Top Banner
Wafer probe challenges for the automotive market Luc Van Cauwenberghe ON Semiconductor
31

S01 03 Cauwenberghe SWTW2012 - Technoprobe · 1 Probe mark 2 Probe marks 3 Probe marks ... Microsoft PowerPoint - S01_03_Cauwenberghe_SWTW2012.pptx Author: Jerry Broz Created Date:

Jun 22, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: S01 03 Cauwenberghe SWTW2012 - Technoprobe · 1 Probe mark 2 Probe marks 3 Probe marks ... Microsoft PowerPoint - S01_03_Cauwenberghe_SWTW2012.pptx Author: Jerry Broz Created Date:

Wafer probe challenges for the automotive market

Luc Van CauwenbergheON Semiconductor

Page 2: S01 03 Cauwenberghe SWTW2012 - Technoprobe · 1 Probe mark 2 Probe marks 3 Probe marks ... Microsoft PowerPoint - S01_03_Cauwenberghe_SWTW2012.pptx Author: Jerry Broz Created Date:

Overview• Automotive wafer probe requirements• Results of experiments• Summary• Follow‐on Work• Acknowledgements

2

Page 3: S01 03 Cauwenberghe SWTW2012 - Technoprobe · 1 Probe mark 2 Probe marks 3 Probe marks ... Microsoft PowerPoint - S01_03_Cauwenberghe_SWTW2012.pptx Author: Jerry Broz Created Date:

Automotive wafer probe requirements

• Temperature– ‐55ºC up to 200ºC– Probed die deliveries: Full test coverage at probe– Dual and tri‐temp probe

• Disturbed area on bond pad– Multiple probe insertions– Bond pad size reduction  smaller Si area – Bond wire diameter in Multi Chip Modules

3

Page 4: S01 03 Cauwenberghe SWTW2012 - Technoprobe · 1 Probe mark 2 Probe marks 3 Probe marks ... Microsoft PowerPoint - S01_03_Cauwenberghe_SWTW2012.pptx Author: Jerry Broz Created Date:

• PCB temperature profile

• Z movement of probes

• X‐Y movement of probes

Impact of temperature on probe card

4

Page 5: S01 03 Cauwenberghe SWTW2012 - Technoprobe · 1 Probe mark 2 Probe marks 3 Probe marks ... Microsoft PowerPoint - S01_03_Cauwenberghe_SWTW2012.pptx Author: Jerry Broz Created Date:

PCB temperature• Radient heat transfer• Thermal expansion of the PCB dominates 

the mechanical behavior of the complete probe card assembly

• Temperature limitation active and passive components – Relays: typical maximum 85ºC or 125ºC– Active components: typical maximum up to 125ºC– Passive components: typical maximum 125ºC to 150ºC

5

CTE XY (ppm/°C) CTE Z (ppm/°C)

FR4 `` 140 to 220

Rogers 11 to 16 46 to 50

N7000 10 to 12 2,5%

N8000 11 to 13 70 to 375

Page 6: S01 03 Cauwenberghe SWTW2012 - Technoprobe · 1 Probe mark 2 Probe marks 3 Probe marks ... Microsoft PowerPoint - S01_03_Cauwenberghe_SWTW2012.pptx Author: Jerry Broz Created Date:

0

10

20

30

40

50

60

70

80

90

100st

art

1/4

waf

er

1/2w

afer

3/4

waf

er

full

waf

er

star

t

1/4

waf

er

1/2w

afer

3/4

waf

er

full

waf

er

star

t

1/4

waf

er

1/2w

afer

3/4

waf

er

full

waf

er

70°C 125°C 150°C

PC

B T

emp

erat

ure

(°C

)

Prober Set temperature / Test Time

PCB temperature evolution at hot 

6

Conclusion:• Spider temp ≈ ½ Prober set temp• PCB back side temp ≈ ⅓ Prober set temp• Results independed cantilever  vertical

Conclusion:• Spider temp ≈ ½ Prober set temp• PCB back side temp ≈ ⅓ Prober set temp• Results independed cantilever  vertical

Spider

PCB

PCB Back TopPCB Back BottomPCB Back LeftPCB Back Right

Top

Bottom

Left Right

Spider

Page 7: S01 03 Cauwenberghe SWTW2012 - Technoprobe · 1 Probe mark 2 Probe marks 3 Probe marks ... Microsoft PowerPoint - S01_03_Cauwenberghe_SWTW2012.pptx Author: Jerry Broz Created Date:

-50

-40

-30

-20

-10

0

10

20

30

star

t

1/4

wa

fer

1/2

waf

er

3/4

wa

fer

full

wa

fer

-50°C

PC

B T

emp

erat

ure

(°C

)

Prober Set temperature / Test Time

PCB temperature evolution at cold 

7

Findings & Conclusion @ cold:•No major difference component side  wafer side• Less temperature variation over time vs hot probe• Results independed cantilever  vertical

Findings & Conclusion @ cold:•No major difference component side  wafer side• Less temperature variation over time vs hot probe• Results independed cantilever  vertical

PCB FrontPCB Back

Page 8: S01 03 Cauwenberghe SWTW2012 - Technoprobe · 1 Probe mark 2 Probe marks 3 Probe marks ... Microsoft PowerPoint - S01_03_Cauwenberghe_SWTW2012.pptx Author: Jerry Broz Created Date:

• Root cause– Continuous moving heat source (chuck)– Thermal behavior probe card assembly– Build quality of the spider / probe head– Independent of probe card type

Z movement of probes

8

Ambient

Probe HeadProbe

Space transformerPCB

High TempTspider ≈ ½ Tchuck

Tspider ≈ ⅓ Tchuck

Tchuck

Page 9: S01 03 Cauwenberghe SWTW2012 - Technoprobe · 1 Probe mark 2 Probe marks 3 Probe marks ... Microsoft PowerPoint - S01_03_Cauwenberghe_SWTW2012.pptx Author: Jerry Broz Created Date:

Z deflection experiment: Initial conditions

• Soak prior to measurements– Prober soak: 2hrs after reaching set temp– Probe card soak: 10 min

• After prober soak• Chuck centered under the probe card• No contact

• Zero‐level = needle position after soak• Process settings

– Test time per wafer: 1hr 10min– Probe polish interval: every 100 die– Probe polish recipe: 25 touch downs, 20µm overdrive

9

Page 10: S01 03 Cauwenberghe SWTW2012 - Technoprobe · 1 Probe mark 2 Probe marks 3 Probe marks ... Microsoft PowerPoint - S01_03_Cauwenberghe_SWTW2012.pptx Author: Jerry Broz Created Date:

Z deflection: standard probe card at 175ºC

10

-120

-100

-80

-60

-40

-20

0

20

0:00 0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:40 0:45 0:50 0:55 1:00

Z d

efle

ctio

n (

µm

)

Test Time1:05 1:10

Start Probe

End Probe

Probe PolishTESTER

Chuck Independent of probe card type (cantilever or vertical)

Page 11: S01 03 Cauwenberghe SWTW2012 - Technoprobe · 1 Probe mark 2 Probe marks 3 Probe marks ... Microsoft PowerPoint - S01_03_Cauwenberghe_SWTW2012.pptx Author: Jerry Broz Created Date:

-20

-10

00

10

20

30

40

50

60

70

80

00:00 10:00 20:00 30:00 40:00 50:00

Z d

efle

ctio

n (

µm

)

Test Time

Z deflection: standard probe card at ‐50ºC

11

TESTER

Chuck

Probe Polish

Independent of probe card type (cantilever or vertical)

Start Probe

End Probe

Page 12: S01 03 Cauwenberghe SWTW2012 - Technoprobe · 1 Probe mark 2 Probe marks 3 Probe marks ... Microsoft PowerPoint - S01_03_Cauwenberghe_SWTW2012.pptx Author: Jerry Broz Created Date:

Z deflection: High Temp probe cards at 175ºC

12

-30

-20

-10

0

10

20

30

40

50

60

0:00 0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:40 0:45 0:50 0:55 1:00Z d

efle

ctio

n (

µm

)

Test Time1:05 1:10

TESTER

Chuck

Start Probe

End ProbeProbe Polish: limited impact on Z‐deflection

Probe Card A:Spider StiffenerHeat shielded

Probe Card B:Bridge Stiffener

Independent of probe card type (cantilever or vertical)

Page 13: S01 03 Cauwenberghe SWTW2012 - Technoprobe · 1 Probe mark 2 Probe marks 3 Probe marks ... Microsoft PowerPoint - S01_03_Cauwenberghe_SWTW2012.pptx Author: Jerry Broz Created Date:

Z deflection:  ON Semi High Temp probe cards at 175ºC

13

-120

-100

-80

-60

-40

-20

0

20

40

60

0:00 0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:40 0:45 0:50 0:55 1:00 1:28 1:33

Z d

efle

ctio

n (

µm

) Test Time

TESTER

Chuck

Start Probe

End Probe

Probe Card A:Spider StiffenerHeat shieldedProbe Card B:

Bridge Stiffener

Probe Card C:Standard

Probe Card D:ON Semi

Page 14: S01 03 Cauwenberghe SWTW2012 - Technoprobe · 1 Probe mark 2 Probe marks 3 Probe marks ... Microsoft PowerPoint - S01_03_Cauwenberghe_SWTW2012.pptx Author: Jerry Broz Created Date:

-20

-10

00

10

20

30

40

50

60

70

80

00:00 10:00 20:00 30:00 40:00 50:00

Z d

efle

ctio

n (

µm

)

Test Time

Z deflection:  ON Semi High Temp probe cards at ‐50ºC

14

TESTER

Chuck

Probe Card C:Standard

Probe Card D:ON Semi

Independent of probe card type (cantilever or vertical)

Start Probe

End Probe

Page 15: S01 03 Cauwenberghe SWTW2012 - Technoprobe · 1 Probe mark 2 Probe marks 3 Probe marks ... Microsoft PowerPoint - S01_03_Cauwenberghe_SWTW2012.pptx Author: Jerry Broz Created Date:

• Patented design: US 7,816,930• Bridge stiffener concept• Allows PCB expansion without Z deflection• Implemented on:

– Teradyne uFLEX– Teradyne Catalyst– SZ M3650 & Falcon– Credence ASL1000

ON Semi High Temp probe cards

15

Page 16: S01 03 Cauwenberghe SWTW2012 - Technoprobe · 1 Probe mark 2 Probe marks 3 Probe marks ... Microsoft PowerPoint - S01_03_Cauwenberghe_SWTW2012.pptx Author: Jerry Broz Created Date:

• Root cause• Build quality of the spider (cantilever)• Build quality of entire probe card assembly• Memory effect of the probes (cantilever)• Thermal behavior probe card assembly

00%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Ambient Hot

Probe movement vs temperature

X‐Y movement of probes

16

25ºC

175ºC

Cantilever: Swaying needlesVertical: Probe head drift

Page 17: S01 03 Cauwenberghe SWTW2012 - Technoprobe · 1 Probe mark 2 Probe marks 3 Probe marks ... Microsoft PowerPoint - S01_03_Cauwenberghe_SWTW2012.pptx Author: Jerry Broz Created Date:

Experiment: X/Y movement Cantilever probe cards

17

Inspection  limits 25 ºC:+/‐ 7.5µm

Inspection limits High temp + Cold: +/‐ 12.5µm

Swaying Probes

Page 18: S01 03 Cauwenberghe SWTW2012 - Technoprobe · 1 Probe mark 2 Probe marks 3 Probe marks ... Microsoft PowerPoint - S01_03_Cauwenberghe_SWTW2012.pptx Author: Jerry Broz Created Date:

Experiment: X/Y movement Vertical probe cards

18

Inspection  limits 25 ºC:+/‐ 7.5µm

Inspection limits High temp + Cold: +/‐ 12.5µm

Page 19: S01 03 Cauwenberghe SWTW2012 - Technoprobe · 1 Probe mark 2 Probe marks 3 Probe marks ... Microsoft PowerPoint - S01_03_Cauwenberghe_SWTW2012.pptx Author: Jerry Broz Created Date:

Bond pad damage• Key for probed die deliveries• Max disturbed area

– Diameter of entire probe mark area ≤ 28μm (≤615µm2)

• Probe depth– Maximum half of the thickness of top layer (T) of pad metallization

– Maximum ≤ 500nm

• Number of probe marks– Number of probe insertions + 1

19

Page 20: S01 03 Cauwenberghe SWTW2012 - Technoprobe · 1 Probe mark 2 Probe marks 3 Probe marks ... Microsoft PowerPoint - S01_03_Cauwenberghe_SWTW2012.pptx Author: Jerry Broz Created Date:

Experiment: Bond pad disturbance

• Evaluation disturbed area and probe depth

• Test conditions– Temperature: 25ºC– Touch count: 1– Overdrive Cantilever: Typical production setting– Overdrive Vertical: Max allowed overdrive

20

Page 21: S01 03 Cauwenberghe SWTW2012 - Technoprobe · 1 Probe mark 2 Probe marks 3 Probe marks ... Microsoft PowerPoint - S01_03_Cauwenberghe_SWTW2012.pptx Author: Jerry Broz Created Date:

Max disturbed area (≤615µm2)

21

Cantilever (25 µm tip) CantileverTechnoprobe ‐ No ScrubTM (25 µm tip)

VerticalTechnoprobe ‐ Route 60 (13 µm tip)

VerticalBuckling beam Vendor A (10 µm tip)

VerticalBuckling beam Vendor B (12 µm tip)

VerticalBuckling beam Vendor C (7 µm tip)

Overdrive: 65µmDisturbed are: 76 µm2

10 μm

Overdrive: 100µmDisturbed are: 199 µm2

10 μm

Overdrive: 100µmDisturbed are: 183µm2

10 μm

Overdrive: 30µmDisturbed are: 610 µm2

10 μm

Overdrive: 30µmDisturbed are: 200 µm2

10 μm

Overdrive: 100µmDisturbed are: 295 µm2

Page 22: S01 03 Cauwenberghe SWTW2012 - Technoprobe · 1 Probe mark 2 Probe marks 3 Probe marks ... Microsoft PowerPoint - S01_03_Cauwenberghe_SWTW2012.pptx Author: Jerry Broz Created Date:

Cantilever (25 µm tip) CantileverTechnoprobe ‐ No ScrubTM (25 µm tip)

VerticalTechnoprobe ‐ Route 60 (25 µm tip)

VerticalBuckling beam Vendor A (10 µm tip)

VerticalBuckling beam Vendor B (12 µm tip)

VerticalBuckling beam Vendor C (7 µm tip)

Probe depth (≤500nm or ½ top metal thickness)

Probe depth: 270nm

Probe depth: 292nmProbe depth: 391nm

Probe depth: 527nm

Probe depth: 430nm

Probe depth: 360nm

Page 23: S01 03 Cauwenberghe SWTW2012 - Technoprobe · 1 Probe mark 2 Probe marks 3 Probe marks ... Microsoft PowerPoint - S01_03_Cauwenberghe_SWTW2012.pptx Author: Jerry Broz Created Date:

• Cantilever (25µm tip diameter)

• Vertical (10µm tip diameter)Overdrive = 25 µm Overdrive = 50 µm Overdrive = 75 µm Overdrive = 100 µm

174µm2 182µm2 183µm2 183µm2

Overdrive vs disturbed area

Overdrive = 15 µm Overdrive = 30 µm Overdrive = 60 µm

130µm2 270µm2 527µm2

10 μm10 μm 10 μm

10 μm 10 μm 10 μm 10 μm

Page 24: S01 03 Cauwenberghe SWTW2012 - Technoprobe · 1 Probe mark 2 Probe marks 3 Probe marks ... Microsoft PowerPoint - S01_03_Cauwenberghe_SWTW2012.pptx Author: Jerry Broz Created Date:

Number of probe marks• Probe mark ≠ Touch count

– Probe mark: Individual visible imprint of a probe• ≤ Number of probe insertions + 1

– Touch count: Number of touch downs on the bond pad• Top metal thickness ≤5500Å: max touch count =3• Top metal thickness >5500Å: max touch count =5

• Impact: Increased disturbed area• Why multiple probe marks?

– Dual or tri‐temp probe– Multi DUT probe and re‐probe– Data retention bake  pre and post bake probe

24

Page 25: S01 03 Cauwenberghe SWTW2012 - Technoprobe · 1 Probe mark 2 Probe marks 3 Probe marks ... Microsoft PowerPoint - S01_03_Cauwenberghe_SWTW2012.pptx Author: Jerry Broz Created Date:

• Multiple DUT probe with multiple probe insertions is only possible with advance probe card technologies

• The probe tip diameter selection is critical to comply with the max disturbed area requirement 

Probe card technology vs number of probe marks and disturbed area

25

1 Probe mark 2 Probe marks 3 Probe marks ≥4 Probe marks

Cantilever probe cards (25µm tip)Vertical probe cardsNo ScrubTM (25µm tip)

Vertical probe cards (≤25µm tip)No ScrubTM (25µm tip)

Vertical probe cards (12µm tip)No ScrubTM (25µm tip) Vertical probe cards (<12µm tip)

Page 26: S01 03 Cauwenberghe SWTW2012 - Technoprobe · 1 Probe mark 2 Probe marks 3 Probe marks ... Microsoft PowerPoint - S01_03_Cauwenberghe_SWTW2012.pptx Author: Jerry Broz Created Date:

Impact of touch count• Experiment on cantilever touch count

– Overdrive = 75μm (worst case)– Increment touch count 1 to 7– Thin top metal: thickness ≤5500Å

• Conclusion:– Cantilever: 

• Impact on probe depth and disurbed area (scrub)• Aluminum build up at end of scrub

– Vertical: main impact on probe depth– Touch count ≥ 5 : Exposed Metal Oxide (EMO)

26

Touch count = 1

10 μm

Touch count = 2

10 μm

Touch count = 3

10 μm

Touch count = 5

10 μm

10 μm

Touch count = 4

10 μm

Touch count = 6

10 μm

Touch count = 7

10 μm

Page 27: S01 03 Cauwenberghe SWTW2012 - Technoprobe · 1 Probe mark 2 Probe marks 3 Probe marks ... Microsoft PowerPoint - S01_03_Cauwenberghe_SWTW2012.pptx Author: Jerry Broz Created Date:

Cantilever probe impacts bond process

• Aluminum build up at end of probe mark– Build up amount driven by overdrive and touch count– Random height

• Intermetallics only formed at part of the bond area• Potential risk: Bond ball lift at temperature

27

Page 28: S01 03 Cauwenberghe SWTW2012 - Technoprobe · 1 Probe mark 2 Probe marks 3 Probe marks ... Microsoft PowerPoint - S01_03_Cauwenberghe_SWTW2012.pptx Author: Jerry Broz Created Date:

Summary: Temperature impact• Z deflection

– Dominated by PCB thermal behavior– Best result at 175ºC: 15µm– Best result at ‐50ºC: 10µm

• XY movement of probes– Cantilever :

• Large differences depending on spider build quality• Difference between individual probes  Swaying probes

– Vertical : • Determined by probe head design• All probes show similar movement  Probe head drift

– Best result at 175ºC: 6µm28

Page 29: S01 03 Cauwenberghe SWTW2012 - Technoprobe · 1 Probe mark 2 Probe marks 3 Probe marks ... Microsoft PowerPoint - S01_03_Cauwenberghe_SWTW2012.pptx Author: Jerry Broz Created Date:

Summary: Bond pad damage• Automotive requirements and multi DUT probe require more 

advanced probe card technologies• Standard Cantilever probe cards

– Disturbed area is very dependent on applied overdrive – Difficult to comply with automotive requirements– No ScrubTM (Technoprobe) is a potential alternative

• Vertical probe cards– Probe tip diameter drives the disturbed area– Disturbed area is less dependent on applied overdrive – ON Semiconductor uses ROUTE 60 ™ LL (Technoprobe) for high temp

• Combined with ON Semiconductor patented concept for high temp cards• High current carrying capability: 850 mA• Low pad damage• Life time (tip length)

29

ROUTE 60 ™ LL

Page 30: S01 03 Cauwenberghe SWTW2012 - Technoprobe · 1 Probe mark 2 Probe marks 3 Probe marks ... Microsoft PowerPoint - S01_03_Cauwenberghe_SWTW2012.pptx Author: Jerry Broz Created Date:

Future work• Wafer probe at 200ºC• Optimize Multi DUT probe recipes to reduce number of probe marks and touch count– Ongoing evaluation on impact of the probe card configuration– Ongoing evaluation of Multi DUT probe stepping pattern

• Analyze the influence of temperature on Contact Resistance (Cres)

• Analyze behavior of probe on Over Pad Metalization(OPM)

30

Page 31: S01 03 Cauwenberghe SWTW2012 - Technoprobe · 1 Probe mark 2 Probe marks 3 Probe marks ... Microsoft PowerPoint - S01_03_Cauwenberghe_SWTW2012.pptx Author: Jerry Broz Created Date:

• Frank De Ruyck– Equipment Engineer, ON Semiconductor

• Wim Dobbelaere – Director Test & Product Engineering Automotive Mixed Signal, ON Semiconductor

• Riccardo Vettori – R&D and Process Engineer , Technoprobe

• Riccardo Liberini– Mechanical Design Manager , Technoprobe 

• Marco Di Egidio– Process Engineer , Technoprobe

Acknowledgements

31