Top Banner
SAP beyond STIRAP: interactions, higher dimensions and shortcuts Albert Benseny Quantum Systems Unit Okinawa Institute of Science and Technology
43

SAP beyond STIRAP: interactions, higher · SAP beyond STIRAP: interactions, higher dimensions and shortcuts Albert Benseny Quantum Systems Unit Okinawa Institute of Science and Technology.

Jan 29, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: SAP beyond STIRAP: interactions, higher · SAP beyond STIRAP: interactions, higher dimensions and shortcuts Albert Benseny Quantum Systems Unit Okinawa Institute of Science and Technology.

SAP beyond STIRAP: interactions, higher

dimensions and shortcuts

Albert BensenyQuantum Systems Unit

Okinawa Institute of Science and Technology

Page 2: SAP beyond STIRAP: interactions, higher · SAP beyond STIRAP: interactions, higher dimensions and shortcuts Albert Benseny Quantum Systems Unit Okinawa Institute of Science and Technology.

Outline

• S'up with SAP? Transport in a triple well

• SAP processes for two interacting particles

• Quantum engineering: particle separation

• Speeding up spatial adiabatic passage

Page 3: SAP beyond STIRAP: interactions, higher · SAP beyond STIRAP: interactions, higher dimensions and shortcuts Albert Benseny Quantum Systems Unit Okinawa Institute of Science and Technology.

Spatial adiabatic

passage in a triple well

Page 4: SAP beyond STIRAP: interactions, higher · SAP beyond STIRAP: interactions, higher dimensions and shortcuts Albert Benseny Quantum Systems Unit Okinawa Institute of Science and Technology.

• The 3L Hamiltonian has an eigenstate connecting 1 and 3

• This gives us an adiabatic transport process (~STIRAP)

SAP in a triple well

H3L =~

2

0 Ω12 0

Ω12 0 Ω23

0 Ω23 0

|1i |2i |3i

|1i

|2i

|3i

|Di = cos θ|1i − sin θ|3i

tan θ =Ω12

Ω23

|Di : |1i ! |3iθ : 0 ! π/2Ω : Ω23 # Ω12 ! Ω12 # Ω23

counterintuitive

tunneling

sequence

|1i |2i |3iΩ23Ω12

Page 5: SAP beyond STIRAP: interactions, higher · SAP beyond STIRAP: interactions, higher dimensions and shortcuts Albert Benseny Quantum Systems Unit Okinawa Institute of Science and Technology.

SAP in a triple well

−10

−5

0

5

10

−0.2

−0.1

0

0.1

0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

dj

(a)

Energy (b)

t/T

|⟨j|D⟩|2 (c)

Trap movement

Energy spectrum

Dark state

Ω23 ! Ω12 Ω12 ! Ω23

Page 6: SAP beyond STIRAP: interactions, higher · SAP beyond STIRAP: interactions, higher dimensions and shortcuts Albert Benseny Quantum Systems Unit Okinawa Institute of Science and Technology.

SAP processes of

interacting particles

Phys Rev A 93, 033629 (2016)

Page 7: SAP beyond STIRAP: interactions, higher · SAP beyond STIRAP: interactions, higher dimensions and shortcuts Albert Benseny Quantum Systems Unit Okinawa Institute of Science and Technology.

drawing: Ayaka Usui

Page 8: SAP beyond STIRAP: interactions, higher · SAP beyond STIRAP: interactions, higher dimensions and shortcuts Albert Benseny Quantum Systems Unit Okinawa Institute of Science and Technology.

Two atoms in a triple well

• Hamiltonian for two atoms

• Initial and final states: two atoms in a harmonic trap

[Busch et al, Found Phys 28, 549 (1998)]

H = −

1

2

∂2

∂x2

1

+ V (x1, t)−1

2

∂2

∂x2

2

+ V (x2, t) + gδ(x1 − x2)

|Li |Ri

g = −

2√

2Γ(1− Eg/2)

Γ((1− Eg)/2),

(~ = ω = m = 1)

0 ≤ g < ∞

1 ≤ Eg ≤ 2

non-interacting

case

Tonks-Girardeau

regime

Page 9: SAP beyond STIRAP: interactions, higher · SAP beyond STIRAP: interactions, higher dimensions and shortcuts Albert Benseny Quantum Systems Unit Okinawa Institute of Science and Technology.

Two atoms in three traps: states

• Atoms in different sites

• Atoms in the same site

• Atoms in different sites and levels

• Resonance is no longer guaranteed… Will SAP still work?

E ~ 1

E ~ Eg

E ~ 2

Page 10: SAP beyond STIRAP: interactions, higher · SAP beyond STIRAP: interactions, higher dimensions and shortcuts Albert Benseny Quantum Systems Unit Okinawa Institute of Science and Technology.

0

0.2

0.4

0.6

0.8

1

1 1.2 1.4 1.6 1.8 2

T = 4000

T = 12000

Eg

F

• Single particle SAP [Eckert et al, PRA 70, 023606 (2004)]

• Atoms fermionize and are in different states

[Loiko et al., PRA 83, 033629 (2011)]

• Large plateau where F = 1!

Fidelity of 2-particle SAP

Simulations of

TDSE with

exact 1D

Hamiltonian

Page 11: SAP beyond STIRAP: interactions, higher · SAP beyond STIRAP: interactions, higher dimensions and shortcuts Albert Benseny Quantum Systems Unit Okinawa Institute of Science and Technology.

At weak interactions

• Bose-Hubbard model for the lowest Bloch band

HB =X

j=L,M,R

U

2nj(nj − 1) + 0nj

]

+h

ΩLMb†LbM +ΩMRb

†MbR +Ω

(co)LM b

†2L b

2M +Ω

(co)MR b

†2Mb

2R + h.c.

i

interactions

ground state energy = 1/2

two-particle

co-tunneling

single-particle

tunneling

Page 12: SAP beyond STIRAP: interactions, higher · SAP beyond STIRAP: interactions, higher dimensions and shortcuts Albert Benseny Quantum Systems Unit Okinawa Institute of Science and Technology.

At weak interactions

0

0.2

0.4

0.6

0.8

1

1 1.2 1.4 1.6 1.8 2

T = 4000

T = 12000

Eg

F

8 0.2 0.4 0.6 0.8

Eg = 1.25

t/T

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0.8

1

1.2

1.4

0

0.2

0.4

0.6

0.8

1

0

Energy

Energy

|⟨nj|D

⟩|2

The process works if the

interaction is strong enough

to separate the bands

Page 13: SAP beyond STIRAP: interactions, higher · SAP beyond STIRAP: interactions, higher dimensions and shortcuts Albert Benseny Quantum Systems Unit Okinawa Institute of Science and Technology.

At weak interactions

0

0.2

0.4

0.6

0.8

1

1 1.2 1.4 1.6 1.8 2

T = 4000

T = 12000

Eg

F

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0.8

1

1.2

1.4

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Eg = 1.05

Energy

Eg = 1.25

Energy

t/T

|⟨nj|D

⟩|2

t/T

The process works if the

interaction is strong enough

to separate the bands

Page 14: SAP beyond STIRAP: interactions, higher · SAP beyond STIRAP: interactions, higher dimensions and shortcuts Albert Benseny Quantum Systems Unit Okinawa Institute of Science and Technology.

At strong interactions

• Attractive Fermi-Hubbard Hamiltonian (lowest two bands)

HF =X

j=L,M,R

"

Unj0nj1 +X

i=01

inji

#

+

+X

i=0,1

h

Ω(i)LMa

†LiaMi +Ω

(i)MRa

†MiaRi + h.c.

i

+Ω(co)LM a

†L0a

†L1aM0aM1 +Ω

(co)MRa

†M0a

†M1aR0aR1 + h.c.

interactions

two-particle

co-tunneling

single-particle

tunneling

1/2 or 3/2

Page 15: SAP beyond STIRAP: interactions, higher · SAP beyond STIRAP: interactions, higher dimensions and shortcuts Albert Benseny Quantum Systems Unit Okinawa Institute of Science and Technology.

At strong interactions

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

1.4

1.6

1.8

2

2.2

2.4

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Eg = 1.6

Energy

Eg = 1.85

Energy

t/T

|⟨nji|D

⟩|2

t/T

0

0.2

0.4

0.6

0.8

1

1 1.2 1.4 1.6 1.8 2

T = 4000

T = 12000

Eg

F

If the interaction is not strong enough,

the bands stay separated.

But... doesn't it stop too early?

Page 16: SAP beyond STIRAP: interactions, higher · SAP beyond STIRAP: interactions, higher dimensions and shortcuts Albert Benseny Quantum Systems Unit Okinawa Institute of Science and Technology.

Level crossings in the dark-state

1.235

1.24

0.32 0.33 0.34

Eg = 1.25

(b)

8 0.2 0.4 0.6 0.8

t/T

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Energy

0.2 0.4 0.6 0.8 0

t/T

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

1.57

1.58

0.39 0.4 0.41

Eg = 1.6

Energy

(a)

0

0.2

0.4

0.6

0.8

1

1 1.2 1.4 1.6 1.8 2

T = 4000

T = 12000

Eg

F

Depending on how we

take these crossings,

SAP may fail...

Page 17: SAP beyond STIRAP: interactions, higher · SAP beyond STIRAP: interactions, higher dimensions and shortcuts Albert Benseny Quantum Systems Unit Okinawa Institute of Science and Technology.

Level crossings

0.2 0.4 0.6 0.8 0

t/T

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

1.57

1.58

0.39 0.4 0.41

Eg = 1.6

Energy

(a)

103

106

109

1012

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0

0.2

0.4

0.6

0.8

1

adiabatic

diabatic

T

Eg

pi→j '

R tf

t0hj(t)| d

dt|i(t)ie

iR

t

t0(Ej(τ)−Ei(τ))dτdt

2

R tf

t0hj(t)| d

dt|i(t)idt

2 ,

Transition probability at the crossing

0

0.2

0.4

0.6

0.8

1

1 1.2 1.4 1.6 1.8 2

T = 4000

T = 12000

Eg

F

dia

batic

ad

iab

atic

Page 18: SAP beyond STIRAP: interactions, higher · SAP beyond STIRAP: interactions, higher dimensions and shortcuts Albert Benseny Quantum Systems Unit Okinawa Institute of Science and Technology.

Cotunnelling

HB =X

j=L,M,R

U

2nj(nj − 1) + 0nj

]

+h

ΩLMb†LbM +ΩMRb

†MbR +Ω

(co)LM b

†2L b

2M +Ω

(co)MR b

†2Mb

2R + h.c.

i

0.8

1

1.2

1.4

0.2 0.4 0.6 0.80.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

t/T

Energy

(a)

t/T

(b)

t/T

(c)

exact with CT without CT

dark state exists

0

0.2

0.4

0.6

0.8

1

0

|⟨nj|ψ

(t)⟩|2

80.2 0.4 0.6 0.8 0

t/T

(e)

dark state

does not exist

80.2 0.4 0.6 0.8 0

t/T

(e)

0

0.2

0.4

0.6

0.8

1

|⟨nj|ψ

(t)⟩|2

Page 19: SAP beyond STIRAP: interactions, higher · SAP beyond STIRAP: interactions, higher dimensions and shortcuts Albert Benseny Quantum Systems Unit Okinawa Institute of Science and Technology.

State engineering

• We have used SAP to transport a pair of particles, and any

single particle process can also be used.

• It is very simple to create a NOON state by just doing half the

transport.

• What about separating the particle pair...

Page 20: SAP beyond STIRAP: interactions, higher · SAP beyond STIRAP: interactions, higher dimensions and shortcuts Albert Benseny Quantum Systems Unit Okinawa Institute of Science and Technology.

Quantum engineering:

particle separation

(work in progress)

Page 21: SAP beyond STIRAP: interactions, higher · SAP beyond STIRAP: interactions, higher dimensions and shortcuts Albert Benseny Quantum Systems Unit Okinawa Institute of Science and Technology.

1

Quantum particle

dispenser

Irin

a R

eshod

ko

...

Page 22: SAP beyond STIRAP: interactions, higher · SAP beyond STIRAP: interactions, higher dimensions and shortcuts Albert Benseny Quantum Systems Unit Okinawa Institute of Science and Technology.

We need to allow the bands

to “talk to each other”

Particle separation

Eg = 1.25

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Energy

8 0.2 0.4 0.6 0.8

t/T

Page 23: SAP beyond STIRAP: interactions, higher · SAP beyond STIRAP: interactions, higher dimensions and shortcuts Albert Benseny Quantum Systems Unit Okinawa Institute of Science and Technology.

Finding the optimal lift

• The lift will depend on the interaction, and its optimal value is

not obvious.

• We numerically find the optimal value of the lift for a few

values of Eg and interpolate over those

Lmax

Eg = 1.4

Page 24: SAP beyond STIRAP: interactions, higher · SAP beyond STIRAP: interactions, higher dimensions and shortcuts Albert Benseny Quantum Systems Unit Okinawa Institute of Science and Technology.

Particle separation fidelity

Page 25: SAP beyond STIRAP: interactions, higher · SAP beyond STIRAP: interactions, higher dimensions and shortcuts Albert Benseny Quantum Systems Unit Okinawa Institute of Science and Technology.

Particle separation spectrum

Page 26: SAP beyond STIRAP: interactions, higher · SAP beyond STIRAP: interactions, higher dimensions and shortcuts Albert Benseny Quantum Systems Unit Okinawa Institute of Science and Technology.

Separating 3 particles

2-particle ground state energy

more bands:

harder...

Page 27: SAP beyond STIRAP: interactions, higher · SAP beyond STIRAP: interactions, higher dimensions and shortcuts Albert Benseny Quantum Systems Unit Okinawa Institute of Science and Technology.

• Experimentally-realistic systems have already been proposed

for SAP [Morgan et al, PRA 85, 039904 (2012)]

Radio-frequency traps

ω0.2 0.4 0.6 0.8 1.0

000

000

000

×106

/

1

0.8

0.6

0.4

ω(M

Hz)

t/T

Page 28: SAP beyond STIRAP: interactions, higher · SAP beyond STIRAP: interactions, higher dimensions and shortcuts Albert Benseny Quantum Systems Unit Okinawa Institute of Science and Technology.

Separation fidelity in RF traps

Page 29: SAP beyond STIRAP: interactions, higher · SAP beyond STIRAP: interactions, higher dimensions and shortcuts Albert Benseny Quantum Systems Unit Okinawa Institute of Science and Technology.

Speeding up SAP

‸+Andreas Ruschhaupt

+Anthony Kiely

(work in progress)

Page 30: SAP beyond STIRAP: interactions, higher · SAP beyond STIRAP: interactions, higher dimensions and shortcuts Albert Benseny Quantum Systems Unit Okinawa Institute of Science and Technology.

Shortcuts to adiabaticity

• Transitionless quantum driving: Add terms to Hamiltonian to

compensate for non-adiabatic excitations

• For the SAP/STIRAP case...

this is

[Rice+Demirplak J Phys Chem A 107, 9937 (2003)]

[Chen et al, Phys. Rev. Lett. 105, 123003 (2010)]

H = H0 +H1

H0(t) =~

2

0 Ω12(t) 0Ω12(t) 0 Ω23(t)

0 Ω23(t) 0

H1 = i~

X

n

(|∂tλnihλn| − hλn|∂tλni|λnihλn|)

Page 31: SAP beyond STIRAP: interactions, higher · SAP beyond STIRAP: interactions, higher dimensions and shortcuts Albert Benseny Quantum Systems Unit Okinawa Institute of Science and Technology.

Creating the new coupling

• Break symmetry for additional coupling!

• This additional coupling can be used in SAP to create states

with angular momentum or design an interferometer

[Menchon-Enrich et al, PRA 89, 013626 (2014), PRA 89,

053611 (2014)].

Ω12

1

2 3Ω23

Ω31

Page 32: SAP beyond STIRAP: interactions, higher · SAP beyond STIRAP: interactions, higher dimensions and shortcuts Albert Benseny Quantum Systems Unit Okinawa Institute of Science and Technology.

Creating the new coupling

• We have the 1-3 coupling, but the shortcut Hamiltonian is

imaginary!

• Couplings are usually real as eigenstates are (usually) real:

• Aharonov-Bohm effect: a charged particle in a magnetic field

acquires a geometric phase when moving between points

32

1

H(t) =~

2

0 Ω12(t) iΩ13(t)Ω12(t) 0 Ω23(t)

−iΩ13(t) Ω23(t) 0

Ω13 h1|H|3i

φij =q

~

Z ~rj

~ri

~A · d~l

trap positions

vector potential

idea! add a geometric phase

Page 33: SAP beyond STIRAP: interactions, higher · SAP beyond STIRAP: interactions, higher dimensions and shortcuts Albert Benseny Quantum Systems Unit Okinawa Institute of Science and Technology.

Geometric phase: the hard way

• The Aharonov-Bohm phases give us the Hamiltonian

• what we want

• apply a field magnetic such that

but this requires a field with a very specific spatial profile:

very hard!

HAB = −~

2

0 Ω12e−iφ12 Ω13e

iφ31

Ω12eiφ12 0 Ω23e

−iφ23

Ω13e−iφ31 Ω23e

iφ23 0

φ12 = φ23 = 0 φ31 = −π/2

H = H0 +H1 = −~

2

0 Ω12 −iΩ13

Ω12 0 Ω23

iΩ13 Ω23 0

|1i

|2i |3i

|1i

|2i |3i

Page 34: SAP beyond STIRAP: interactions, higher · SAP beyond STIRAP: interactions, higher dimensions and shortcuts Albert Benseny Quantum Systems Unit Okinawa Institute of Science and Technology.

Geometric phase: the easy way

• Change basis using only local phases

we get

• We only need a total phase in the closed loop

this can be achieved with an

homogeneous magnetic field:

H0

AB = UHABU−1

= −

~

2

0 Ω12 Ω31eiΦ

Ω12 0 Ω23

Ω31e−iΦ Ω23 0

U =

ei

2(φ12+φ23) 0 0

0 ei

2(−φ12+φ23) 0

0 0 e−

i

2(φ12+φ23)

ΦB =

I~A · d~l =

ZZ~B · d~S = −

~

2q

Φ = φ12 + φ23 + φ31 = −π/2

|1i

|2i |3i

q

Page 35: SAP beyond STIRAP: interactions, higher · SAP beyond STIRAP: interactions, higher dimensions and shortcuts Albert Benseny Quantum Systems Unit Okinawa Institute of Science and Technology.

• Shortcut pulse is a π pulse:

Why the i ?

|1i

|2i |3i

q

SAP

shortcut

for constructive

interference....

Ω12

Ω23

Ω31

t/T

Page 36: SAP beyond STIRAP: interactions, higher · SAP beyond STIRAP: interactions, higher dimensions and shortcuts Albert Benseny Quantum Systems Unit Okinawa Institute of Science and Technology.

Shortcut fidelity

• With the right phase, we have 100% fidelity for all T.

• We can use this also to measure the magnetic field!

with shortcut pulse

phase

tota

l tim

e

0.1

0.3

0.5

0.7

0.9

no shortcut pulse

tota

l tim

e

full transfer (adiabatic)

low transfer (too fast) 0.1

0.3

0.5

0.7

0.9

appropriate

phase/magnetic field

phase

Page 37: SAP beyond STIRAP: interactions, higher · SAP beyond STIRAP: interactions, higher dimensions and shortcuts Albert Benseny Quantum Systems Unit Okinawa Institute of Science and Technology.

Lewis-Riesenfeld invariants

• For the Hamiltonian is

• Because this is a closed algebra, we can use Lewis-

Riesenfeld invariants to drive the dynamics.

[Lewis+Riesenfeld, J Math Phys 10, 1458 (1969)]

[Chen et al, Phys Rev Lett 104, 063002 (2010)]

Φ =π

2K1 =

0 1 0

1 0 0

0 0 0

K2 =

0 0 0

0 0 1

0 1 0

K3 =

0 0 −i

0 0 0

i 0 0

Page 38: SAP beyond STIRAP: interactions, higher · SAP beyond STIRAP: interactions, higher dimensions and shortcuts Albert Benseny Quantum Systems Unit Okinawa Institute of Science and Technology.

Lewis-Riesenfeld invariants

• A Lewis-Riesenfeld invariant (LRI) fulfills

and has time-independent eigenvalues.

• Any solution to the TDSE can be written as

• Inverse engineering:

Follow an eigenstate of a LRI instead of of H.

Ensure that

We’re free to chose the dynamics in between

∂I

∂t+

i

~[H, I] = 0.

|ψ(t)i =X

k

ck |ψk(t)i

eigenstates of the LRI

[I(0), H(0)] = [I(T ), H(T )] = 0

Page 39: SAP beyond STIRAP: interactions, higher · SAP beyond STIRAP: interactions, higher dimensions and shortcuts Albert Benseny Quantum Systems Unit Okinawa Institute of Science and Technology.

• In our case, the LRI take the form

[Chen et al, Phys Rev Lett 104, 063002 (2010)]

• with eigenstates

For we recover the

SAP dark state, and…

Lewis-Riesenfeld invariants

I =~

2(− sinϕ sin θK1 − sinϕ cos θK2 + cosϕK3) .

θ =1

2(−Ω23 sec θ cotϕ− Ω13) +

1

2tan θ cotϕ (Ω23 sin θ − Ω12 cos θ)

ϕ =1

2(Ω12 cos θ − Ω23 sin θ)

|φ0i =

cos θ sinϕ

i cosϕ

− sin θ sinϕ

|φ±i =1p2

sin θ i cosϕ cos θ

sinϕ

cos θ ± i cosϕ sin θ

Ω13 = −2θ

ϕ = π/2

Page 40: SAP beyond STIRAP: interactions, higher · SAP beyond STIRAP: interactions, higher dimensions and shortcuts Albert Benseny Quantum Systems Unit Okinawa Institute of Science and Technology.

• Initial/final state:

• Boundary conditions:

Creating an arbitrary superposition

P1

P2

P3

F

t/T

|Ψ(t = 0)i = |1i

|Ψ(T )i = (|1i+ i|2i − |3i)/p3

θ(0) = −

π

2

θ(T ) = − arctan√

2

α(0) = 0

α(T ) =π

2.

Ω12

Ω23

Ω31

t/T

Page 41: SAP beyond STIRAP: interactions, higher · SAP beyond STIRAP: interactions, higher dimensions and shortcuts Albert Benseny Quantum Systems Unit Okinawa Institute of Science and Technology.

To summarise…

Page 42: SAP beyond STIRAP: interactions, higher · SAP beyond STIRAP: interactions, higher dimensions and shortcuts Albert Benseny Quantum Systems Unit Okinawa Institute of Science and Technology.

Summary

• SAP is not necessarily limited to single particles or long times.

• Interactions can create a band separation that allows to use

single particle ideas in many-particle systems[Phys Rev A 93, 033629 (2016)]

• We have extended SAP to

separate particles

• Spatial adiabatic passage possesses an

experimentally implementable shortcut

to adiabaticity

0

0.2

0.4

0.6

0.8

1

1 1.2 1.4 1.6 1.8 2

T = 4000

T = 12000

Eg

F

Page 43: SAP beyond STIRAP: interactions, higher · SAP beyond STIRAP: interactions, higher dimensions and shortcuts Albert Benseny Quantum Systems Unit Okinawa Institute of Science and Technology.

ThomasIrina

Jérémie

Yongping

‸Anthony Kiely

Andreas Ruschhaupt