Top Banner
7/28/2019 S0002-9904-1930-05041-7 http://slidepdf.com/reader/full/s0002-9904-1930-05041-7 1/6 i93°-l ROOTS OF A MATRIX 705 THE CHARACTERISTIC ROOTS OF A MATRIX* BY E. T. BROWNE 1. Introduction. If A is a square matrix of order n and I is the unit matrix, the equation in X obtained by equating to zero the determinant \A— \l\ is called the characteristic equa tion of A. The roots of this equation are called the character istic roots of A . Although it is not possible to make any definite statement as to the nature of the characteristic roots of the general algebraic matrix A, several authors have given upper limits to the roots. The first upper limit seems to have been given by Bendixsonf in 1900. Let us denote by A f and A the transpose and the conjugate imaginary, respectively, of the square matrix A. If we write A+T A-T it is obvious that B'= B so that B is Hermitian (or real sym metric if A is real). Similarly, Cis Hermitian (or skew-symmetric if A is real). Bendixson's theorem then is as follows: BENDIXSON'S THEOREM, (a) If a+if3 is a characteristic root of a real matrix A and if pi^p2 ^ • • ^p n are the characteristic roots (all real) of the symmetric matrix B = (A ~\-A')/2, then (1) Pl è « â Pn. (b) If g n is the greatest of the numerical values of the elements \(aij aji)/2\ of the real skew-symmetric matrix (A— A')/2, then (2) |/3 | ikg"[n{n- l)/2]" 2 . The extension to the case where the elements of A are complex was made in 1902 by Hirschf who proved the following theorem : * Presented to the Society, September 11, 1930. t Bendixson, Sur les racines à 1 une équation fondamentale, Acta Mathe matica, vol. 25 (1902), pp. 359-365. î Hirsch, Acta Mathematica, vol. 25 (1902), pp. 367-370.
6

S0002-9904-1930-05041-7

Apr 03, 2018

Download

Documents

hafeez1065
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: S0002-9904-1930-05041-7

7/28/2019 S0002-9904-1930-05041-7

http://slidepdf.com/reader/full/s0002-9904-1930-05041-7 1/6

i93°-l ROOTS OF A MATRIX 705

T H E C H A R A C T E R I S T I C R O O T S O F A M A T R I X *

B Y E . T . B R O WN E

1. Introduction. If A is a square matr ix of order n a n d Iis the un i t m at r ix , the equ a t ion in X obta ined by equa t ing toz e r o t h e d e t e r m i n a n t \A— \l\ is called the characteristic equa

tion of A. The roo ts o f th i s equa t ion a re ca l led the characteristic roots of A . A l tho ug h i t is no t possible to m ak e an y def ini tes ta tement as to the na ture of the charac te r i s t ic roo ts o f thegenera l a lgebra ic mat r ix A, severa l au thors have g iven upperl im its to th e ro ots . T h e f irs t up pe r l imit seems to ha ve beengiven by Bendixsonf in 1900.

Let us denote by A f a n d A t he t r anspose and the con juga t eimaginary , respec t ive ly , o f the square mat r ix A. If we write

A+T A-T

i t i s obvious tha t B'= B so t ha t B is Hermit ian (or real symm etr i c if A i s rea l ) . S imi la r ly , Cis H erm i t ian (or skew -sym m etr icif A is rea l ) . Be ndix son ' s theore m th en is as fo l lows:

B E N D I X S O N ' S T H E O R E M , (a) If a+if3 is a characteristic rootof a real matrix A and if p i^ p2 ^ • • • ^p n are the characteristicroots (all real) of the symm etric matrix B = (A ~\-A')/2, then

(1) Pl è « â Pn.

(b) If gn is the greatest of the numerical values of the elements\(aij — aji)/2\ of the real skew-symm etric m atrix (A— A')/2,

then

(2) |/3 | ikg"[n{n- l ) / 2 ] " 2 .

T h e ex tens ion to the case wh ere the e leme nts of A are complexwas mad e in 1902 by H irsch f who pro ved t he fo llowing theore m :

* Presen ted to the Soc ie ty , Sep tember 11, 1930 .t Bend ixson , Sur les racines à1 une équation fondamentale, A c t a M a t h e

mat ica , vo l . 25 (1902) , pp . 359-365 .î H i r s c h , A c t a M a t h e m a t i c a , v o l . 2 5 ( 19 0 2 ) , p p . 3 6 7 - 3 7 0 .

Page 2: S0002-9904-1930-05041-7

7/28/2019 S0002-9904-1930-05041-7

http://slidepdf.com/reader/full/s0002-9904-1930-05041-7 2/6

706 E. T. BROWNE [October ,

H I R S C H ' S T H E O R E M , (a) If a+i/3 is a characteristic root ofany square ma trix A and if we designate by g the greatest of \a.i3- | ,*by g' the greatest of |(a t- ?-+â/ i ) /2 | , and by gn the greatest of\(dij-— a.ji)/2 |, then always

(3) | a + ifi | ^ ng,

(4) | a | ^ ng',

(5 ) \P\£ ng".

(b) If pi is //ze greatest and pn the least {algebraically) of thecharacteristic roots of B ~ {A +A ')/2, then always

(10 Pi è a ^ Pn.

In 1904 Bromwichf gave a proof of Hi rsch ' s Theorem (a) and(b) and fur ther ex tended (b) as fo l lows:

B R O M W I C H ' S T H E O R E M . If a+i/3 is a characteristic root of amatrix A and if we denote by ±/x i, • • •, ± \xv (2v^n) the nonzero characteristic roots of the matrix C— (A— A')/(2i), then |/3 |cannot exceed the greatest of the | /x; |.

In 1922, for a real matr ix A, Pickf gave a proof of Bendix-son ' s Theo rem (a ) w i th Bromwich ' s ex t ens ion and he showedth a t ( 2 ) can be rep laced by |/3 | =g tr | c tn ir/(2n) | wh ich in genera lg ives a more res t r ic ted l imi t than (2) .

In 1927 the au th or § a t tac ke d th e pro blem f rom a d i ffe ren tang le and p roved the fo l lowing theo rem:

If X i s a ch arac te r i s t ic roo t o f a squa re m at r ix A and ifpi^p2^ • • 'z^Pn are the charac te r i s t ic roo ts (a l l ^0) o f AA',t h e n p i ^ X X ^ P n -

I t i s the purpose of th i s paper to show by a very s implemethod tha t Hi rsch ' s l imi t s (3 ) , (4) and (5) may be rep laced

* H e r e \A n | d e n o t e s n o t t h e d e t e r m i n a n t o f t h e m a t r i x A b u t t h e a b s o l u t ev a l u e o f t h e n u m b e r An,

t B r o m w i c h , On the roots of the characteristic equation of a linear substitution, A c t a M a t h e m a t i c a , v o l . 3 0 ( 19 0 6 ) , p p . 2 9 5 - 3 0 4 .

Î P ick , Über die Wurzeln der charakteristischen Gleichung von Schwing-ungsproblemen, Z e i t s c h r i f t f u r a n g e w a n d t e M a t h e m a t i k u n d M e c h a n i k , v o l .2 ( 19 2 2 ) , p p . 3 5 3 - 3 5 7 .

§ The characteristic equation of a matrix, th i s Bu l le t in , vo l . 34 (1928) , pp .3 6 3 - 3 6 8 .

Page 3: S0002-9904-1930-05041-7

7/28/2019 S0002-9904-1930-05041-7

http://slidepdf.com/reader/full/s0002-9904-1930-05041-7 3/6

193°-] R O O T S O F A M A T R I X 707

by l imi t s which never exceed the former and a re in genera lmore r e s t r i c t ed .

2. The Characteristic Roots of A A'. HA i s any squarema t r ix , r ea l o r complex , Au tonne* has shown tha t t he r e ex i s ttwo un i ta ry ( real o r th og on al , if A is rea l ) m at r ice s P , Q s u c h t h a t

(6) A = P'NQ

w h e r e N has rea l pos i t ive (or zero) numbers in the main d i

agona l and ze ros e l s ewhere . On fo rming the p ro du c t A A'= P'N2P i t becomes ev iden t t ha t t he number s i n t he d i agona lof N are the pos i t ive (or zero) square roo ts p i 1 /2 , • • •, p n

1 / 2 ofthe charac te r i s t ic roo ts o f A A ' . F r om (6) , N = PAQ', s o t h a ti f we denote by pa, tin a n d qa the e lement in the ith row andt h e jth co lumn o f P , N a n d Q, r e spec t ive ly , we have

\1 ) Mij ~ / jPir&rsQis «r ,s

Tha t i s , t he e l emen t s o f N are of the form X *'i' aaxiy j w h e r e(xi, • • • ,x n) a n d (yi, • • • ,y n) a re s e t s o f number s such tha t/ .i^iXi

=/ jjy%yi^ i •

3. An Upper Limit to the Roots of A. Le t u s deno te by rji a n df i the abso lu te va lues of x% a n d y^ r e spec t ive ly . Then the s e t s(yi, • ' ' > V n) a n d (fi, • • •, fn) a re rea l se t s such tha t YjVi2 = X ) f *2

= 1. Since rj i and f* are real

(8) mïiÛîM + t f ) .

H e n c e

|»« I = I ^aaxiyj | ^ X ) I aa I I xi I I yi I

= X) I Ö»J I rati < i X I öi,-1 (v? + f ? ) .

I f 5 i denotes the sum of the abso lu te va lues of the e lements inth e ith row of A and if S i s the grea tes t o f the S i} w e h a v e

* A u t o n n e , Sur les matrices hy•/oherm itiennes et les unitaires, C o m p t e sR e n d u s , v o l . 15 6 ( 19 13 ) , p p . 8 5 8 - 8 6 0 , i n w h i c h t h e t h e o r e m i s g i v e n w i t h o u tproof. I n f ac t t h e t h e o r e m f ol lo w s a s a c o n s e q u e n c e of t h e a u t h o r ' s T h e o r e mIV on p . 367 of th e a fo reme nt ione d pap er . See a l so Ta be r , On the linear transformations between two quadrics, P r o c e e d i n g s o f t h e L o n d o n M a t h e m a t i c a lSoc ie ty , vo l . 24 (1892-93) , pp . 290-306 , in which the theorem fo r A rea l andn o n - s i n g u l a r is c o n t a i n e d i m p l i c i t l y .

Page 4: S0002-9904-1930-05041-7

7/28/2019 S0002-9904-1930-05041-7

http://slidepdf.com/reader/full/s0002-9904-1930-05041-7 4/6

708 E. T. BROWNE [October ,

(9) X ) I <*u I V i2 = Jlvi Z ) I aa I = Z ) ^ i 2 ^ i = 5 Hi? = 5 -•i , i i i i

Similar ly , i f Ti denotes the sum of the abso lu te va lues of thee lements in the i th co lumn of A and if T is the greatest ofth e Tu

£ | a < / l * 7 ^ T.

H e n c e

| » « | = Pim ^ (S + T)/2.Now f rom the au thor ' s theorem as quoted ear l ie r in the paper ,if X is a ch ara cte r is t i c roo t of A a n d M is the greatest of thep's, t h e n

| X | ^ M 11 2.

H e n c e

| X | ^ ( 5 + T)/2.

We therefore have the fo l lowing theorem:T H E O R E M . If Si (Ti) is the sum of the absolute values of the

elements in the ith row (column) of a square matrix A and if S (T)is the greatest of the Si (Ti), the absolute va lue |X | of a characteristic root X of A cannot exceed (S+T)/2.

Equat ion (3) o f Hi rsch ' s Theorem (a) obvious ly fo l lows as acoro l lary to this th eo rem . I t is c lear th a t the l imit given by th ela t te r can never exceed tha t g iven by Hirsch ' s c r i te r ion and i s

in general less .The l imi t i s somet imes ac tua l ly a t ta ined , fo r example , i f A

is a matr ix each of whose elements is the square of the correspo ndin g e lem ent of a rea l o r tho gon al ma t r ix . In th i s case Aobv ious ly has t he cha rac t e r i s t i c r oo t + 1 . M oreove r , t he lim i ti s a lways a t ta ined i f A is a circulant, ( tha t i s , aij = aj-i+i, fo r i^j;aij = an+ j-i+i for i>j) whose e l emen t s a r e r ea l and ^0 .

In par t icu la r , i f A i s He rmi t i an , Si—Tz and hence S=T,so tha t we have the fo l lowing coro l la ry .

C O R O L L A R Y 1. If Si is the sum of the absolute values of theelements in the ith row of an Herm itian matrix A, and if S is thegreatest of the Si, the numerical value of a characteristic root X ofA cannot exceed S.

Page 5: S0002-9904-1930-05041-7

7/28/2019 S0002-9904-1930-05041-7

http://slidepdf.com/reader/full/s0002-9904-1930-05041-7 5/6

I930-] ROOTS OF A MATRIX 709

The l imi t g iven in the coro l la ry i s ev ident ly a t ta ined i f Acon sis ts ent i re ly of zeros exc ept in th e diag ona l . I t is a lso atta ined i f A is a real cyclic mat r ix , ( t ha t i s , aij = ak where k isthe least posi t ive residue of i+j—1, m od n) with posi t ive orze ro e l emen t s .

On m akin g use of H i rsch ' s The ore m (b) we hav e a lso th efol lowing corol lary.

C O R O L L A R Y 2. If a +i/3 is a chara cteristic root of A and if S/

is the sum of the absolute values of the elements in the jth row ofthe Herm itian matrix B — (A-\-A ')/2, then if S' is the greatestof the S/, it follows that \a \ ^S'.

Equat ion (4) o f Hi rsch ' s Theorem fo l lows d i rec t ly f rom th iscor ol lary . M ore ov er , i t i s c lear th a t our cr i ter ion usua l ly givesa nar rower l imi t than tha t o f Hi rsch .

By invoking Bromwich ' s Theorem we can s ta te a l so the fo l lowing coro l la ry .

C O R O L L A R Y 3 . If a+ift is a chara cteristic root of A and if S/'is the sum of the absolute values of the elements in the jth row ofthe Hermitian matrix C= (A — A r)/(2i), then if Sn is the greatestof the S/', we have \j3 | ^S".

Equat ion (5) of Hirsch 's Theorem (a) fol lows direct ly f romthis coro l la ry . Coro l la r ies 2 and 3 , which h ave been dedu cedf rom ou r t heo rem, migh t have been p roved d i r ec t ly w i thou tinvo king Au ton ne ' s the ore m . Fo r if we wr i te , as in §1 , B —

{A + 2 " 0 / 2 , C= (A -1f

)/{2i), i t is c lear th a t A =B+iC w h e r e Ba n d C a re H erm i t i an m a t r i ce s . Suppose now th a t a-\-i/3 is acharac te r i s t ic roo t o f A . T he n the re exis ts a set (xi, • • • , xn)^ (0, • • • , 0) , an d wh ich we m ay su ppo se to ha ve been divide dth rough by the p rope r non -van i sh ing f ac to r so t ha t ^XiXi=l,s u c h t h a t

^2atjXj = ^btjXj + i ^CtjXj = (a + i$)x t it = 1, • • • , n).i i i

On mul t i p ly ing the se equa t ions t h rough by x t a n d s u m m i n gas to t, we have

(10) ^btjXtXj + i ^CtjXtXj = X )(a + i(3)x tx t = a + if3.t,j t,j t

Page 6: S0002-9904-1930-05041-7

7/28/2019 S0002-9904-1930-05041-7

http://slidepdf.com/reader/full/s0002-9904-1930-05041-7 6/6

710 J . V. USPENSKY [October,

Now s ince B a n d C a r e He r mi t i a n ma t r i c e s e a c h o f t h e s u mma t ions on th e l ef t i s r ea l . H ence , equ a t in g rea l and im ag in arypar t s in (10) we have*

^" ' J 'ii%i%'it

i* 3

P ' / jCi i%'i% i »

i,j

I f now we deno te by rji the abso lu te va lue o f Xi and p roceed

as in (9) , Corol lar ies 2 and 3 fo l low at once .THE UNIVERSITY OF NORTH CAROLINA

O N T H E R E D U C T I O N O F T H E I N D E F I N I T EB I N A R Y Q U A D R A T I C F O R M S f

B Y J . V . U S P E N S K Y

The reduc t ion theory o f the indef in i t e b ina ry fo rms has beenpresented in widely d i f ferent forms and f rom var ious points ofv iew. B u t w ha tev er po in t of v iew is ad op ted , i t seems th a tHermi te ' s p r inc ip le o f con t inuous va r iab les under more o r l e s sdisguised form const i tu tes an essent ia l foundat ion of a l l theex i s t ing theor ies o f r educ t ion .

Hermite 's pr inciple in i t s s imples t aspect consis ts in associa t ion wi th a g iven indef in i te form of a posi t ive quadrat ic form

c o n t a i n i n g a c o n t i n u o u s l y v a r y i n g p o s i t i v e p a r a me t e r a n d t h es tudy of in tegra l values of var iables which give success ivem i n i m a of t h e l a t t e r . Ho we v e r , t h e r e d u c e d fo r ms in H e r m i t e ' stheory d i f fer f rom those in the c lass ica l Gauss ian theory of redu c t ion . A l i t t l e con t r ibu t ion to the theory of r educ t ion wh ichth i s a r t i c le con ta ins has fo r i t s purpose to show how, by subs t i t u t i n g f o r He r mi t e ' s p o s i t i v e q u a d r a t i c f o r m a c e r t a i n n o n -h o mo g e n e o u s f u n c t i o n c o n t a i n i n g a v a r i a b l e p o s i t i v e p a r a mete r , we ob ta in p rec i se ly the Gauss ian reduced fo rms .

L e t £ = ax + fiy, rj = yx + 8y

* See Hirsch, loc . c i t . , p . 369.f P resen ted to the Soc ie ty , Apr i l 5 , 1930 .