centre for Ecological SafetyRussian Academy of SciencesRussian Academy of Sciences

18, Korpusnaya str., St-Petersburg 197110, 18, Korpusnaya str., St-Petersburg 197110, RussiaRussia

Phone: 7-812-230-78-34Phone: 7-812-230-78-34Fax: 7-812-235-43-61Fax: 7-812-235-43-61

E-mail: E-mail: [email protected]@at1895.spb.edu

http://www.srces.spb.org/tronin/seis/seis_index.htmlhttp://www.srces.spb.org/tronin/seis/seis_index.html

Page 2: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

Presentation Outline

IGOS - Geohazard - an IGOS - Geohazard - an Integrated Global Integrated Global

Observing Strategy for the monitoring of our Observing Strategy for the monitoring of our

Environment from Earth and SpaceEnvironment from Earth and Space

Earthquake Earthquake researchresearch - s - satellite applications atellite applications - -

current positioncurrent position

Earthquakes - sEarthquakes - satellite applications atellite applications - future- future

Page 3: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

IGOS - Geohazard UNESCO initiative - an Integrated Global Observing Strategy for the monitoring of our Environment from Earth and Space

USERS: International Bodies - UNESCO, ICSU, IUGS, GARS Space Agencies - ESA, NASA, JAXA Geological Surveys - USGS, British, French, German Civil Protection Agencies Reserch institutes and Universities Privat sector

GEOHAZARDS: earthquakes, volcano, ground instability (landslides, subsidences, lahars)

Page 4: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

Strategic Context Geohazards take an increasing toll of lives, disrupt Geohazards take an increasing toll of lives, disrupt

livelihoods and cost more more money each yearlivelihoods and cost more more money each yearUNEP figures: thousands of deaths a yearUNEP figures: thousands of deaths a yearGeological survey figures: millions of dollarsGeological survey figures: millions of dollars

This global problem requires integrated, strategic This global problem requires integrated, strategic solutions and long term continuity of observationsolutions and long term continuity of observation

UNEP/GRIDUNEP/GRID

Map showing the Map showing the probability of an probability of an

earthquake of a earthquake of a magnitude more than magnitude more than

5.4 on the Richter 5.4 on the Richter scale occurring within scale occurring within

200km of a location200km of a location

IGOS - Geohazard

Page 5: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

Human and economy lostIGOS - Geohazard

Page 6: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

Date Location Deaths M CommentsJanuary 23, 1556 China, Shansi 830,000July 27, 1976 China, Tangshan 255,000 (official) 8 Estimated death toll as high as 655,000.August 9, 1138 Syria, Aleppo 230,000May 22, 1927 China, near Xining 200,000 8.3 Large fractures.December 22, 856 Iran, Damghan 200,000December 16, 1920 China, Gansu 200,000 8.6 Major fractures, landslides.March 23, 893 Iran, Ardabil 150,000September 1, 1923 Japan, Kwanto 143,000 8.3 Great Tokyo fire.October 5, 1948 USSR (Turkmenistan, Ashgabat) 110,000 7.3December 28, 1908 Italy, Messina 70,000 to 100,000 7.5 Deaths from earthquake and tsunami.September, 1290 China, Chihli 100,000November, 1667 Caucasia, Shemakha 80,000November 18, 1727 Iran, Tabriz 77,000November 1, 1755 Portugal, Lisbon 70,000 8.7 Great tsunami.December 25, 1932 China, Gansu 70,000 7.6May 31, 1970 Peru 66,000 7.8 Great rock slide, floods.1268 Asia Minor, Silicia 60,000January 11, 1693 Italy, Sicily 60,000May 30, 1935 Pakistan, Quetta 30,000 to 60,000 7.5 Quetta almost completely destroyed.February 4, 1783 Italy, Calabria 50,000June 20, 1990 Iran 50,000 7.7 Landslides.

Most destructive known earthquakes in the World

IGOS - Geohazard

Page 7: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

Date Location Latitude Longitude Deaths M CommentsFeb 04, 1998 Afghanistan-

TajikistanBorderRegion

37.1 N 70.1 E 2,323 6.1 818 injured, 8,094 houses destroyed, 6,725livestock killed.

May 30, 1998 Afghanistan-Tajikistan

Border

37.1 N 70.1 E 4,000 6.9 Many thousands injured and homeless.

Jul 17, 1998 Papua NewGuinea,Near N.Coast

2.96 S 141.9 E 2,183 7.1 Thousands injured, about 9,500 homeless andabout 500 missing as a result of a tsunami withmaximum wave heights estimated at 10 meters.

Jan 25, 1999 Colombia 4.46 N 75.82 W 1,185 6.3 Over 700 missing and presumed killed, over 4,750injured and about 250,000 homeless.

Aug 17, 1999 Turkey 40.7 N 30.0 E 17,118 7.4 At least 50,000 injured, thousands homeless.Damage estimate at 3 to 6.5 billion USD.

Sep 20, 1999 Taiwan 23.7 N 121.0 E 2,297 7.6 Over 8,700 injured, over 600,000 homeless.Damage estimate at 14 billion USD.

Jan 26, 2001 India 23.3 N 70.3 E 19,988 7.7 166,812 injured, 600,000 homeless.

Earthquakes with 1,000 or more deaths from 1998 to 2001

IGOS - Geohazard

Page 8: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

Earthquake research - current position Ground deformation - Ground deformation - SAR interferometry, GPSSAR interferometry, GPS

Surface temperature - Surface temperature - thermal IRthermal IR

Ionospheric disturbances - Ionospheric disturbances - ionosperic EM ionosperic EM observations, GPSobservations, GPS

Ionospheric oxygen luminescence - Ionospheric oxygen luminescence - ??????

Gas emission - Gas emission - gas mappergas mapper

Near-surface aerosol - Near-surface aerosol - aerosol mapperaerosol mapper

Temperature, pressure, humidity - Temperature, pressure, humidity - Vertical Vertical atmospheric soundingatmospheric sounding

Clouds - Clouds - visible&IR observationsvisible&IR observations

Page 9: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

Observed coseismic interferogram for the Landers earthquake (M=7.3, 28 June 1992, California, USA). One cycle of color represents 28 mm of change in range. Black segments depict the fault geometry as mapped in the field. The image covers a 90-by-110-km area from April 24 to August 7, 1992.

SAR InterferometrySatellite observations

First SAR Interferometry image - Landers earthquake, 28.06.92

Page 10: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

SAR InterferometrySatellite observations

InSAR - Hector Mine Earthquake, M=7.1, 16.10.99

Page 11: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

Basic imaging geometry for SAR interferometry. A1 and A2 represent two antennas viewing the same surface simultaneously, or a single antenna viewing the same surface on two separate passes. z (y) = h - cos

SAR InterferometryTheory

Page 12: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

Radar satellite data

Satellite Wavelenght,cm

Revisitfrequency, days

ERS 6 35

JERS 24 44

RADARSAT 6 27

SAR InterferometrySatellite observations

Page 13: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

Data collection for test sites with maximum Data collection for test sites with maximum repetition (every 35 days for ERS)repetition (every 35 days for ERS)

Interferometry image calculationInterferometry image calculation Displacement calculationDisplacement calculation Relation with groung observation (GPS and Relation with groung observation (GPS and

VLBI)VLBI)

InSAR data processing

Page 14: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

Kanto earthquake (Tokyo) 1.09.1923, M=8.2

Page 15: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

Horizontal ground displacement after the Tokyo earthquake, 1 Sep 1923, M=8.2. On the base of geodetic observations before and after the shock.

SAR InterferometryGround data

Page 16: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

Mantle convection theory, continent drift Mantle convection theory, continent drift theory, as a base of horizontal and theory, as a base of horizontal and vertical movement of the earth surface.vertical movement of the earth surface.

Earthquake mechanism theories: Earthquake mechanism theories: dilatancy theory, elastic rebound theory.dilatancy theory, elastic rebound theory.

Strong motion after the shock.Strong motion after the shock.

Surface displacement for radar data

SAR InterferometryTheory

Page 17: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

The model of ground displacement: a - dilatancy model; b - elastic rebound theory. 1- stress, 2- cleavage stress.

SAR InterferometryTheory

Page 18: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

Model of ground displacement due to hydrothermal fluids fluxes from magma reservoir.

Magma reservoir can be change to earthquake hypocenter.

SAR InterferometryTheory

Page 19: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

Vertical ground displacement in Kakegawa - 200 km from the epicenter of Tonankay earthquake, Japan, 7 Dec 1944, M=8.3 a few days before and after the shock. On the base of precise leveling in Kakegawa. 1,2,3 - different profiles, arrow- the moment of earthquake

SAR InterferometryGround data

Page 20: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

Example of thermal anomalies in Central Asia. The most outstanding IR anomalies are represented by Gazli earthquake March 19, 1984 (M=7.2). Thermal IR image of 11.03.1984, one week before the earthquake - 19.03.1984 (M=7.2). At the point of the intersection of the Tamdy-Tokraus and Karatau faults there was detected on March 11 a positive IR anomaly of exceptional intensity and enormous area. The area of anomaly exceed 100 000 km2. Arrow shows thermal anomaly, cross is on the site of the Gazli earthquake epicentre.

Thermal IRSatellite observations

Page 21: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

Thermal data scientific background Thermodynamic and tension models Thermodynamic and tension models Thermal measurement field campaigns Thermal measurement field campaigns Associated earthquakes phenomenaAssociated earthquakes phenomena

the increase in the concentration of greenhouse gases the increase in the concentration of greenhouse gases like methane and carbon dioxidelike methane and carbon dioxide

local disturbances in the natural electric field of the local disturbances in the natural electric field of the atmosphere atmosphere

pre-seismic alterations of soil characteristics, including pre-seismic alterations of soil characteristics, including soil moisture and gas content or compositionsoil moisture and gas content or composition..

surface and near surface temperature changes prior to surface and near surface temperature changes prior to Earth's crust earthquakes.Earth's crust earthquakes.

hydrodynamics and temperature of water discharges hydrodynamics and temperature of water discharges changeschanges

Thermal IRTheory

Page 22: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

Satellite Groundresolution, m

Revisitfrequency

Geostationarysatellites

5000 1 hour

NOAA 1100 1 day

EOS(MODIS)

1000 1-2 days

ASTER 90 14 days

Satellite sources - thermal data

Thermal IRSatellite observations

Page 23: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

Thermal IRSatellite observations

Example of thermal IR data application, Siberia EQ, 27.09.03

1 - 01/09/03 M=6; 2 - 26/09/03 M=5.20; 27/09/03 M=7.5; 01/10/03 M=7.1

Page 24: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

Thermal IRSatellite observations

Example of thermal IR data application, Siberia EQ, 27.09.03

28 Sep 2003

23 Sep 2003

25 Sep 2003

18 Sep 2003

Page 25: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

Thermal IRSatellite observations

21 430

20000

40000

60000

80000

100000

120000

30-A

ug

01-S

ep

03-S

ep

05-S

ep

07-S

ep

09-S

ep

11-S

ep

13-S

ep

15-S

ep

17-S

ep

19-S

ep

21-S

ep

23-S

ep

25-S

ep

27-S

ep

29-S

ep

01-O

ct

03-O

ct

05-O

ct

07-O

ct

Date

Area, km2

0

1

2

3

4

30-A

ug

01-S

ep

03-S

ep

05-S

ep

07-S

ep

09-S

ep

11-S

ep

13-S

ep

15-S

ep

17-S

ep

19-S

ep

21-S

ep

23-S

ep

25-S

ep

27-S

ep

29-S

ep

01-O

ct

03-O

ct

05-O

ct

07-O

ct

Date

Anomaly temperature, C

Example of thermal IR data application, Siberia EQ, 27.09.03

Page 26: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

Example of EM anomalies in ionosphere. Electron temperature (Te) and ion density (Ni) of the ionosphere days around the earthquake (30 Dec 1989, M=7.0, Bismarck Sea, 3.4S, 146.0E)

Ionospheric EM observationsSatellite observations

Page 27: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

Ionospheric EM observationsTheory

The sketch of various EM observations and EM signal generation mechanisms

Page 28: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

Kobe earthquake (Japan) 16.01.1995, M=6.8

http://www.eqe.com

Page 29: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

Example of subionospheric VLF/LF propagation in detecting seismo-ionospheric perturbations. Diurnal variation of phase measurement at Inubo-Tsushima Omega transmission (f=10.2kHz) just around Kobe earthquake 17 Jan 1995. Significant change in terminator time.

Ground data Ionospheric EM observations

Page 30: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

Temporal evolution of terminator time differences t (in hours) from the monthly average values for phase (a) and amplitude (b). Kobe earthquake 17 Jan 1995

Ionospheric EM observationsGround data

Page 31: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

QuakeSat is a very small satellite, 4”x4”x12”, that was launched on June 30, 2003, and will provide a “proof-of-concept” for collecting ELF earthquake precursor signals from space.

Ionospheric EM observationsSatellite observations

QuakeSat

Page 32: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

Satellite gas observation

O3, CH4, CO2, CO, Rn, H2S, SO2, HCl

Ionospheric oxygen luminescence

E - layer of ionosphere (85-110 km), 5577A and 6300A

Near-surface aerosol

Only ground observations now

Vertical atmospheric sounding (temperature, pressure, humidity)

High humidity and temperature near surface and at 12-15 km

Clouds

What to measure?

Page 33: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

Spitak earthquake (Armenia) 7.12.1988, M=6.8

http://www.hleb.net/armenia/internet/index.html

Page 34: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

TOTAL OZON CONTENT, SPITAK EQ: 7.12.1988, 40.99N, 44.19E, h=5, M=7.0

240

260

280

300

320

340

360

380

400

01-1

1-88

08-1

1-88

15-1

1-88

22-1

1-88

29-1

1-88

06-1

2-88

13-1

2-88

20-1

2-88

DU

Satellite observations Ozone

Page 35: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

Kobe earthquake (Japan) 16.01.1995, M=6.8,vertical clouds

Ground data Clouds

Page 36: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

Linear cloud directed to epicentre, Kanto area,

Japan, earthquake and image: 21 May 1979, Landsat-2,

CloudsSatellite observations

Page 37: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

Izmit case

Turkey Turkey

17 August 1999 17 August 1999

M=7.8M=7.8

Page 38: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

Tectonic structure of Izmit earthquake region

Sismosat project

Page 39: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

Izmit earthquake (Turkey) 17.08.1999, M=7.8

http://www.eqe.com

Page 40: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

Contours of ground displacement in Izmit earthquake (17 Aug 1999, M=7.4) superimposed on Landsat TM image.The interferometric image was compiled on the base of two images: 13 Aug 1999 and 17 Sep 1999. We need pair 1998 - 13 Aug 1999.

SAR InterferometrySatellite observations

Page 41: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

6 of August7 of August

8 of August 9 of August

Thermal anomalies (reference image 1&2 August)

Sismosat project

Satellite observations Thermal IR

Page 42: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

11 of August 15 of August

16 of August 17 of August

Thermal anomalies (reference image 1&2 August)

Sismosat project

Satellite observations Thermal IR

Page 43: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

18 of August 26 of August

Thermal anomalies (reference image 1&2 August)

Sismosat project

Satellite observations Thermal IR

Page 44: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

Ground temperature at the epicenter of Izmit earthquake 17.08.99, M=7.8.

Thermal IRSatellite observations

Page 45: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

Air temperature at the epicenter of Izmit earthquake 17.08.99, M=7.8Meteorological observations

Ground data Thermal IR

Page 46: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

TOTAL OZON CONTENT, IZMIT EQ: 17.08.1999, 40.75N, 29.86E, h=17, M=7.8

270275280285290295300305310315320325

01.0

7.99

08.0

7.99

15.0

7.99

22.0

7.99

29.0

7.99

05.0

8.99

12.0

8.99

19.0

8.99

26.0

8.99

DU

Satellite observations Ozone

Page 47: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

User Needs Common questions are:Common questions are:

What will happen? How?What will happen? How?Where? Over what area?Where? Over what area?When? For how long?When? For how long?

Basic user needs are shared:Basic user needs are shared:Baseline hazard inventory Baseline hazard inventory Ongoing monitoring of a Ongoing monitoring of a

hazard against baselinehazard against baselineRapid information supply Rapid information supply

during a crisisduring a crisis Three types of users each Three types of users each

have specific needs that are have specific needs that are detailed in full in the reportdetailed in full in the report

Page 48: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

Parameters to measure

Parameters Magnitude Area

Ground displacement before theshock

0.1*n-n cm <200 km

Allweather surface temperature 3-5 K <1000 km

Ion density and temperature inF-layer, 180-300 km

? n*1000 km

Gas concentration, what gas ? ?

Oxygen luminescence ? n*100 km

Atmospheric temperature,pressure and humidity

? <200 km

Aerosol ? <200 km

Page 49: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

Satellite observations In-situ observations

Ground displacement before theshock

Tilt, strain, GPS, water level

Allweather surface temperature Meteorological observations

Ion density and temperature inF-layer, 180-300 km

EM ground observations

Gas concentration Gas concentration

Oxygen luminescence Oxygen luminescence

Atmospheric temperature,pressure and humidity

Meteorological observations

Aerosol Aerosol

Satellite and In-situ observations

Page 50: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

Future needsParameter Solution

Ground displacement SAR system with revisit time ~ 1-5 days, groundresoultion 50-200 m, displacement precision ~mm -1-2 cm (Cosmo-SkyMed, TerraSAR)

Surface temperature Microwave&IR system with resolution ~ 1 km,revisit time ~ 1-2 days, NEdT ~ 0.5 K

Ion density andtemperature

DEMETER , QuakeSat (30.06.2003),VOLCANO, ESPERIA

Gas concentration We have to test current systems: TOMS, GOMS,GOMOS, SCIAMACHY etc.

Oxygen luminescence Have we get current systems to measure radiationat 5577A and 6300A ?

Atmospheric T, P andhumidity

We have to test current systems: TOVS andothers.

Aerosol How to measure aerosol near the surface?

Page 51: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

Current and future InSAR missions

Page 52: SATELLITE EARTHQUAKE RESEARCH STATE OF ART AND OUTLOOK Космические методы исследования землетрясений. Современное состояние

Strategy

science issue - litho-atmospheric coupling and surface deformation organisation issue: - international cooperation

- national projects observations:- thermal IR, ozone and ionosphere observation operational phase- aerosole and meteo observations research phase- gas concentrations, oxygen luminescence, clouds case stady device:- SAR Interferometry - microvawe systems- aerosol - lidar?- ionopheric satellites