Top Banner
Rosalyn Moran Virginia Tech Carilion Research Institute Bradley Department of Electrical & Computer Engineering Department of Psychiatry and Behavioral Medicine, VTC School of Medicine Dynamic Causal Modelling For Cross-Spectral Densities
59

Rosalyn Moran Virginia Tech Carilion Research Institute

Feb 24, 2016

Download

Documents

Audra

Dynamic Causal Modelling For Cross-Spectral Densities. Rosalyn Moran Virginia Tech Carilion Research Institute Bradley Department of Electrical & Computer Engineering Department of Psychiatry and Behavioral Medicine, VTC School of Medicine. Outline. Data Features in DCM for CSD - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

Rosalyn Moran

Virginia Tech Carilion Research InstituteBradley Department of Electrical & Computer Engineering

Department of Psychiatry and Behavioral Medicine, VTC School of Medicine

Dynamic Causal Modelling For Cross-Spectral Densities

Page 2: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

Data Features in DCM for CSDGenerative Models in the time domain

Generative Models in the frequency domainDCM Inversion procedure

Example 1: L-Dopa Modulations of theta spectra using DCM for CSDExample 2: Propofol Modulations of Delta and Gamma spectra using DCM for CSD

Outline

Page 3: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

Data Features in DCM for CSDGenerative Models in the time domain

Generative Models in the frequency domainDCM Inversion procedure

Example 1: L-Dopa Modulations of theta spectra using DCM for CSDExample 2: Propofol Modulations of Delta and Gamma spectra using DCM for CSD

Outline

Page 4: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

Dynamic Causal Modelling: Generic Framework

simple neuronal model

(slow time scale)

fMRI

detailed neuronal model

(synaptic time scales)

EEG/MEG

),,( uxFdtdx

Neural state equation:

Hemodynamicforward model:neural activity BOLD

Time Domain Data

Resting State Data

Electromagneticforward model:

neural activity EEGMEGLFP

Time Domain ERP DataPhase Domain Data

Time Frequency DataSpectral Data

Page 5: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

Dynamic Causal Modelling: Generic Framework

simple neuronal model

(slow time scale)

fMRI

detailed neuronal model

(synaptic time scales)

EEG/MEG

),,( uxFdtdx

Neural state equation:

Hemodynamicforward model:neural activity BOLD

Time Domain Data

Resting State Data

Electromagneticforward model:

neural activity EEGMEGLFP

Time Domain ERP DataPhase Domain Data

Time Frequency DataSpectral Data Frequency (Hz)

Pow

er (m

V2 )

“theta”

Page 6: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

DCM for Steady State ResponsesUnder linearity and stationarity assumptions, the model’s

biophysical parameters (e.g. post-synaptic receptor density and time constants) prescribe the cross-spectral density of responses measured directly (e.g. local field potentials) or indirectly through

some lead-field (e.g. electroencephalographic and magnetoencephalographic data).

Page 7: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

Steady State

Statistically:A “Wide Sense Stationary” signal has 1st and 2nd moments that do

not vary with respect to time

Dynamically:A system in steady state has settled to some equilibrium after a

transient

Data Feature:Quasi-stationary signals that underlie Spectral Densities in the

Frequency Domain

Page 8: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

Dynamic Causal Modelling: Framework

Generative Model

Baye

sian

Inve

rsio

n

Empirical Data

Model Structure/ Model Parameters

Explanandum

Competing Hypotheses (Models)

Optimization under model constraints

Page 9: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

Spectral Densities

0 5 10 15 20 25 300

5

10

15

20

25

30

Frequency (Hz)

Pow

er (u

V2 )

0 5 10 15 20 25 300

5

10

15

20

25

30

Frequency (Hz)

Pow

er (u

V2 )

Spectral Density in Source 1

Spectral Density in Source 2

Page 10: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

Spectral Densities

0 5 10 15 20 25 300

5

10

15

20

25

30

Frequency (Hz)

Pow

er (u

V2 )

0 5 10 15 20 25 300

5

10

15

20

25

30

Frequency (Hz)

Pow

er (u

V2 ) 0 5 10 15 20 25 300

5

10

15

20

25

30

Frequency (Hz)

Pow

er (u

V2 )

Cross-Spectral Density between Sources 1 & 2

Spectral Density in Source 1

Spectral Density in Source 2

Page 11: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

Cross Spectral Density: The Data EE

G -

MEG

– L

FP T

ime

Serie

s

Cross Spectral D

ensity

1

1

2

2 3

3

4

4

1

2

3

4

A few LFP channels or EEG/MEG spatial modes

Page 12: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

Autoregressive Model used to extract spectral representations from dataImaginary Numbers RetainedAveraged over trial types

npnpnnn eyyyy ....2211

ijijijij HHg )()()(

iwpijp

iwijiwijij eeeH

......1)( 2

21

Real and Imaginary

Data features

Cross Spectral Density: The Data

Default order 8

AR coefficients prescribe the spectral densities

Page 13: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

Outline

Data Features in DCM for CSDGenerative Models in the time domain

Generative Models in the frequency domainDCM Inversion procedure

Example 1: L-Dopa Modulations of theta spectra using DCM for CSDExample 2: Propofol Modulations of Delta and Gamma spectra using DCM for CSD

Page 14: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

A selection of intrinsic architectures in SPM

A suite of neuronal population models including neural masses, fields and

conductance-based models…expressed in terms of sets of differential equations

Page 15: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

Neural Mass Models in DCM

neuronal (source) model

State equationsExtrinsic Connections

,,uxFx

Granular Layer

Supragranular Layer

Infragranular Layer

Intrinsic Connections

Internal Parameters

EEG/MEG/LFPsignal

Properties of tens of thousands of neurons approximated by their average response

Page 16: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

Conductance-Based Neural Mass Models in DCM

))(()(

, gVgVVgVC

affthresholdaffaff

rev

Current in

Conductance

Potential Difference Noise Term: Since properties of tens of thousands of neurons approximated by their average response

Two governing equations: V = IR ……….. Ohms Law I = C dV/dt ……. for a capacitor

Page 17: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

))(()(

, gVgVVgVC

affthresholdaffaff

rev

Current in

Conductance

Potential Difference Noise Term: Since properties of tens of thousands of neurons approximated by their average response

Time constant: κ Afferent Spikes :Strength of connection x σ

Channels already open: g

Conductance-Based Neural Mass Models in DCM

Two governing equations: V = IR ……….. Ohms Law I = C dV/dt ……. for a capacitor

Page 18: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

))(()(

, gVgVVgVC

affthresholdaffaff

rev

Current in

Conductance

Potential Difference Noise Term: Since properties of tens of thousands of neurons approximated by their average response

Time constant: κ Channels already open: g

σ

μ - V

Afferent Spikes :Strength of connection x σ

Conductance-Based Neural Mass Models in DCM

Two governing equations: V = IR ……….. Ohms Law I = C dV/dt ……. for a capacitor

Page 19: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

))(()(

, gVgVVgVC

affthresholdaffaff

rev

Intrinsic Afferents

Extrinsic Afferents

Conductance-Based Neural Mass Models in DCM

Page 20: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

Different Neurotransmitters and Receptors?

Different Cell Types in 3/6 Layers?

Conductance-Based Neural Mass Models in DCM

Page 21: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

Spiny stellate cells

Pyramidal cells

Inhibitory interneuron

))(()(

, gVgVVgVC

affthresholdaffaff

rev

Current Conductance Reversal Pot – Potential Diff

Afferent Firing No. open channelsTime ConstantConductance

Unit noise

Firing Variance

Exogenous input

E13

)(tI

Excitatory spiny cells in granular layers

Excitatory pyramidal cells in extragranular layers

Inhibitory cells in extragranular layers

Measured response

)( )3(Vg

E31

E23I

32

EERVE

EE

VEELL

gVg

IVVgVVgVC

)),((

)()()1()3()3(

13)1(

)1()1()1()1(

IIRVI

II

EERVE

EE

VIIEELL

gVg

gVg

VVgVVgVVgVC

)),((

)),((

)()()(

)2()2()2(22

)2(

)2()3()3(23

)2(

)2()2()2()2()2()2(

IIRVI

II

EERVE

EE

VIIEELL

gVg

gVg

VVgVVgVVgVC

)),((

)),((

)()()(

)3()2()2(32

)3(

)3()1()1(31

)3(

)3()3()3()3()3()3(

I22

Conductance-Based Neural Mass Models in DCM

Page 22: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

vivHi

iv

dthvt

tetHthhv

ieieaffieie

tt

2//// 2)(

)(0;0

0;.)(;

Spiny stellate cells

Pyramidal cells

Inhibitory interneuron

MaximumPost Synaptic Potential

Parameterised Sigmoid

Inverse TimeConstant

Synaptic Kernel

H

Intrinsic connectivity

Convolution-Based Neural Mass Models in DCM

Extrinsic Forward Input

Extrinsic Backward Input

Extrinsic Backward Input

Page 23: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

vivHi

iv

dthvt

tetHthhv

ieieaffieie

tt

2//// 2)(

)(0;0

0;.)(;

Spiny stellate cells

Pyramidal cells

Inhibitory interneuron

12

1611

11

2))(( viIvHi

iv

eeee

5

Exogenous input

1)(tI

Excitatory spiny cells being granular layers

Excitatory pyramidal cells in extragranular layers

Inhibitory cells in extragranular layers

Measured response

)( 6vg

2

34547

52

5755

55

42

4634

44

2)(

2)(

iivvivHi

ivvivHi

iv

iiii

eeee

326

32

3743

33

22

2122

22

2)(

2)(

iivvivHi

ivvivHi

iv

iiii

eeee

MaximumPost Synaptic Potential

Parameterised Sigmoid

Inverse TimeConstant

Synaptic Kernel

H

Intrinsic connectivity

Convolution-Based Neural Mass Models in DCM

Extrinsic Forward Input

Extrinsic Backward Input

Extrinsic Backward Input

Page 24: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

Spiny stellate

Pyramidal cells

Inhibitory interneuron

Extrinsic Output

Extrinsic Forward Input

Extrinsic Backward Input

Extrinsic Backward Input

GABA Receptors

AMPA Receptors

NMDA Receptors

))(()(

, gVgVVgVC

affthresholdaffaff

rev

4 population CanonicalMicro-Circuit (CMC)

Spiny stellate

Superficial pyramidal

Inhibitory interneuron

Deep pyramidal

4-subpopulationCanonical Microcircuit

BackwardExtrinsic Output

ForwardExtrinsic Output

Extrinsic Forward Input

Extrinsic Backward Input

Extrinsic Backward Input

Temporal Derivatives

Page 25: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

Outline

Data Features in DCM for CSDGenerative Models in the time domain

Generative Models in the frequency domainDCM Inversion procedure

Example 1: L-Dopa Modulations of theta spectra using DCM for CSDExample 2: Propofol Modulations of Delta and Gamma spectra using DCM for CSD

Page 26: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

Time Differential Equations

)()(

xlyBuxfx

State Space Characterisation

CxyBuAxx

Transfer FunctionFrequency Domain

BAsICsH )()(

Linearise

mV

State equations to Spectra

Moran, Kiebel, Stephan, Reilly, Daunizeau, Friston (2007) A neural mass model of spectral responses in electrophysiology. NeuroImage

u: spectral innovationsWhite and colored noise

Page 27: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

State Space Characterisation

CxyBuAxx

Generative Model of Spectra

Moran, Kiebel, Stephan, Reilly, Daunizeau, Friston (2007) A neural mass model of spectral responses in electrophysiology. NeuroImage

0100100000002000000000

0100000000000000001100000002000000000010000000

000002000000000002000000000200000000100000000000010000000000001000

52

32

.42

22

12

gH

gH

gHgH

gH

A

iiii

eeee

iiii

eeee

eeee

00000000

000

eeH

B

000100000000

TC

Populated According to the neural mass model equations

The Output State(Pyramidal Cells)

The Input State(Stellate Cells)

Page 28: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

State Space Characterisation

CxyBuAxx

0100100000002000000000

0100000000000000001100000002000000000010000000

000002000000000002000000000200000000100000000000010000000000001000

52

32

.42

22

12

gH

gH

gHgH

gH

A

iiii

eeee

iiii

eeee

eeee

00000000

000

eeH

B

000100000000

TC

Modulation Transfer FunctionAn analytic mixture of state space parameters

Output Spectrum (Y) = Modulation Transfer Function x Spectrum of Innovations

Generative Model of Spectra

Page 29: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

Freq

uenc

yNMDA connectivty

Posterior Cingulate Cortex

4 5 6 7 8

4

6

8

10

12

14

162 4 6 8 10 12 14 16

0

0.5

1

1.5

2

2.5

3

3.5

4

Frequency

Log

Powe

r

Posterior Cingulate Cortex

Freq

uenc

y

NMDA connectivty

Anterior Cingulate Cortex

4 5 6 7 8

4

6

8

10

12

14

16

2 4 6 8 10 12 14 160

2

4

6

8

10

12

Frequency

Log

Powe

r

Anterior Cingulate Cortex

)),(( )2()2()2()2(NMDARVNMDAINMDA gVg

Generative Model of Spectra

Page 30: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

Observer Model in the Frequency Domain

Frequency (Hz)

Frequency (Hz)

Frequency (Hz)

Pow

er (m

V2 )Po

wer

(mV2 )

Pow

er (m

V2 )

Spectrum channel/mode 1

Spectrum mode 2

Cross-spectrum modes 1& 2..),:()(2 ,/ ieieHfH

..),:()(12 ,/ ieieHfH

..),:()(1 ,/ ieieHfH

+ White Noise in Electrodes

Page 31: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

Interconnected Neural mass models

Lead Field

Sensor LevelSpectral Responses

Summary: Neural Mass Models in DCM

Page 32: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

Outline

Data Features in DCM for CSDGenerative Models in the time domain

Generative Models in the frequency domainDCM Inversion procedure

Example 1: L-Dopa Modulations of theta spectra using DCM for CSDExample 2: Propofol Modulations of Delta and Gamma spectra using DCM for CSD

Page 33: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

Dynamic Causal Modelling: Inversion & Inference

fMRI EEG/MEG

Neural

state equation:

Electromagneticforward model:

Hemodynamicforward model:

Generative Model

Baye

sian

Inve

rsio

n

Empirical Data

Model Structure/ Model Parameters

Page 34: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

Inference on models

Dynamic Causal Modelling: Inversion & InferenceBa

yesia

n In

vers

ion

)|()|(),|(),|(

mypmpmypmyp Bayes’ rules:

Model 1Model 2 Model 1

Free Energy: )),()(()(ln mypqDmypF max

-2 -1 0 1 2 3 4 50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

%1.99)|0( yconnp

Inference on parameters

)|()|(

2

1

mypmypBF

Model comparison via Bayes factor:

accounts for both accuracy and complexity of the model

allows for inference about structure (generalisability) of the model

Page 35: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

Inference on models

Inference on parameters

Dynamic Causal Modelling: Inversion & InferenceBa

yesia

n In

vers

ion

)|()|(

2

1

mypmypBF

Model comparison via Bayes factor:

)|()|(),|(),|(

mypmpmypmyp Bayes’ rules:

accounts for both accuracy and complexity of the model

allows for inference about structure (generalisability) of the model

Model 1Model 2 Model 1

Free Energy: )),()(()(ln mypqDmypF max

-2 -1 0 1 2 3 4 50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

),()( mypq

%1.99)|0( yconnp

A Neural Mass Model

Page 36: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

Inversion in the real & complex domain

0 10 20 30 40 500

0.5

1

1.5

2

2.5

3

3.5

Frequency (Hz)

real

prediction and response: E-Step: 32

0 10 20 30 40 50-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

imag

inar

y

prediction and response: E-Step: 32

0 10 20 30 40 50 60 70 80-2

-1.5

-1

-0.5

0

0.5

1

1.5

parameter

conditional [minus prior] expectation

Page 37: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

Outline

Data Features in DCM for CSDGenerative Models in the time domain

Generative Models in the frequency domainDCM Inversion procedure

Example 1: L-Dopa Modulations of theta spectra using DCM for CSDExample 2: Propofol Modulations of Delta and Gamma spectra using DCM for CSD

Page 38: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

Dopaminergic modulation in Humans

Aim: Infer plausible synaptic effects of dopamine in humans via non-invasive imaging

Approach: Double blind cross-over (within subject) design, with participants on placebo or

levodopa

Use MEG to measure effects of increased dopaminergic transmission

Study a simple paradigm with “known” dopaminergic effects (from the animal literature): working memory maintenance

Apply DCM to one region (a region with sustained activity throughout maintenance prefrontal)

Moran, Symmonds, Stephan, Friston, Dolan (2011) An In Vivo Assay of Synaptic Function Mediating Human Cognition, Current Biology

Page 39: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

• Animal unit recordings have shown selective persistent activity of dorsolateral prefrontal neurons during the delay period of a delayed-response visuospatial WM task (Goldman-Rakic et al, 1996)

• The neuronal basis for sustained activity in prefrontal neurons involves recurrent excitation among pyramidal neurons and is modulated by dopamine (Gao, Krimer, Goldman-Rakic, 2001)

• Dose dependant inverted U

Working Memory

Page 40: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

Dopamine in Working Memory

• DA terminals converge on pyramidal cells and inhibitory interneurons in PFC (Sesack et al, 1998)

• DA modulation occurs through several pre and post synaptic mechanisms (Seamans & Yang, 2004)

- Increase in NMDA mediated responses in pyramidal cells – postsynaptic D1 mechanism

- Decrease in AMPA EPSPs in pyramidal cells – presynaptic D1 mechanism

- Increase in spontaneous IPSP Amplitude and Frequency in GABAergic interneurons

- Decrease in extrinsic input current

Gao et al, 2001

Wang et al, 1999

Seamans et al, 2001

Page 41: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

Memory

Probe Image

Target Image

. . . .4 sec

. . 300 ms

. . . . 2 sec

. . 300 ms

Memory

e.g. match e.g. no match

WM Paradigm in MEG on and off levodopa

Maintenance Period

Load titrated to 70% accuracy(predrug)

Page 42: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

Behavioural Results

Memory

Probe Image

Target Image

match

68

69

70

71

72

73

74

75

76

77

Placebo L-Dopa

Titration

*

% A

ccur

acy

Page 43: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

Activity at sensors during maintenance

• Localised main effect and interaction in right prefrontal cortex

• Significant effects of memory in different frequency bands (channels over time)

• Sustained effect throughout maintenance in delta - theta - alpha bands

Broad Band Low Frequency Activity

P A P AP A

Tim

e (s

)0

4 sensors

Interaction: Memory and Dopamine

c

Time (msec)

Freq

uenc

y (H

z)

0 2 4 6 8 10 12 14 16 180.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Frequency (Hz)

Nor

mal

ised

Pow

er (

a.u.

)

L-Dopa

Placebo

Sustained Activity during memory maintenance:Sensor Space

Page 44: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

DCM Architecture

AMPA receptors

NMDA receptors

GABAa receptors

Receptor Types

Pyramidal Cell (Population 3)

Inhibitory Interneurons (Population 2)

Spiny Stellates (Population 1)

Cell Populations

3,2

2,1

1,3

2,33,3

3,1

γ : The strengths of presynaptic inputs to and postsynaptic conductances of transmitter-receptor pairs

i.e. a coupling measure that absorbs a number of biophysical processes, e.g.:Receptor DensityTransmitter Reuptake

Page 45: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

Synaptic Hypotheses

-100 -50 0 500

0.2

0.4

0.6

0.8

1

Membrane Potential (mV)

pyramidal

cellspyrami

dal cells

spiny stellate

cells

inhibitory interneurons

pyramidal cells

Ext

rinsi

c C

ortic

al In

put (

u)

NMDANMDARVNMDANMDA

AMPAAMPARVAMPAAMPA

VEMgNMDAEAMPALL

gVg

gVg

VVVfgVVgVVgVC

)),((

)),((

))(()()(

)2()3()3(3,2

)2(

)2()3()3(3,2

)2(

)2()2()2()2()2()2()2(

GABAaGABAaRVGABAaGABAa

NMDANMDARVRVNMDANMDA

AMPAAMPARVRVAMPAAMPA

VIGABAaEMgNMDAEAMPALL

gVg

gVVg

gVVg

VVgVVVfgVVgVVgVC

)),((

))],(),(([

))],(),(([

)())(()()(

)3()2()2(2,3

)3(

)3()3()3(3,3

)1()1(1,3

)3(

)3()3()3(3,3

)1()1(1,3

)3(

)3()3()3()3()3()3()3()3()3(

GABAaGABAaRVGABAaGABAa

AMPAAMPARVAMPAAMPA

VIGABAaEAMPALL

gVg

gVg

VVgVVgVVgVC

)),((

)),((

)()()(

)1()2()2(2,1

)1(

)1()3()3(3,1

)1(

)1()1()1()1()1()1(

3,31,3

3,22,3

3,1

2,1

L-Dopa relative to Placebo, Memory – No Memory Trials 1. Decrease in AMPA coupling (decreased γ1,3) 2. Increased sensitivity by NMDA receptors (increased α) 3. Increase in GABA coupling (increased γ3,2) 4. Decreased exogenous input (decreased u)

Page 46: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

Parameter Estimates

L-Dopa : Memory – No Memory:

Interaction of Parameter and Task on L-Dopa ( p = 0.009)

L-Dopa : Memory – No Memory

MA

P Pa

ram

eter

est

imat

es

γ1,3 α γ 3,2 u u

-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

-8

-7

-6

-5

-4

-3

-2

-1

0x 10-4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16 *

*

L-Dopa relative to Placebo, Memory – No Memory Trials 1. Decrease in AMPA coupling (decreased γ1,3) 2. Increased sensitivity by NMDA receptors (increased α) 3. Increase in GABA coupling (increased γ3,2) 4. Decreased exogenous input (decreased u)

Moran, Symmonds, Stephan, Friston, Dolan (2011) An In Vivo Assay of Synaptic Function Mediating Human Cognition, Current Biology

Page 47: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

Individual Behaviour

L-Dopa : Memory – No Memory

MA

P Pa

ram

eter

est

imat

es

γ1,3 α γ 3,2 u-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

-8

-7

-6

-5

-4

-3

-2

-1

0x 10-4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

*

*

• Decrease in AMPA coupling (decreased γ1,3)• Increased sensitivity by NMDA receptors

(increased α)

Performance Increase

AM

PA c

onne

ctiv

ity γ

1,3

-10 -5 0 5 10 15 20-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

R = -0.51p < 0.05

Performance Increase

NM

DA

Non

linea

rity

α

-10 -5 0 5 10 15 20-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

R = 0.59p < 0.05

Moran, Symmonds, Stephan, Friston, Dolan (2011) An In Vivo Assay of Synaptic Function Mediating Human Cognition, Current Biology

Page 48: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

Outline

Data Features in DCM for CSDGenerative Models in the time domain

Generative Models in the frequency domainDCM Inversion procedure

Example 1: L-Dopa Modulations of theta spectra using DCM for CSDExample 2: Propofol Modulations of Delta and Gamma spectra using DCM for CSD

Page 49: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

Connectivity changes underlying spectral EEG changes during propofol-induced loss of consciousness.

WakeMild Sedation: Responsive to commandDeep Sedation: Loss of Consciousness

Boly, Moran, Murphy, Boveroux, Bruno, Noirhomme, Ledoux, Bonhomme, Brichant, Tononi, Laureys, Friston, J Neuroscience, 2012

Page 50: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

Propofol-induced loss of consciousness

WakeMild Sedation: Responsive to commandDeep Sedation: Loss of Consciousness

Anterior Cingulate/mPFC

Precuneus/Posterior Cingulate

Page 51: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

WakeMild Sedation: Responsive to commandDeep Sedation: Loss of Consciousness

Increased gamma power in Propofol vs WakeIncreased low frequency power when consiousness is lost

Murphy et al. 2011

Propofol-induced loss of consciousness

Anterior Cingulate/mPFC

Precuneus/Posterior Cingulate

Page 52: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

Bayesian Model Selection

WakeMild SedationDeep Sedation

Propofol-induced loss of consciousness

ACC PCCACC PCC ACC PCC

Thalamus Thalami

Page 53: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

WakeMild SedationDeep Sedation

Propofol-induced loss of consciousness

ACC PCCACC PCC ACC PCC

Thalamus Thalami

Page 54: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

Wake

Propofol-induced loss of consciousness

Parameters of Winning Model ACC PCC

Thalamus

Page 55: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

Wake

Mild Sedation:Increase in thalamic excitability

Propofol-induced loss of consciousness

ACC PCC

Thalamus

ACC PCC

Thalamus

Page 56: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

Wake

Mild Sedation:Increase in thalamic excitability

Propofol-induced loss of consciousness

ACC PCC

Thalamus

ACC PCC

Thalamus

Loss of Consciousness:Breakdown in Cortical Backward Connections

ACC PCC

Thalamus

Page 57: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

Propofol-induced loss of consciousness

Loss of Consciousness

:Breakdown in Cortical Backward Connections

ACC PCC

Thalamus

Boly, Moran, Murphy,Boveroux, Bruno, Noirhomme, Ledoux, Bonhomme, Brichant, Tononi, Laureys, Friston, J Neuroscience, 2012

Page 58: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

Summary

• DCM is a generic framework for asking mechanistic questions of neuroimaging data

• Neural mass models parameterise intrinsic and extrinsic ensemble connections and synaptic measures

• DCM for SSR is a compact characterisation of multi- channel LFP or EEG data in the Frequency Domain

• Bayesian inversion provides parameter estimates and allows model comparison for competing hypothesised architectures

• Empirical results suggest valid physiological predictions

Page 59: Rosalyn  Moran Virginia Tech  Carilion  Research Institute

Thank You

• FIL Methods Group