Top Banner

of 26

Rumus2 I

Apr 03, 2018

Download

Documents

Ilham Akbar
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 7/28/2019 Rumus2 I

    1/26

    ABB ABB Power Automation LtdDoc - No.

    1KHZ 100 131Responsible department: Take over department: Revision: Doc.-type: File No.:

    NPA NPE A 2000-06-30 SolDescPrepared: Checked: Approved: Language Page:

    Theo Gbelbecker Michael Layes Hans-Kaspar Scherrer en 1/26Valid for: Derived from: Replaces: Classify No.: Data set:

    Standard 1AHL 105 891 PhysCalcLib.doc

    We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to thirdparties without express authori ty is st rictly forbidden. ABB Power Automation Ltd (CH) 2000

    1AHQ 490010 Rev. -- / 96-09-27 / KWGQ (KW 200 600 P3)

    Physical Calculations Library

    Users Manual

  • 7/28/2019 Rumus2 I

    2/26

    ABBRevision:

    A 2000-06-30

    Language:

    en

    Page

    2 / 26

    Doc - No.

    1KHZ 100 131

    We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosureto third parties without express authority is strictly forbidden. ABB Power Automation Ltd (CH) 2000

    1AHQ 490010 Rev. -- / 96-09-27 / KWGQ (KW 200 600 P4)

    Contents1. Modules of the Physical Calculations Library................................................................................................3

    2. Module Descriptions...................................................................................................................................42.1. Calculation : Drum Level of Water, TC DRM_LVL..................................................................................4

    2.1.1. Attributes......................................................................................................................................4

    2.1.2. Function .......................................................................................................................................4

    2.1.3. Interface.......................................................................................................................................52.1.4. Application....................................................................................................................................5

    2.1.5. Example: Drum Level....................................................................................................................62.2. Calculation : Volume Flow for Gas, TC GAS_FLW.................................................................................7

    2.2.1. Attributes......................................................................................................................................7

    2.2.2. Function .......................................................................................................................................72.2.3. Interface.......................................................................................................................................82.2.4. Application....................................................................................................................................9

    2.2.5. ApplicExample 1 : Mass Flow ........................................................................................................92.2.6. ApplicExample 2 : Volume Flow SI.................................................................................................92.2.7. Example 1: Fuel Gas Flow........................................................................................................... 10

    2.2.8. Example 2: Nitrogen Gas Flow.....................................................................................................102.3. Calculation : Steam Enthalpy, TC ST_ENTH ....................................................................................... 11

    2.3.1. Attributes....................................................................................................................................112.3.2. Function ..................................................................................................................................... 112.3.3. Interface..................................................................................................................................... 11

    2.4. Calculation : Mass Flow for Steam, TC STM_FLW ...............................................................................12

    2.4.1. Attributes....................................................................................................................................122.4.2. Function ..................................................................................................................................... 122.4.3. Calculation for steam................................................................................................................... 13

    2.4.4. Calculation for saturated steam.................................................................................................... 132.4.5. Interface..................................................................................................................................... 142.4.6. Application.................................................................................................................................. 14

    2.4.7. Example 1: Superheated Steam Flow........................................................................................... 152.4.8. Example 2: Saturated Steam Flow ............................................................................................... 15

    2.5. Calculation : Saturated Steam Temperature, TC STM_T...................................................................... 16

    2.5.1. Attributes....................................................................................................................................162.5.2. Function ..................................................................................................................................... 162.5.3. Interface..................................................................................................................................... 16

    2.6. Calculation : Saturated Steam Temperature, TC STM_T6 .................................................................... 172.6.1. Attributes....................................................................................................................................172.6.2. Function..................................................................................................................................... 17

    2.6.3. Interface..................................................................................................................................... 172.7. Calculation : Mass Flow for Water, TC WTR_FLW ...............................................................................18

    2.7.1. Attributes....................................................................................................................................18

    2.7.2. Function ..................................................................................................................................... 182.7.3. Calculation for feedwater............................................................................................................. 192.7.4. Calculation for saturated water.....................................................................................................19

    2.7.5. Interface..................................................................................................................................... 20

    2.7.6. Application.................................................................................................................................. 202.7.7. Example: Water Flow.................................................................................................................. 21

    2.8. Calculation : Valve Physics for Compressible Fluid, TC VLV_GAS........................................................ 222.8.1. Attributes....................................................................................................................................222.8.2. Function ..................................................................................................................................... 22

    2.8.3. Interface..................................................................................................................................... 232.8.4. Application.................................................................................................................................. 242.8.5. ApplicExample : ValveStroke(Flow_REF) ..................................................................................... 25

    2.8.6. ApplicExample : ValveFlow(Strk_ACT)......................................................................................... 253. Revision Page.......................................................................................................................................... 26

  • 7/28/2019 Rumus2 I

    3/26

    ABBRevision:

    A 2000-06-30

    Language:

    en

    Page

    3 / 26

    Doc - No.

    1KHZ 100 131

    We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosureto third parties without express authority is strictly forbidden. ABB Power Automation Ltd (CH) 2000

    1AHQ 490010 Rev. -- / 96-09-27 / KWGQ (KW 200 600 P4)

    1. Modules of the Physical Calculations Library

    DRuM_LeVeL Drum Level of Water

    GAS_FLoW Volume Flow for Gas

    STeam_ENTHalpy Steam Enthalpy

    STeaM_FLoW Mass Flow for Steam

    STeaM_Temp Saturated Steam Temperature

    STeaM_Temp6 Saturated Steam Temperature

    WaTeR_FLoW Mass Flow for Water

    GAS_VaLVe Valve Physics for Compressible Fluid

    Module Description applicable Status/lastMod

    DRM_LVL Drum Level of Water AC450 AC160 00-03-28

    GAS_FLW Volume Flow for Gas AC450 AC160 00-06-30

    ST_ENTH Steam Enthalpy AC450 AC160 99-01-10

    STM_FLW Mass Flow for Steam AC450 - 00-03-28

    STM_T Saturated Steam Temperature AC450 - 00-03-28

    STM_T6 Saturated Steam Temperature AC160 00-03-28

    WTR_FLW Mass Flow for Water AC450 AC160 00-03-28

    GAS_VLV Valve Physics for Compressible Fluid AC450 AC160 Draft

  • 7/28/2019 Rumus2 I

    4/26

    ABBRevision:

    A 2000-06-30

    Language:

    en

    Page

    4 / 26

    Doc - No.

    1KHZ 100 131

    We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosureto third parties without express authority is strictly forbidden. ABB Power Automation Ltd (CH) 2000

    1AHQ 490010 Rev. -- / 96-09-27 / KWGQ (KW 200 600 P4)

    2. Module Descriptions

    2.1. Calculation : Drum Level of Water, TC DRM_LVL

    This function is based on CHAAP GIAM TN 00004

    2.1.1. Attributes

    RequiredSolution Designation DRM_LVL

    Solution Title Drum Level of Water

    System Type Advant Power, AC450 / AC160

    Owner CHPAU/NPA

    Status Approved

    Last Modification 00-03-28

    Information Only

    Processes CCPPProjects Standard

    Solution Layers Incl Control

    2.1.2. Function

    The function calculates the drum level using the differential pressure between two measuring points on the drum.The drum pressure is required to calculate the densities of water and steam.

    The results are valid between 1 barA and 210 barA. The maximum error generally is less than 1.5 %. For lowpressures (< 3 barA) and high level indications the maximum error is less than 4 %.

    The calculation is based on the fact that the drum contains saturated water and steam.

    o = water density in water leg [kg/m] o=f(pdrum,Twetleg)

    W = water density in drum [kg/m] W=f(pdrum)

    ST = steam density in drum [kg/m] ST=f(pdrum)

    p = delta pressure [Pa] -

    DP = delta pressure [bar] Pin DPLtd = tap distance [m] Pin TAP_DISTLa = actual level [m] -

    L = actual level for indication [m] Pin LLmax = upper indication limit [m] Pin L_MAX = TAP_DIST L_0

    Lmin = lower indication limit [m] Pin L_MIN = L_0

    p calculation :

    p

    Level Indication Drum Water Leg

    Lmax

    0 mm

    Lmin

    LaLtd

    W

    ST O

    L

  • 7/28/2019 Rumus2 I

    5/26

    ABBRevision:

    A 2000-06-30

    Language:

    en

    Page

    5 / 26

    Doc - No.

    1KHZ 100 131

    We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosureto third parties without express authority is strictly forbidden. ABB Power Automation Ltd (CH) 2000

    1AHQ 490010 Rev. -- / 96-09-27 / KWGQ (KW 200 600 P4)

    p = o * g * L td - [W * g * La + ST * g*( L td - La )]

    therefore

    La = [(o - ST) * Ltd - (p/g)] / [W - ST]

    scaled to one and linearised to the upper and lower indication limit

    L = Ltd * [(o - ST) - (DP * 105

    / (g * Ltd))] / (W - ST) + Lmin

    2.1.3. Interface

    Terminal Description Location I/O Unit DtaTpe DefltVal Usage

    Inputs

    DP Differential pressure 1 I bar RDP_ERR Differential pressure disturbed 2 I - BP Drum pressure 10 I bar R

    P_ERR Drum pressure disturbed 11 I - BP_EQIV Equivalent pressure value if P_ERR = 1 12 I bar R 100 bar DP_MAX Maximum value of differential pressure 21 I bar R 0.1 bar

    TRX_RIS Characteristic of differential pressure transmitter,0 = falling 1 = rising ( -> application)

    22 I - B 0

    P_ABS Type of drum pressure transmitter 1 = absolute 23 I - B 0

    T_WETLEG Temperature of reference water leg 24 I Cel R 50 CelTAP_DIST Tapping point distance 39 I m R 1 mL_0 Distance to zero of level output 40 I m R 0.5 m

    L_BACK Equivalent level value if DP_ERR = 1 41 I m R 0 m

    OutputsL Level from L_MIN up to L_MAX 50 O m R

    L_ERR Error from differential pressure 51 O - BL_DIST Error from pressure transmitter 52 O - BH_LIM Upper limit of level range reached 53 O - B

    L_LIM Lower limit of level range reached 54 O - BL_MAX Maximum value of level range 61 O m RL_MIN Minimum value of level range 62 O m R

    2.1.4. Application

    Note: The function contains no signal filtering.

    The following equation is assumed : DP_MAX / bar= TAP_DIST / m * 9.81/100

    A falling transmitter characteristic means that the value zero at pin DP results in the highest possible level, and vice

    versa a rising transmitter characteristic means the value Dpmax at pin DP results in the highest possible level.

  • 7/28/2019 Rumus2 I

    6/26

    ABBRevision:

    A 2000-06-30

    Language:

    en

    Page

    6 / 26

    Doc - No.

    1KHZ 100 131

    We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosureto third parties without express authority is strictly forbidden. ABB Power Automation Ltd (CH) 2000

    1AHQ 490010 Rev. -- / 96-09-27 / KWGQ (KW 200 600 P4)

    2.1.5. Example: Drum Level

    TAP_DIST = 2.006 m = top tap bottom tap, means vertical distance of tapping points

    L_0 = 1.104 m level above bottom tap for zero indication

    P_EQIV = 6 barG e. g. normal operating pressure or any reasonable value,

    same unit as pressure transmitter

    DP_MAX = 0.197 bar = TAP_DIST * 9.81 /100, measuring range of differential pressure transmitter

    TRX_RIS = 0 falling - means with 4 mA = 0.1968 barand 20mA = 0.0 bar

    P_ABS = 0 gauge drum pressure transmitter

    T_WETLEG = 40 Cel expected approximate temperature of reference water leg

    L_BACK = 1.1 m level indication in case of disturbed differential pressure transmitter

    902 mm

    0 mm-101 mm

    -1104 mm

    top tap

    normal operating levelcenter line of drum

    bottom tap

    level indication

  • 7/28/2019 Rumus2 I

    7/26

    ABBRevision:

    A 2000-06-30

    Language:

    en

    Page

    7 / 26

    Doc - No.

    1KHZ 100 131

    We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosureto third parties without express authority is strictly forbidden. ABB Power Automation Ltd (CH) 2000

    1AHQ 490010 Rev. -- / 96-09-27 / KWGQ (KW 200 600 P4)

    RHOZETA

    DPCvA)TW,PW,DP(FVOL

    =

    2.2. Calculation : Volume Flow for Gas, TC GAS_FLWThis function is based on

    2.2.1. Attributes

    RequiredSolution Designation GAS_FLW

    Solution Title Volume Flow for Gas

    System Type Advant Power, AC450 / AC160

    Owner CHPAU/NPA

    Status Draft

    Last Modification 00-06-30

    Information Only

    Processes CCPP

    Projects Standard

    Solution Layers Incl Control

    2.2.2. Function

    The function calculates the volume flow of gas using the differential pressure over an orifice. For Equations andFormulae see ISO 5167, DIN 1952, or VDI/VDE 2040. Pressure and temperature of the gas are required to

    calculate its density. Pressure and temperature are measured after the orifice. All calculations are based on thetheory of ideal gases.

    The results are valid with an acceptable deviation from its measured value. Typical errors are less than 1 %.

    The volume flow is calculated by the following formula :

    with

    RHO = (M_N * PW * Cd) / (R * tw) where tw / K = TW / Cel + T0

    FVOL = volume flow [m3/h] Cv = 1 609 969

    DP = differential pressure [bar] Cd = 100 000PW = pressure after orifice [barG/A] R = 8 314.51 J/kmol/KTW = temperature after orifice [Cel] T0 = 273.15 [K]

    A = area of orifice [m2]

    ZETA = orifice coefficient [1]

    M_N = molecular weight nominal [g/mol]

    At an additional output the density is get :

    RHO(PW, TW) = RHO

    RHO = density [kg/m] calculated depending from the values of PW and TW

  • 7/28/2019 Rumus2 I

    8/26

    ABBRevision:

    A 2000-06-30

    Language:

    en

    Page

    8 / 26

    Doc - No.

    1KHZ 100 131

    We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosureto third parties without express authority is strictly forbidden. ABB Power Automation Ltd (CH) 2000

    1AHQ 490010 Rev. -- / 96-09-27 / KWGQ (KW 200 600 P4)

    The molecular weight resp. the orifice coefficient may be built as follows :

    M_N = RHOnom * (R * (TWnom + T0) / (PWnom * Cd)) < ideal gas >resp.

    ZETA = (A * Cv / FVOLmaxN)2 * DPmaxN / RHOnom < ideal gas >

    RHOnom = density at the nominal conditions PWnom and TWnomFVOLmaxN = value of volume flow at the conditions DPmaxN and RHOnom [ or alternatively

    FVOLnom = value of volume flow at nominal conditions DPnom and RHOnom ]

    2.2.3. Interface

    Terminal Description Location I/O Unit DtaTpe DefltVal Usage

    InputsDP Differential pressure 1 I bar RDP_ERR Differential pressure disturbed 2 I - BPW Gas pressure after orifice 10 I bar RPW_ERR Gas pressure disturbed 11 I - BPW_N Nominal pressure

    1, value if P_ERR = 1 12 I bar R 10 bar

    TW Gas temperature after orifice 20 I Cel RTW_ERR Gas temperature disturbed 21 I - BTW_N Nominal temperature

    1, value if T_ERR = 1 22 I Cel R 100 Cel

    DP_MAX Maximum value of differential pressure 23 I bar RA Area of orifice 26 I m2 R 0.02 m2ZETA Orifice coefficient 27 I - R 5M_N Molecular weight of gas at nominal conditions 28 I g/mol R 28 g/molRAD_DP Differential pressure transmitter makes

    square rooting ( -> application)29 I - B 0

    P_ABS Type of pressure transmitter 1 = absolute 0 = gauge 30 I - B 0F_ZERO Indication limit for flow ( -> application) 40 I m3/h R 0 m3/hF_BACK Equivalent flow, value if DP_ERR = 1 41 I m3/h R 0 m3/h

    OutputsFVOL Volume flow 50 O m3/h RF_ERR Error from differential pressure 51 O - BF_DIST Error from pressure or temperature transmitter 52 O - BRHO Density of gas 60 O kg/m3 RD_3600 Denominator for mass flow calculation 61 O - R (3600 s)

    SymbolP0 Ambient pressure, active only if P_ABS = 0 - S bar R 1 bar

    1

    Nominal value corresponds to equivalent value

  • 7/28/2019 Rumus2 I

    9/26

    ABBRevision:

    A 2000-06-30

    Language:

    en

    Page

    9 / 26

    Doc - No.

    1KHZ 100 131

    We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosureto third parties without express authority is strictly forbidden. ABB Power Automation Ltd (CH) 2000

    1AHQ 490010 Rev. -- / 96-09-27 / KWGQ (KW 200 600 P4)

    2.2.4. Application

    Note: The function contains no signal filtering.

    From a square rooting DP transmitter the true real value is assumed at pin DP in unit bar1/2

    , e. g. for a given DP

    01.5 bar the resulting value range is 01.2247 .

    Output value of FVOL is set to zero if falling below the value 0.5 * F_ZERO and reanimated above the value

    F_ZERO (hysteresis = 0.5 * F_ZERO).

    2.2.5. ApplicExample 1 : Mass Flow

    F / kg/s = FVOL / m3/h * RHO / kg/m3 / D_3600

    F = mass flow [kg/s]D_3600= 3 600 [s]

    Note: Use PC element DIV-MR(2,1)

    2.2.6. ApplicExample 2 : Volume Flow SI

    FVOLSI/ kg/s = FVOL / m3/h / D_3600

    FVOLSI = volume flow [m3/s]

    D_3600= 3 600 [s]

    Note: Use PC element DIV(R)

  • 7/28/2019 Rumus2 I

    10/26

    ABBRevision:

    A 2000-06-30

    Language:

    en

    Page

    10 / 26

    Doc - No.

    1KHZ 100 131

    We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosureto third parties without express authority is strictly forbidden. ABB Power Automation Ltd (CH) 2000

    1AHQ 490010 Rev. -- / 96-09-27 / KWGQ (KW 200 600 P4)

    2.2.7. Example 1: Fuel Gas Flow

    Name plate data of flow nozzle DPnom = Pnom = Tnom = FVOLnom = RHOnom =

    0.184 5 bar 15.2 barG 300 Cel 363 000 m3/h 10.200 3 kg/m

    3

    DPmaxN = A = - FVOLmaxN = DP_MAX =

    0.35 bar 2.0 m

    2

    500 000 m

    3

    /h 1.2 bar

    Taking the values above you get the values for molecular weight M_N resp. for orifice coefficient ZETA,

    thusM_N = RHOnom * (R * (TWnom + T0) / (PWnom * Cd)) =

    29.981 118 g/mol R = 8 314.51, T0 = 273.15, Cd = 100 000

    ZETA = (A * Cv / FVOLmaxN)2

    * DPmaxN / RHOnom = Cv = 1 609 969

    1.423

    PW_N = 15.2 barG same unit as pressure transmitter

    TW_N = 300 Cel

    DP_MAX = 1.2 bar from measuring range of the differential pressure transmitter

    RAD_DP = 0 differential pressure transmitter does not square root

    P_ABS = 0 gauge pressure transmitter F_ZERO = 10 000 m

    3/h output FVOL is not zero if FVOL > F_ZERO or zero if FVOL < 0.5 * F_ZERO

    F_BACK = 500 m3/h indication in case of disturbed differential pressure transmitter

    Aopt = 1.999 988 m2

    see note below

    < P0 > = 1.013 25 bar medium ambient pressure

    Note: With Aopt an better value for the volume flow is get, i. e. volume flow changes to 500 000.000 m3/h exactly.

    error_typical < 0.32 % ( e.g. err_max < 0.05 %at DP = 0.003 172 bar, PWmax = 20 barG, TWmax = 400 Cel,PWmin = 5 barG, and Twmin = 100 Cel ) .

    2.2.8. Example 2: Nitrogen Gas Flow

    Name plate data of flow nozzle DPnom = Pnom = Tnom = FVOLnom = RHOnom =

    0.030 25 bar 3.94 barA 15 Cel 1 100 m3/h 4.626 8 kg/m

    3

    DPmaxN = A = - FVOLmaxN = DP_MAX =0.1 bar 0.02 m

    22 000 m

    3/h 0.22 bar

    Taking the values above you get the values for molecular weight M_N resp. for orifice coefficient ZETA,

    thusM_N = RHOnom * (R * (TWnom + T0) / (PWnom * Cd)) =

    28.134 5 g/mol [ 28.087 g/mol if 2.94 barG ] R = 8 314.51, T0 = 273.15, Cd = 100 000

    ZETA = (A * Cv / FVOLmaxN)2

    * DPmaxN / RHOnom = Cv = 1 609 969

    5.602

    PW_N = 3.94 barA same unit as pressure transmitter

    TW_N = 15 Cel

    DP_MAX = 0.22 bar from measuring range of the differential pressure transmitter

    RAD_DP = 0 differential pressure transmitter does not square root

    P_ABS = 1 absolute pressure transmitter

    F_ZERO = 200 m3/h output FVOL is not zero if FVOL > F_ZERO or zero if FVOL < 0.5 * F_ZERO

    F_BACK = 10 m3/h indication in case of disturbed differential pressure transmitter

    Aopt = 0.020 033 3 m2

    see note below

    [ < P0 > = 1.006 675 bar medium ambient pressure - usefull only if PW is gauge ]

    Note: With Aopt an better value for the volume flow is get, i. e. volume flow changes to 2 000.000 m3/h exactly.

    error_typical < 0.24 % ( e.g. err_max < 0.34 %at DP = 0.209 991 bar, PWmin = 1 barG (!), TWmax = 35 Cel,PWmax = 5 barG (!), and TWmin = 5 Cel ) .

  • 7/28/2019 Rumus2 I

    11/26

    ABBRevision:

    A 2000-06-30

    Language:

    en

    Page

    11 / 26

    Doc - No.

    1KHZ 100 131

    We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosureto third parties without express authority is strictly forbidden. ABB Power Automation Ltd (CH) 2000

    1AHQ 490010 Rev. -- / 96-09-27 / KWGQ (KW 200 600 P4)

    2.3. Calculation : Steam Enthalpy, TC ST_ENTHThis function is based on KWGA TN 1 99004

    2.3.1. Attributes

    RequiredSolution Designation ST_ENTH

    Solution Title Steam Enthalpy

    System Type Advant Power, AC450 / AC160

    Owner CHPAU/NPA

    Status Approved

    Last Modification 99-01-10

    Information Only

    Processes CCPP

    Projects Standard

    Solution Layers Incl Control

    2.3.2. Function

    Many functions in the water/steam cycle are based on an enthalpy calculation. Inputs are temperature and absolute

    pressure. This module calculates an approximation of the steam table values based on polynomials.

    The results are valid between 1 barA and 200 barA, resp. 100 Cel and 600 Cel and all enthalpies higher than2950 kJ/kg. The maximum error in this range is less than 10 kJ/kg.

    ENTH = f(TEMP, PRESS)

    2.3.3. Interface

    Terminal Description Location I/O Unit DtaTpe DefltVal Usage

    InputsTEMP Temperature 2 I Cel RPRESS Pressure 3 I barA R

    OutputsENTH Enthalpy 10 O kJ/kg R

  • 7/28/2019 Rumus2 I

    12/26

    ABBRevision:

    A 2000-06-30

    Language:

    en

    Page

    12 / 26

    Doc - No.

    1KHZ 100 131

    We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosureto third parties without express authority is strictly forbidden. ABB Power Automation Ltd (CH) 2000

    1AHQ 490010 Rev. -- / 96-09-27 / KWGQ (KW 200 600 P4)

    2.4. Calculation : Mass Flow for Steam, TC STM_FLWThis function is based on CHAAP GIAM TN 00004

    2.4.1. Attributes

    RequiredSolution Designation STM_FLW

    Solution Title Mass Flow for Steam

    System Type Advant Power, AC450

    Owner CHPAU/NPA

    Status Approved

    Last Modification 00-03-28

    Information Only

    Processes CCPP

    Projects Standard

    Solution Layers Incl Control

    2.4.2. Function

    The function calculates the mass flow of steam using the differential pressure over an orifice according DIN 1952.

    Pressure and temperature of the medium are required to calculate the density of the steam.

    The results are valid between 1 barA and 400 barA, resp. between 0 Cel and 700 Cel. The maximum error is lessthan 1 % in the range 1 barA and 310 barA, resp. between 0 Cel and 620 Cel excluding values too close to the

    critical state of steam.

    For all temperatures below the saturation temperature T_SAT is used in the calculation.

    The mass flow is calculated by the following formula :

    m?= ORI * SQRT(2 * DP * )and

    RHO = (P, T)

    m? = mass flow [kg/s] Pin FDP = differential pressure [bar] Pin DP

    = density [kg/m] internal calculated depending from P and T

    ORI = orifice parameter [m2] Pin ORI

    The orifice parameter may be built as follows :

    ORI = Fnom / SQRT(2 * DPnom * RHOnom)or

    ORI = * * (d * /4) * 316.228

    = flow coefficient [1] Fnom = flow at nominal conditions

    = expansion coefficient [1] DPnom = differential pressure at nominal conditionsd = diameter orifice [m] RHOnom = density nominal at the conditions Pnom and Tnom

  • 7/28/2019 Rumus2 I

    13/26

    ABBRevision:

    A 2000-06-30

    Language:

    en

    Page

    13 / 26

    Doc - No.

    1KHZ 100 131

    We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosureto third parties without express authority is strictly forbidden. ABB Power Automation Ltd (CH) 2000

    1AHQ 490010 Rev. -- / 96-09-27 / KWGQ (KW 200 600 P4)

    2.4.3. Calculation for steam

    The calculation of the steam density is based on special functions. The diagram below only shows the principleranges of the density.

    2.4.4. Calculation for saturated steam

    For the calculation of saturated steam only the differential pressure across an orifice and the steam pressure arenecessary.

    0

    20

    50

    80

    110

    1

    40

    1

    90

    22

    0

    26

    0

    300

    340

    380

    420

    460

    500

    540

    580

    620

    660

    0 bar

    30 bar

    90 bar

    150 bar

    0.0

    200.0

    400.0

    600.0

    800.0

    1000.0

    DENSITY [kg/m3]

    TEMPERATURE [C]

    PRESSURE [barg]

    DENSITY OF WATER/STEAM AS FUNCTION OF PRESSURE AND TEMPERATUR

    Steam

    Density of Steam as Function of Pressure and Temperature

  • 7/28/2019 Rumus2 I

    14/26

    ABBRevision:

    A 2000-06-30

    Language:

    en

    Page

    14 / 26

    Doc - No.

    1KHZ 100 131

    We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosureto third parties without express authority is strictly forbidden. ABB Power Automation Ltd (CH) 2000

    1AHQ 490010 Rev. -- / 96-09-27 / KWGQ (KW 200 600 P4)

    2.4.5. Interface

    Terminal Description Location I/O Unit DtaTpe DefltVal Usage

    Inputs

    DP Differential pressure 1 I bar RDP_ERR Differential pressure disturbed 2 I - BP Medium pressure 10 I bar R

    P_ERR Medium pressure disturbed 11 I - BP_EQIV Equivalent pressure value if P_ERR = 1 12 I bar R 100 bar

    T Medium temperature 20 I Cel RT_ERR Medium temperature disturbed 21 I - BT_EQIV Equivalent temperature value if T_ERR = 1 22 I Cel R 500 CelDP_MAX Maximum value of differential pressure 25 I bar R

    ORI Orifice parameter defined at nominal conditions 26 I m2 RRAD_DP Differential pressure transmitter makes

    square rooting ( -> application)28 I - B 0

    P_ABS Type of pressure transmitter 1 = absolute 29 I - B 0F_ZERO Indication limit for flow ( -> application) 40 I kg/s R 0 kg/sF_BACK Equivalent flow value if DP_ERR = 1 41 I kg/s R 0 kg/s

    OutputsF Flow 50 O kg/s R

    F_ERR Error from differential pressure 51 O - BF_DIST Error from pressure or temperature transmitter 52 O - BRHO Density of medium 60 O kg/m3 RSAT_LIN Temperature is given by the internal

    calculated Tsat(P)61 O - B

    2.4.6. Application

    Note: The function contains no signal filtering.

    From a square rooting DP transmitter the true real value is assumed at pin DP in unit bar1/2

    , e. g. for a given DP

    01.5 bar the resulting value range is 01.2247 .

    Output values are set to zero if falling below the value 0.5 * F_ZERO and reanimated above the value F_ZERO

    (hysteresis = 0.5 * F_ZERO).

  • 7/28/2019 Rumus2 I

    15/26

    ABBRevision:

    A 2000-06-30

    Language:

    en

    Page

    15 / 26

    Doc - No.

    1KHZ 100 131

    We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosureto third parties without express authority is strictly forbidden. ABB Power Automation Ltd (CH) 2000

    1AHQ 490010 Rev. -- / 96-09-27 / KWGQ (KW 200 600 P4)

    2.4.7. Example 1: Superheated Steam Flow

    DPnom Pnom Tnom FnomName plate data of flow nozzle

    0.381 bar 6.9 barG 326.1 Cel 13.77 kg/s

    You get out of steam table RHOnom(Pnom, Tnom) = 2.904 kg/m

    3

    Thus

    ORI = Fnom / SQRT(2 * DPnom * RHOnom)9.257 m

    2

    P_EQIV = 7 barG or any reasonable value, same unit as pressure transmitter

    T_EQIV = 326 Cel or any reasonable value

    DP_MAX = 0.5 bar is measuring range of differential pressure transmitter

    RAD_DP = 0 differential pressure transmitter does not square root

    P_ABS = 0 gauge pressure transmitter

    F_ZERO = 1 kg/s output F is not zero if F > F_ZERO or zero if F < 0.5 * F_ZERO

    F_BACK = 0 kg/s indication in case of disturbed differential pressure transmitter

    2.4.8. Example 2: Saturated Steam Flow

    DPnom Pnom Tnom FnomName plate data of flow nozzle0.27 bar 6.1 barA sat 12.54 kg/s

    You get out of steam table RHOnom(Pnom, Tsat (Pnom)) = 3.218 kg/m3

    thus

    ORI = Fnom / SQRT(2 * DPnom * RHOnom)9.513 m

    2

    P_EQIV = 6 barG or any reasonable value, same unit as pressure transmitter

    T = 7 Cel below saturation at all operating conditions

    T_EQIV = 7 Cel or any reasonable value

    DP_MAX = 0.4 bar is measuring range of differential pressure transmitter

    RAD_DP = 0 differential pressure transmitter does not square root

    P_ABS = 1 absolute pressure transmitter

    F_ZERO = 1.5 kg/s output F is not zero if F > F_ZERO or zero if F < 0.5 * F_ZERO

    F_BACK = F feedbacked from output F means last undisturbed value of

    differential pressure transmitter is frozen in case of

    disturbed differential pressure transmitter

  • 7/28/2019 Rumus2 I

    16/26

    ABBRevision:

    A 2000-06-30

    Language:

    en

    Page

    16 / 26

    Doc - No.

    1KHZ 100 131

    We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosureto third parties without express authority is strictly forbidden. ABB Power Automation Ltd (CH) 2000

    1AHQ 490010 Rev. -- / 96-09-27 / KWGQ (KW 200 600 P4)

    2.5. Calculation : Saturated Steam Temperature, TC STM_TThis function is based on CHAAP GIAM TN 00004

    2.5.1. Attributes

    RequiredSolution Designation STM_T

    Solution Title Saturated Steam Temperature

    System Type Advant Power, AC450

    Owner CHPAU/NPA

    Status Approved

    Last Modification 00-03-28

    Information Only

    Processes CCPP

    Projects Standard

    Solution Layers Incl Control

    2.5.2. Function

    Many functions in the water/steam cycle are based on a saturation temperature calculation. This module calculates

    an approximation of the saturated steam temperature. The variable of the function is an absolute pressure.

    The results are valid between 0.01 barA and 220 barA. The maximum error in this range is less than 2.2 K.

    The maximum error is less than 0.6 K between 0.08 barA and 170 barA.

    T_SAT = f(P + P_AMB)

    2.5.3. Interface

    Terminal Description Location I/O Unit DtaTpe DefltVal Usage

    InputsP Pressure 1 I bar RP_AMB Ambient pressure 2 I barA R 1.013 barA

    OutputsT_SAT Saturation temperature 3 O Cel R

  • 7/28/2019 Rumus2 I

    17/26

    ABBRevision:

    A 2000-06-30

    Language:

    en

    Page

    17 / 26

    Doc - No.

    1KHZ 100 131

    We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosureto third parties without express authority is strictly forbidden. ABB Power Automation Ltd (CH) 2000

    1AHQ 490010 Rev. -- / 96-09-27 / KWGQ (KW 200 600 P4)

    2.6. Calculation : Saturated Steam Temperature, TC STM_T6This function is based on CHAAP GIAM TN 00004

    2.6.1. Attributes

    RequiredSolution Designation STM_T6

    Solution Title Saturated Steam Temperature

    System Type Advant Power, AC160

    Owner CHPAU/NPA

    Status Approved

    Last Modification 00-03-28

    Information Only

    Processes CCPP

    Projects Standard

    Solution Layers Incl Control

    2.6.2. Function

    Many functions in the water/steam cycle are based on a saturation temperature calculation. This module calculates

    an approximation of the saturated steam temperature. The variable of the function is an absolute pressure.

    The results are valid between 0.1 barA and 221.5 barA. The maximum error in this range is less than 0.3 K.

    T_SAT = f(P + P_AMB)

    2.6.3. Interface

    Terminal Description Location I/O Unit DtaTpe DefltVal Usage

    InputsP Pressure 1 I bar RP_AMB Ambient pressure 2 I barA R 1.013 barA

    OutputsT_SAT Saturation temperature 3 O Cel R

  • 7/28/2019 Rumus2 I

    18/26

    ABBRevision:

    A 2000-06-30

    Language:

    en

    Page

    18 / 26

    Doc - No.

    1KHZ 100 131

    We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosureto third parties without express authority is strictly forbidden. ABB Power Automation Ltd (CH) 2000

    1AHQ 490010 Rev. -- / 96-09-27 / KWGQ (KW 200 600 P4)

    2.7. Calculation : Mass Flow for Water, TC WTR_FLWThis function is based on CHAAP GIAM TN 00004

    2.7.1. Attributes

    RequiredSolution Designation WTR_FLW

    Solution Title Mass Flow for Water

    System Type Advant Power, AC450 / AC160

    Owner CHPAU/NPA

    Status Approved

    Last Modification 00-03-28

    Information Only

    Processes CCPP

    Projects Standard

    Solution Layers Incl Control

    2.7.2. Function

    The function calculates the mass flow of water using the differential pressure over an orifice according DIN 1952.

    Pressure and temperature of the medium are required to calculate the density of the water.

    The results are valid between 0.1 barA and 370 barA, resp. between 0 Cel and 310 Cel. The maximum error is lessthan 1 % in the range 0.1 barA and 310 barA, resp. between 10 Cel and 300 Cel.

    For all temperatures above the saturation temperature T_SAT is used in the calculation.

    The mass flow is calculated by the following formula :

    m?= ORI * SQRT(2 * DP * )and

    RHO = (P, T)

    m? = mass flow [kg/s] Pin F

    DP = differential pressure [bar] Pin DP

    = density [kg/m] internal calculated depending from P and T

    ORI = orifice parameter [m2] Pin ORI

    The orifice parameter may be built as follows :

    ORI = Fnom / SQRT(2 * DPnom * RHOnom)or

    ORI = * * (d * /4) * 316.228

    = flow coefficient [1] Fnom = flow at nominal conditions

    = expansion coefficient [1] DPnom = differential pressure at nominal conditions

    d = diameter orifice [m] RHOnom = density nominal at the conditions Pnom and Tnom

  • 7/28/2019 Rumus2 I

    19/26

    ABBRevision:

    A 2000-06-30

    Language:

    en

    Page

    19 / 26

    Doc - No.

    1KHZ 100 131

    We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosureto third parties without express authority is strictly forbidden. ABB Power Automation Ltd (CH) 2000

    1AHQ 490010 Rev. -- / 96-09-27 / KWGQ (KW 200 600 P4)

    2.7.3. Calculation for feedwater

    The calculation of the feedwater density is based on special functions. The diagram below only shows the principleranges of the density.

    2.7.4. Calculation for saturated water

    For the calculation of saturated water only the differential pressure across an orifice and the water pressure arenecessary.

    0

    20

    50

    80

    110

    140

    190

    220

    260

    300

    340

    3

    80

    420

    46

    0

    500

    540

    580

    620

    660 0 bar

    30 bar

    90 bar

    150 bar

    0.0

    200.0

    400.0

    600.0

    800.0

    1000.0

    DENSITY [kg/m3]

    TEMPERATURE [C]

    PRESSURE [barg]

    DENSITY OF WATER/STEAM AS FUNCTION OF PRESSURE AND TEMPERATUR

    Feedwater

    Density of Water as Function of Pressure and Temperature

  • 7/28/2019 Rumus2 I

    20/26

    ABBRevision:

    A 2000-06-30

    Language:

    en

    Page

    20 / 26

    Doc - No.

    1KHZ 100 131

    We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosureto third parties without express authority is strictly forbidden. ABB Power Automation Ltd (CH) 2000

    1AHQ 490010 Rev. -- / 96-09-27 / KWGQ (KW 200 600 P4)

    2.7.5. Interface

    Terminal Description Location I/O Unit DtaTpe DefltVal Usage

    Inputs

    DP Differential pressure 1 I bar RDP_ERR Differential pressure disturbed 2 I - BP Medium pressure 10 I bar R

    P_ERR Medium pressure disturbed 11 I - BP_EQIV Equivalent pressure value if P_ERR = 1 12 I bar R 100 bar

    T Medium temperature 20 I Cel RT_ERR Medium temperature disturbed 21 I - BT_EQIV Equivalent temperature value if T_ERR = 1 22 I Cel R 100 CelDP_MAX Maximum value of differential pressure 25 I bar R

    ORI Orifice parameter defined at nominal conditions 26 I m2 RRAD_DP Differential pressure transmitter makes

    square rooting ( -> application)28 I - B 0

    P_ABS Type of pressure transmitter 1 = absolute 29 I - B 0F_ZERO Indication limit for flow ( -> application) 40 I kg/s R 0 kg/sF_BACK Equivalent flow value if DP_ERR = 1 41 I kg/s R 0 kg/s

    OutputsF Flow 50 O kg/s R

    F_ERRError from differential pressure 51 O - BF_DIST Error from pressure or temperature transmitter 52 O - B

    RHO Density of medium 60 O kg/m3 RSAT_LIN Temperature is given by the internal

    calculated Tsat(P)61 O - B

    2.7.6. Application

    Note: The function contains no signal filtering.

    From a square rooting DP transmitter the true real value is assumed at pin DP in unit bar

    1/2

    , e. g. for a given DP01.5 bar the resulting value range is 01.2247 .

    Output values are set to zero if falling below the value 0.5 * F_ZERO and reanimated above the value F_ZERO

    (hysteresis = 0.5 * F_ZERO).

  • 7/28/2019 Rumus2 I

    21/26

    ABBRevision:

    A 2000-06-30

    Language:

    en

    Page

    21 / 26

    Doc - No.

    1KHZ 100 131

    We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosureto third parties without express authority is strictly forbidden. ABB Power Automation Ltd (CH) 2000

    1AHQ 490010 Rev. -- / 96-09-27 / KWGQ (KW 200 600 P4)

    2.7.7. Example: Water Flow

    DPnom Pnom Tnom FnomName plate data of flow nozzle

    0.7119 bar 11.5 barG 48.9 Cel 90.42 kg/s

    You get out of steam table RHOnom(Pnom, Tnom) = 989.02 kg/m3

    thusORI = Fnom / SQRT(2 * DPnom * RHOnom)2.41 m

    2

    P_EQIV = 12 barG or any reasonable value, same unit as pressure transmitter

    T_EQIV = 49 Cel or any reasonable value

    DP_MAX = 1.1 bar is measuring range of differential pressure transmitter

    RAD_DP = 0 differential pressure transmitter does not square root

    P_ABS = 0 gauge pressure transmitter

    F_ZERO = 5 kg/s output F is not zero if F > F_ZERO or zero if F < 0.5 * F_ZERO

    F_BACK = 0 kg/s indication in case of disturbed differential pressure transmitter

  • 7/28/2019 Rumus2 I

    22/26

    ABBRevision:

    A 2000-06-30

    Language:

    en

    Page

    22 / 26

    Doc - No.

    1KHZ 100 131

    We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosureto third parties without express authority is strictly forbidden. ABB Power Automation Ltd (CH) 2000

    1AHQ 490010 Rev. -- / 96-09-27 / KWGQ (KW 200 600 P4)

    xM

    tZ

    xPHI1

    1

    P

    vlvC)T,P,DP(VLV

    =

    2.8. Calculation : Valve Physics for Compressible Fluid, TC VLV_GASThis function is based on KWGA TN HTCT 427 814

    2.8.1. Attributes

    RequiredSolution Designation VLV_GAS

    Solution Title Valve Physics for Compressible Fluid

    System Type Advant Power, AC450 / AC160

    Owner CHPAU/NPA

    Status Draft

    Last Modification 00-05-2.

    Information Only

    Processes CCPP

    Projects Standard

    Solution Layers Incl Control

    2.8.2. Function

    This function calculates the characteristic values for the following tasks :

    Mass Flow depending from valve stroke, differential pressure, as well as pressure and temperature beforevalve.

    Valve Stroke depending from flow reference , differential pressure, as well as pressure and temperature beforevalve.

    The function calculates the valve factor using the differential pressure across the valve, the pressure before the

    valve and the temperature before the valve (European Standard 60 534). Based on the valve factor both values, i.e. valve stroke and mass flow can be built.

    The solutions can be found in chapter application below.

    The output values are calculated by the following formulas :

    with

    x(DP,P) = MIN(DP / P, DPP_C) == DPP_Land

    t(T) / K = T / Cel + T0

    andPHI = 1 / (3 * DPP_C)

    and

    DPP_C = XT * GAM_GAS / gam_air

    VLV = valve factor [m3/kg/3600]

    DP = differential pressure [bar]P = pressure [barA]T = temperature [Cel] T0 = 273.15

    Z = real gas factor [1] CVLV = 32.826 2 (J/kmol/K)0.5

    XT = critical normalised pressure drop [1]

    GAM_GAS = specific heat ratio of medium [1] gam_air = 1.4 (specific heat ratio of air)M = molecular weight [g/mol]

  • 7/28/2019 Rumus2 I

    23/26

    ABBRevision:

    A 2000-06-30

    Language:

    en

    Page

    23 / 26

    Doc - No.

    1KHZ 100 131

    We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosureto third parties without express authority is strictly forbidden. ABB Power Automation Ltd (CH) 2000

    1AHQ 490010 Rev. -- / 96-09-27 / KWGQ (KW 200 600 P4)

    DPP(DP,P) = DP / P

    DPP_L(DP,P) = MIN(DPP, DPP_C)

    DPP = normalized pressure drop [1]DPP_L = limited DPP [1]

    CHOCKED := DPP > DPP_C

    CHOCKED = sonic flow

    To get the mass flow resp. valve stroke see the formulas in chapter application below.

    2.8.3. Interface

    Terminal Description Location I/O Unit DtaTpe DefltVal Usage

    InputsDP Differential pressure across valve 1 I bar RP Pressure before valve 2 I barA RT Temperature before valve 3 I Cel RXT Critical normalized pressure drop 4 I - R 0.804GAM_GAS Specific heat ratio of the medium 5 I - R 1.306

    Z Real gas factor of the medium 6 I - R 0.03055M Molecular weight of the medium 7 I g/mol R 18.5 g/mol

    OutputsVLV Valve factor 11 O m3/kg/3600 RDPP Normalized pressure drop 12 O - RDPP_L Limited DPP 13 O - RCHOCKED Chocked flow DPP > DPP_L 21 O - B

  • 7/28/2019 Rumus2 I

    24/26

    ABBRevision:

    A 2000-06-30

    Language:

    en

    Page

    24 / 26

    Doc - No.

    1KHZ 100 131

    We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosureto third parties without express authority is strictly forbidden. ABB Power Automation Ltd (CH) 2000

    1AHQ 490010 Rev. -- / 96-09-27 / KWGQ (KW 200 600 P4)

    2.8.4. Application

    The mass flow is calculated by using the valve factor, the non-linear valve characteristic, and the actual valve

    stroke.

    m?(y,DP,P,T) = f(y) / VLV(DP,P,T) { * KV_CORR }

    m? = mass flow calculated [kg/s] KV_CORR = 1.0 (valve flow capacity)f(y) = valve characteristic [m3/h] KV_CORR may be a function of DPP_L

    y = valve stroke actual [%]

    The valve stroke is calculated by using the valve factor, the inverted non-linear valve characteristic, and the actualflow reference.

    y(m?ref,DP,P,T) = y(F)with

    F = m?ref* VLV(DP,P,T) { / KV_CORR }

    y = valve stroke calculated [%] KV_CORR see above

    y(F) = inverted valve characteristic [%]

    m?ref = flow reference [kg/s]

    C_VLV = 3 600 / 10 000 * SQRT( R)with

    R= 8 314.51 J/kmol/K

    The critical normalized pressure drop XT is a function of the valve geometry. For a given valve design it should

    not be used to calibrate the medium mass flow calculation.The real gas factor Z, the gas molecular weight M, and the gas specific heat ratio GAM_GAS are all mediumspecific inputs and must be set accordingly. Both the real gas factor and the gas molecular weight are standard

    outputs of the medium composition analysis.

  • 7/28/2019 Rumus2 I

    25/26

    ABBRevision:

    A 2000-06-30

    Language:

    en

    Page

    25 / 26

    Doc - No.

    1KHZ 100 131

    We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosureto third parties without express authority is strictly forbidden. ABB Power Automation Ltd (CH) 2000

    1AHQ 490010 Rev. -- / 96-09-27 / KWGQ (KW 200 600 P4)

    2.8.5. ApplicExample : ValveStroke(Flow_REF)

    2.8.6. ApplicExample : ValveFlow(Strk_ACT)

    Note:

    MEAS4 means opt. valve flow capacity KV_CORRSTRK_X means corr. volume flow points of valve characteristic

    STRK_Y means corr. valve position points of valve characteristic

  • 7/28/2019 Rumus2 I

    26/26

    ABBRevision:

    A 2000-06-30

    Language:

    en

    Page

    26 / 26

    Doc - No.

    1KHZ 100 131

    3. Revision Page

    Rev. Page (p.)Chapt. (c.)

    Description DateDept. - Name

    A c. 2.2 Addition of TC GAS_FLW 00-06-30, ly