Top Banner
Statistical Physics Appr oach to Post- T r anscriptional Regulation Candidate: Araks Martirosyan Advisors: Andrea De Martino, Enzo Marinari Collaborator: Matteo Figliuzzi Rome, 2015
42

S stical Physics Aproach to PostTranscriptional Regulation · [14] Bialek W. Biophysics: Searching for Principles. Princeton University Press, 2012. [15] Breda J, Rzepiela AJ, Gumienny

Jun 09, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: S stical Physics Aproach to PostTranscriptional Regulation · [14] Bialek W. Biophysics: Searching for Principles. Princeton University Press, 2012. [15] Breda J, Rzepiela AJ, Gumienny

Statistical Physics Approach to Post-Transcriptional Regulation

Candidate: Araks Martirosyan

Advisors: Andrea De Martino, Enzo Marinari

Collaborator: Matteo Figliuzzi

Rome, 2015

Page 2: S stical Physics Aproach to PostTranscriptional Regulation · [14] Bialek W. Biophysics: Searching for Principles. Princeton University Press, 2012. [15] Breda J, Rzepiela AJ, Gumienny

Introduction

Page 3: S stical Physics Aproach to PostTranscriptional Regulation · [14] Bialek W. Biophysics: Searching for Principles. Princeton University Press, 2012. [15] Breda J, Rzepiela AJ, Gumienny

3

Gene Expression DNA

Protein [1]

Page 4: S stical Physics Aproach to PostTranscriptional Regulation · [14] Bialek W. Biophysics: Searching for Principles. Princeton University Press, 2012. [15] Breda J, Rzepiela AJ, Gumienny

4

Gene Expression

RNA

Transcription

DNA

Protein

Page 5: S stical Physics Aproach to PostTranscriptional Regulation · [14] Bialek W. Biophysics: Searching for Principles. Princeton University Press, 2012. [15] Breda J, Rzepiela AJ, Gumienny

5

Gene Expression

RNA mRNA

ncRNA

Transcription

DNA

Protein

Page 6: S stical Physics Aproach to PostTranscriptional Regulation · [14] Bialek W. Biophysics: Searching for Principles. Princeton University Press, 2012. [15] Breda J, Rzepiela AJ, Gumienny

6

Gene Expression

RNA mRNA

ncRNA

TranscriptionTranslation

DNA

Protein

Page 7: S stical Physics Aproach to PostTranscriptional Regulation · [14] Bialek W. Biophysics: Searching for Principles. Princeton University Press, 2012. [15] Breda J, Rzepiela AJ, Gumienny

7

ncRNA

RNA mRNA

ncRNA

Constituent RNA

tRNArRNA

...

TranscriptionTranslation

DNA

Protein [2]

Page 8: S stical Physics Aproach to PostTranscriptional Regulation · [14] Bialek W. Biophysics: Searching for Principles. Princeton University Press, 2012. [15] Breda J, Rzepiela AJ, Gumienny

8

ncRNA

RNA mRNA

ncRNA Regulatory RNA

Constituent RNA

tRNArRNA

...piRNA

siRNA

TranscriptionTranslation

DNA

Protein

miRNA

[3,4]

Page 9: S stical Physics Aproach to PostTranscriptional Regulation · [14] Bialek W. Biophysics: Searching for Principles. Princeton University Press, 2012. [15] Breda J, Rzepiela AJ, Gumienny

9

miRNA

RNA mRNA

ncRNA Regulatory RNA

Constituent RNA

tRNArRNA

...piRNA

siRNA

TranscriptionTranslation

DNA

Protein

miRNA

[5]

Page 10: S stical Physics Aproach to PostTranscriptional Regulation · [14] Bialek W. Biophysics: Searching for Principles. Princeton University Press, 2012. [15] Breda J, Rzepiela AJ, Gumienny

10

miRNA binding

3’UTR ACGACGUUCUCAUUCAGUGGUU 5’ UTR

5’UTR AAUCGCGAAGAUCUACUAGAGUAGGUCACCAGGA 3’ UTR}

}

seed

canonical sitesmRNA

miRNA28

Page 11: S stical Physics Aproach to PostTranscriptional Regulation · [14] Bialek W. Biophysics: Searching for Principles. Princeton University Press, 2012. [15] Breda J, Rzepiela AJ, Gumienny

11

mRNA cleavage

3’UTR ACGACGUUCUCAUUCAGUGGUU 5’ UTR

5’UTR AAUCGCGAAGAUCUACUAGAGUAGGUCACCAGGA 3’ UTR

5'UTR AAUCGCGAAGAUCUACUAGAGUAGGUCACCAGGA 3'UTR

cleavage

3’UTR ACGACGUUCUCAUUCAGUGGUU 5’ UTR

Page 12: S stical Physics Aproach to PostTranscriptional Regulation · [14] Bialek W. Biophysics: Searching for Principles. Princeton University Press, 2012. [15] Breda J, Rzepiela AJ, Gumienny

12

Translational repression

3’UTR ACGACGUUCUCAUUCAAUGUUU 5’ UTR

5’UTR AAUCGCGAAGAUCUACUAGAGUAGGUCACCAGGA 3’ UTR

Translational repression

3’UTR ACGACGUUCUCAUUCAAUGUUU 5’ UTR

5’UTR AAUCGCGAAGAUCUACUAGAGUAGGUCACCAGGA 3’ UTR

Ribosome

Page 13: S stical Physics Aproach to PostTranscriptional Regulation · [14] Bialek W. Biophysics: Searching for Principles. Princeton University Press, 2012. [15] Breda J, Rzepiela AJ, Gumienny

13

miRNA-Target interaction networks

* TargetScan* miRanda

Page 14: S stical Physics Aproach to PostTranscriptional Regulation · [14] Bialek W. Biophysics: Searching for Principles. Princeton University Press, 2012. [15] Breda J, Rzepiela AJ, Gumienny

16

Competing endogenous RNAs (ceRNAs)

ceRNA2

ceRNA1

miRNA

Page 15: S stical Physics Aproach to PostTranscriptional Regulation · [14] Bialek W. Biophysics: Searching for Principles. Princeton University Press, 2012. [15] Breda J, Rzepiela AJ, Gumienny

17

ceRNA effect

ceRNA2

ceRNA1

miRNA

[6]

Page 16: S stical Physics Aproach to PostTranscriptional Regulation · [14] Bialek W. Biophysics: Searching for Principles. Princeton University Press, 2012. [15] Breda J, Rzepiela AJ, Gumienny

18

DebateDenzler et al. (2014)

Mouse hepatocytes

Modulation of miRNA target abundance is unlikely to cause significant effects on gene expression through a ceRNA effect.

Bosson et al. (2014)

mouse embryonic stem cell

miRNA-target pool ratios and an affinity partitioned target pool accurately predict miRNA susceptibility to target competition.

[7, 8]

Page 17: S stical Physics Aproach to PostTranscriptional Regulation · [14] Bialek W. Biophysics: Searching for Principles. Princeton University Press, 2012. [15] Breda J, Rzepiela AJ, Gumienny

19

The goal

1. Quantify the maximal post-transcriptional regulatory power achievable by miRNA-mediated cross-talk,

2. Explore how heterogeneities in binding affinities influence the latter,

3. Compare the effectiveness miRNA-mediated control with other regulatory elements.

Page 18: S stical Physics Aproach to PostTranscriptional Regulation · [14] Bialek W. Biophysics: Searching for Principles. Princeton University Press, 2012. [15] Breda J, Rzepiela AJ, Gumienny

The model

Page 19: S stical Physics Aproach to PostTranscriptional Regulation · [14] Bialek W. Biophysics: Searching for Principles. Princeton University Press, 2012. [15] Breda J, Rzepiela AJ, Gumienny

21

ceRNA Network

miRNAceRNA1 ceRNA2

[9, 10]

Page 20: S stical Physics Aproach to PostTranscriptional Regulation · [14] Bialek W. Biophysics: Searching for Principles. Princeton University Press, 2012. [15] Breda J, Rzepiela AJ, Gumienny

22

ceRNA Network: target binding/unbinding

miRNAceRNA1 ceRNA2

C1 C2

+/- +/-k1

+ k1− k2

−k2

+

Page 21: S stical Physics Aproach to PostTranscriptional Regulation · [14] Bialek W. Biophysics: Searching for Principles. Princeton University Press, 2012. [15] Breda J, Rzepiela AJ, Gumienny

23

ceRNA Network: ceRNA cleavage

miRNAceRNA1 ceRNA2

C1 C2

+/- +/-k1

+ k1− k2

−k2

+

κ1 κ2

Page 22: S stical Physics Aproach to PostTranscriptional Regulation · [14] Bialek W. Biophysics: Searching for Principles. Princeton University Press, 2012. [15] Breda J, Rzepiela AJ, Gumienny

24

ceRNA Network: transcription

TF1

n1 miRNAceRNA1

TF2

nµ ceRNA2 n2

TFµ

C1 C2

+/- +/-

k ink ink in kout kout kout

b1 b2β

k1+ k1

− k2−

k2+

κ1 κ2

Page 23: S stical Physics Aproach to PostTranscriptional Regulation · [14] Bialek W. Biophysics: Searching for Principles. Princeton University Press, 2012. [15] Breda J, Rzepiela AJ, Gumienny

25

ceRNA Network: degradation

TF1

n1 miRNAceRNA1

TF2

nµ ceRNA2 n2

TFµ

C1 C2

+/- +/-

Ø

Ø

Ø

Ø

Øk ink ink in kout kout kout

b1 b2β

σ1 σ2

d2d1k1

+ k1− k2

−k2

+

κ1 κ2

δ

Page 24: S stical Physics Aproach to PostTranscriptional Regulation · [14] Bialek W. Biophysics: Searching for Principles. Princeton University Press, 2012. [15] Breda J, Rzepiela AJ, Gumienny

26

Dynamics ∂mi∂ t

=bini−d imi−k i+miμ+k i

− c i+ξmi−ξ++ξ−

∂μ∂ t

=βnμ−δμ−k i+miμ+(k i

−+κi)ci+ξμ−ξ++ξ−+ξκ

∂ ci∂ t

=−σimi+∑ik i

+miμ−∑i(k i

−+κi)c i+ξci+ξ+−ξ−−ξκ

∂ni ,μ∂ t

=k in f i ,μh (1−ni ,μ)−kout ni ,μ+ξni ,μ

ceRNA

miRNA

complex

TF binding site occupancy

Page 25: S stical Physics Aproach to PostTranscriptional Regulation · [14] Bialek W. Biophysics: Searching for Principles. Princeton University Press, 2012. [15] Breda J, Rzepiela AJ, Gumienny

27

Dynamics ∂mi∂ t

=bini−d imi−k i+miμ+k i

− c i+ξmi−ξ++ξ−

∂μ∂ t

=βnμ−δμ−k i+miμ+(k i

−+κi)ci+ξμ−ξ++ξ−+ξκ

∂ ci∂ t

=−σimi+∑ik i

+miμ−∑i(k i

−+κi)c i+ξci+ξ+−ξ−−ξκ

∂ni ,μ∂ t

=k in f i ,μh (1−ni ,μ)−kout ni ,μ+ξni ,μ

n̄i ,μ=k in f i ,μ

h

k in f i ,μh +kout

n̄i ,μ

f i ,μ

fast[11]

1

o

Page 26: S stical Physics Aproach to PostTranscriptional Regulation · [14] Bialek W. Biophysics: Searching for Principles. Princeton University Press, 2012. [15] Breda J, Rzepiela AJ, Gumienny

28

White noise

<ξ+ (t )ξ+ (t ' )>=k i+ m̄iμ̄ δ(t−t ' ) ,

<ξ−(t )ξ−(t ' )>=k i− c̄iδ(t−t ' ) ,

<ξκ(t )ξκ(t ')>=κi c̄ iδ(t−t ') ,<ξμ (t )ξμ(t ' )>=(β n̄μ+δμ̄)δ(t−t ' ),<ξmi(t )ξmi(t ' )>=(bi n̄i+d i m̄i)δ(t−t ' ) ,

m̄i=bi n̄i+k i

− c̄id i+ki

+ μ̄, μ̄=

β n̄μ+∑i(k i

−+κi) c̄iδ+∑i

k i+ m̄i

, c̄i=k i

+ μ̄ m̄iσi+k i

−+κi.

where

Page 27: S stical Physics Aproach to PostTranscriptional Regulation · [14] Bialek W. Biophysics: Searching for Principles. Princeton University Press, 2012. [15] Breda J, Rzepiela AJ, Gumienny

The method

Page 28: S stical Physics Aproach to PostTranscriptional Regulation · [14] Bialek W. Biophysics: Searching for Principles. Princeton University Press, 2012. [15] Breda J, Rzepiela AJ, Gumienny

31

Mutual Information

Channel

I ( f j ,m2)=∫df jdm2 p(f j ,m2) log2p(f j ,m2)p(f j) p(m2)

I opt=max p(f j) I (f j ,m2)

[12]

Channel Capacity

f jm2

Page 29: S stical Physics Aproach to PostTranscriptional Regulation · [14] Bialek W. Biophysics: Searching for Principles. Princeton University Press, 2012. [15] Breda J, Rzepiela AJ, Gumienny

33

Noise and information transmission

I opt=0

Page 30: S stical Physics Aproach to PostTranscriptional Regulation · [14] Bialek W. Biophysics: Searching for Principles. Princeton University Press, 2012. [15] Breda J, Rzepiela AJ, Gumienny

34

Noise and information transmission

I opt∼0

Page 31: S stical Physics Aproach to PostTranscriptional Regulation · [14] Bialek W. Biophysics: Searching for Principles. Princeton University Press, 2012. [15] Breda J, Rzepiela AJ, Gumienny

35

Noise and information transmission

I opt=log21√2π e ∫df j 1/σ f j

Popt (f j)=1Z1σ f j

Page 32: S stical Physics Aproach to PostTranscriptional Regulation · [14] Bialek W. Biophysics: Searching for Principles. Princeton University Press, 2012. [15] Breda J, Rzepiela AJ, Gumienny

37

Channels

TF1

miRNAceRNA ceRNA2 ceRNA2

TF2

ITF

miRNAceRNA

TF1 TFμTF2TFμ ImiRNA

miRNA-channel TF-channel

Page 33: S stical Physics Aproach to PostTranscriptional Regulation · [14] Bialek W. Biophysics: Searching for Principles. Princeton University Press, 2012. [15] Breda J, Rzepiela AJ, Gumienny

Results

Page 34: S stical Physics Aproach to PostTranscriptional Regulation · [14] Bialek W. Biophysics: Searching for Principles. Princeton University Press, 2012. [15] Breda J, Rzepiela AJ, Gumienny

40

The capacity of the miRNA-channel is maximal in a specific range of miRNA-ceRNA binding rates

ITF - ImiRNATF1

miRNAceRNA ceRNA2 ceRNA2

TF2

miRNAceRNA

ImiRNA ITF

Page 35: S stical Physics Aproach to PostTranscriptional Regulation · [14] Bialek W. Biophysics: Searching for Principles. Princeton University Press, 2012. [15] Breda J, Rzepiela AJ, Gumienny

41

miRNA-mediated regulation may represent the sole control mechanism in case of differential complex processing

TF1

miRNAceRNA ceRNA2 ceRNA2

TF2

miRNAceRNA

ITF - ImiRNAImiRNA ITF

Page 36: S stical Physics Aproach to PostTranscriptional Regulation · [14] Bialek W. Biophysics: Searching for Principles. Princeton University Press, 2012. [15] Breda J, Rzepiela AJ, Gumienny

42

Dependence on ∆

Page 37: S stical Physics Aproach to PostTranscriptional Regulation · [14] Bialek W. Biophysics: Searching for Principles. Princeton University Press, 2012. [15] Breda J, Rzepiela AJ, Gumienny

43

Dependence on ∆

∆σm2

Page 38: S stical Physics Aproach to PostTranscriptional Regulation · [14] Bialek W. Biophysics: Searching for Principles. Princeton University Press, 2012. [15] Breda J, Rzepiela AJ, Gumienny

44

The limit of weakly interacting high miRNA population

miRNAceRNA2miRNA

ω

ceRNA2ceRNA2ceRNA2k i+→k i

+ ω ,δ→δω .

Page 39: S stical Physics Aproach to PostTranscriptional Regulation · [14] Bialek W. Biophysics: Searching for Principles. Princeton University Press, 2012. [15] Breda J, Rzepiela AJ, Gumienny

46

Conclusions1. miRNA-mediated ceRNA effect may act as a master regulator of gene expression in the presence of the heterogeneity in target binding affinities, that is the case “in vivo” (Breda et al, 2015 [15]).

miR

NA

The density of target sites

energy of interaction between the miRNA and the target

Page 40: S stical Physics Aproach to PostTranscriptional Regulation · [14] Bialek W. Biophysics: Searching for Principles. Princeton University Press, 2012. [15] Breda J, Rzepiela AJ, Gumienny

47

Conclusions2. Target derepression may be significant even if the competitor is in low copy numbers, provided a certain heterogeneity in kinetic parameters (e.g. for a catalytically degraded target and a stoichiometrically degraded competitor) is present.

Page 41: S stical Physics Aproach to PostTranscriptional Regulation · [14] Bialek W. Biophysics: Searching for Principles. Princeton University Press, 2012. [15] Breda J, Rzepiela AJ, Gumienny

48

Thank you!

Page 42: S stical Physics Aproach to PostTranscriptional Regulation · [14] Bialek W. Biophysics: Searching for Principles. Princeton University Press, 2012. [15] Breda J, Rzepiela AJ, Gumienny

49

References

[1] Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K, Walter P. Molecular Biology of the Cell. Garland Science, 2015.

[2] Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones. Cell 2014; 157(1): 77–94.

[3] Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and spe- cific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391(6669): 806–811.

[4] Mello CC, Darryl C Jr. Revealing the world of RNA interference. Nature 2004; 431(7006): 338–342.

[5] Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116(2): 281–297.

[6] Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden, RNA language? Cell 2011; 146(3): 353–358.

[7] Denzler R, Agarwal V, Stefano J, Bartel DP, Stoffel M. Assessing the ceRNA Hypothesis with Quantitative Measurements of miRNA and Target Abundance. Molecular Cell 2014; 54(5): 766–776.

[8] Bosson AD, Zamudio JR, Sharp PA. Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition. Molecular Cell 2015; 56(3): 347–359.

[9] Figliuzzi M, De Martino A, Marinari E. RNA-based regulation: dynamics and response to perturbations of competing RNAs. Biophysical journal 2014; 107(4): 1011–1022.

[10] Bosia C, Pagnani A, Zecchina R. Modelling Competing Endogenous RNA Networks. PLoS ONE 2013; 8(6): e66609.

[11] Alon U. An Introduction to Systems Biology: Design Principles of Biological Cir- cuits. CRC Press; 2006.

[12] Shannon CE. A Mathematical Theory of Communication. The Bell System Technical Journal 1948; 27(3): 379–423.

[13] Tkačik G, Walczak AM, Bialek W. Optimizing information flow in small genetic networks. Physical Review E 2009; 80(3): 031920.

[14] Bialek W. Biophysics: Searching for Principles. Princeton University Press, 2012.

[15] Breda J, Rzepiela AJ, Gumienny R, van Nimwegen E, Zavolan M. Quantifying the strength of miRNA-target interactions. Methods 2015; 85(1): 90–99.