Top Banner
06/13/22 http:// numericalmethods.eng.usf.edu 1 Runge 2 nd Order Method Mechanical Engineering Majors Authors: Autar Kaw, Charlie Barker http://numericalmethods.eng.u sf.edu Transforming Numerical Methods Education for STEM Undergraduates
19

Runge 2 nd Order Method

Jan 03, 2016

Download

Documents

raimondo-brooke

Runge 2 nd Order Method. Mechanical Engineering Majors Authors: Autar Kaw, Charlie Barker http://numericalmethods.eng.usf.edu Transforming Numerical Methods Education for STEM Undergraduates. Runge-Kutta 2 nd Order Method http://numericalmethods.eng.usf.edu. Runge-Kutta 2 nd Order Method. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Runge 2 nd  Order Method

04/20/23http://

numericalmethods.eng.usf.edu 1

Runge 2nd Order Method

Mechanical Engineering Majors

Authors: Autar Kaw, Charlie Barker

http://numericalmethods.eng.usf.eduTransforming Numerical Methods Education for STEM

Undergraduates

Page 2: Runge 2 nd  Order Method

Runge-Kutta 2nd Order Method

http://numericalmethods.eng.usf.edu

Page 3: Runge 2 nd  Order Method

http://numericalmethods.eng.usf.edu3

Runge-Kutta 2nd Order Method

Runge Kutta 2nd order method is given by

hkakayy ii 22111

where

ii yxfk ,1

hkqyhpxfk ii 11112 ,

For0)0(),,( yyyxf

dx

dy

Page 4: Runge 2 nd  Order Method

http://numericalmethods.eng.usf.edu4

Heun’s Method

x

y

xi xi+1

yi+1, predicted

yi

Figure 1 Runge-Kutta 2nd order method (Heun’s method)

hkyhxfSlope ii 1,

iiii yxfhkyhxfSlopeAverage ,,2

1 1

ii yxfSlope ,

Heun’s method

2

11 a

11 p

111 q

resulting in

hkkyy ii

211 2

1

2

1

where

ii yxfk ,1

hkyhxfk ii 12 ,

Here a2=1/2 is chosen

Page 5: Runge 2 nd  Order Method

http://numericalmethods.eng.usf.edu5

Midpoint MethodHere 12 a is chosen, giving

01 a

2

11 p

2

111 q

resulting in

hkyy ii 21

where

ii yxfk ,1

hkyhxfk ii 12 2

1,

2

1

Page 6: Runge 2 nd  Order Method

http://numericalmethods.eng.usf.edu6

Ralston’s MethodHere

3

22 a is chosen, giving

3

11 a

4

31 p

4

311 q

resulting in

hkkyy ii

211 3

2

3

1

where ii yxfk ,1

hkyhxfk ii 12 4

3,

4

3

Page 7: Runge 2 nd  Order Method

http://numericalmethods.eng.usf.edu7

How to write Ordinary Differential Equation

Example

50,3.12 yeydx

dy x

is rewritten as

50,23.1 yyedx

dy x

In this case

yeyxf x 23.1,

How does one write a first order differential equation in the form of

yxfdx

dy,

Page 8: Runge 2 nd  Order Method

http://numericalmethods.eng.usf.edu8

ExampleA solid steel shaft at room temperature of 27°C is needed to be contracted so it can be shrunk-fit into a hollow hub. It is placed in a refrigerated chamber that is maintained at −33°C. The rate of change of temperature of the solid shaft is given by

C270

33588510425

1035110332106931033.5

2

2335466

θ.θ.

θ.θ.θ.

dt

Find the temperature of the steel shaft after 24 hours. Take a step size of h = 43200 seconds.

335885104251035110332106931033.5 22335466 θ.θ.θ.θ.θ.dt

335885104251035110332106931033.5 22335466 θ.θ.θ.θ.θ.t,θf

hkkii

211 2

1

2

1

Page 9: Runge 2 nd  Order Method

http://numericalmethods.eng.usf.edu9

SolutionStep 1: For 27,0,0 00 ti

0020893.0

3327588.5271042.5271035.1

271033.2271069.31033.527,0,

223

35466

01

ftfk o

0092607.0

33278.63588.5278.631042.5278.631035.1

278.631033.2278.631069.31033.5

278.63,43200432000020893.027,432000,

223

35466

1002

ffhkhtfk

C

hkk

16.218432000056750.027

432000092607.02

10020893.0

2

127

2

1

2

12101

Page 10: Runge 2 nd  Order Method

http://numericalmethods.eng.usf.edu10

Solution ContStep 2: Cti 16.218,43200,1 11

4304.8

3316.218588.516.2181042.516.2181035.1

16.2181033.216.2181069.31033.5

16.218,43200,

223

35466

111

ftfk

17

223

35466

1112

102638.1

33364410588.53644101042.53644101035.1

)364410(1033.2)364410(1069.31033.5

364410,86400432004304.816.218,4320043200,

ffhkhtfk

C107298.243200103190.616.218

43200102638.12

14304.8

2

116.218

2

1

2

1

2116

172112

hkk

Page 11: Runge 2 nd  Order Method

http://numericalmethods.eng.usf.edu11

Solution Cont

The solution to this nonlinear equation at t=86400s is

C 099.2686400

Page 12: Runge 2 nd  Order Method

http://numericalmethods.eng.usf.edu12

Comparison with exact results

Figure 2. Heun’s method results for different step sizes

Page 13: Runge 2 nd  Order Method

Step size,

864004320021600108005400

−58466−2.7298×1021

−24.537−25.785−26.027

584402.7298×1021

−1.5619−0.31368−0.072214

2239201.0460×1011

5.98451.2019

0.27670

http://numericalmethods.eng.usf.edu13

Effect of step size

h tE %|| t

(exact) C 099.2686400

Table 1. Effect of step size for Heun’s method

86400

Page 14: Runge 2 nd  Order Method

http://numericalmethods.eng.usf.edu14

Effects of step size on Heun’s Method

Figure 3. Effect of step size in Heun’s method

Page 15: Runge 2 nd  Order Method

Step size,h Euler Heun Midpoint Ralston

864004320021600108005400

−153.52−464.32−29.541−27.795−26.958

−58466−2.7298×1021

−24.537−25.785−26.027

−774.64−0.33691−24.069−25.808−26.039

−12163−19.776−24.268−25.777−26.032

http://numericalmethods.eng.usf.edu15

Comparison of Euler and Runge-Kutta 2nd Order

MethodsTable 2. Comparison of Euler and the Runge-Kutta methods

(exact) C 099.2686400

)86400(

Page 16: Runge 2 nd  Order Method

Stepsize,

h Euler Heun Midpoint Ralston

864004320021600108005400

448.34737.9714.4267.09573.5755

122160

5.72921.1993

0.27435

1027.676.3607.05081.0707

0.22604

2384442.5716.63051.2135

0.25776

http://numericalmethods.eng.usf.edu16

Comparison of Euler and Runge-Kutta 2nd Order

Methods

C 217.25)86400(

Table 2. Comparison of Euler and the Runge-Kutta methods

(exact)

%t

11109064.7

Page 17: Runge 2 nd  Order Method

http://numericalmethods.eng.usf.edu17

Comparison of Euler and Runge-Kutta 2nd Order

Methods

Figure 4. Comparison of Euler and Runge Kutta 2nd order methods with exact results.

Page 18: Runge 2 nd  Order Method

Additional ResourcesFor all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit

http://numericalmethods.eng.usf.edu/topics/runge_kutta_2nd_method.html

Page 19: Runge 2 nd  Order Method

THE END

http://numericalmethods.eng.usf.edu