Top Banner
Music 318, Winter 2007, Impulse Response Measurement Room Impulse Response Measurement and Analysis 0 10 20 30 40 50 60 70 80 90 100 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 CCRMA Lobby Impulse Response time - milliseconds direct path early reflections late-field reverberation power - dB 0 10 20 30 40 50 60 response spectra frequency - Bark 0 5 10 15 20 25 0 200 400 600 800 1000 1200 1400
22

Room Impulse Response

Aug 02, 2015

Download

Documents

Thang Pfiev
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Room Impulse Response

Music 318, Winter 2007, Impulse Response Measurement

Room Impulse Response Measurementand Analysis

0 10 20 30 40 50 60 70 80 90 100-0.4

-0.2

0

0.2

0.4

0.6

0.8

1CCRMA Lobby Impulse Response

time - milliseconds

direct path

early reflections

late-field reverberation

power - dB

0

10

20

30

40

50

60

response spectra

frequency - Bark0 5 10 15 20 25

0

200

400

600

800

1000

1200

1400

Page 2: Room Impulse Response

Music 318, Winter 2007, Impulse Response Measurement 2

Reverberation and LTI Systems

0 10 20 30 40 50 60 70 80 90 100-0.4

-0.2

0

0.2

0.4

0.6

0.8

1CCRMA Lobby Impulse Response

time - milliseconds

direct path

early reflections

late-field reverberation

• Reflected source signals are sensitive to the detailsof the environment geometry and materials.

• Reverberation is roughly linear and time-invariant,and thus characterized by its impulse response.

(t) = L a(t){ }, (t) = L b(t){ }

L a(t) + b(t){ } = (t) + (t)

L ⋅ a(t){ } = ⋅ (t)

L a(t − ){ } = (t − )

superposition, linearity

time invariance

Page 3: Room Impulse Response

Music 318, Winter 2007, Impulse Response Measurement 3

0 0.5 1 1.5 2

0

0.5

1

test signal

time - seconds

ampl

itude

test signal response

time - seconds

freq

uenc

y -

kHz

0 0.5 1 1.5 20

2

4

6

8

10

LTI System Measurement

Impulsive test signal:

– Limited input amplitude poor noise rejection

s(t)

LTI system

r(t)

test sequence

measured response

n(t)

h(t)

measurement noise

s(t) = (t) → ˆ h (t) = r(t)

Page 4: Room Impulse Response

Music 318, Winter 2007, Impulse Response Measurement 4

LTI System Measurement Methods

• Smear impulse over time – allpass chirp, sine sweep

s(t)

LTI system

r(t)

test sequence

measured response

n(t)

h(t)

measurement noise sk (t) ∗ sk (−t) =

k∑ ⋅ (t)

→ ˆ h (t) =1

sk (−t) ∗ rk (t) k

• Repeat measurement, average results – MLS, Golay

sk (t) = (t), k = 1,2,K → ˆ h (t) =

1rk (t)

k∑

s(t) = ⋅ a(t), a(−t) ∗ a(t) = (t) → ˆ h (t) =1

s(−t) ∗ r(t)

Page 5: Room Impulse Response

Music 318, Winter 2007, Impulse Response Measurement 5

Sine Sweep Measurement

0 0.5 1 1.5 2-1

0

1

test signal

time - seconds

ampl

itude

test signal response

time - seconds

freq

uenc

y -

kHz

0 0.5 1 1.5 20

2

4

6

8

10

0 0.5 1 1.5 2

0

0.5

1

processed chirp

time - seconds

ampl

itude

estimated impulse response

time - secondsfr

eque

ncy

- kH

z

0 0.5 1 1.5 20

2

4

6

8

10

• Frequency trajectory (t), t [0,T], sine sweep s(t):

s(t) = sin (t), (t) = ( )d0

t

Page 6: Room Impulse Response

Music 318, Winter 2007, Impulse Response Measurement 6

s(t) ∗ (t) ≈ (t), bandlimited to ∈[ 0, T ]

Sine Sweep Generation

• Monotonic frequency trajectory (t), t [0,T]

• Sine sweep s(t), "inverse" (t):

s(t) = sin (t), (t) = ( )d0

t

• For (t) monotonic, slowly varying, [ 0, T]

(t) = v(−t) ⋅ sin (−t), v(t) = 2d

dt

Page 7: Room Impulse Response

Music 318, Winter 2007, Impulse Response Measurement 7

E{ ˆ h (t)} = h(t) + (t) ∗E{n(t)} = h(t)

Measurement Bias, SNR Gain

• Impulse response estimate

ˆ h (t) = (t) ∗ r(t) = [ (t) ∗ s(t)] ∗ h(t) + (t) ∗ n(t)

= h(t) + (t) ∗ n(t)

• Expected value (zero-mean noise assumed)

• SNR gain (sweep, noise uncorrelated)

Γ( ) ∝1/ 2d

dt

s(t)

LTI system

r(t)

test sequence

measured response

n(t)

h(t)

measurement noise

Page 8: Room Impulse Response

Music 318, Winter 2007, Impulse Response Measurement 8

sine sweep response

time - seconds

freq

uenc

y -

kHz

0.2 0.4 0.6 0.8 1 1.2 1.4 1.60

5

10

15

20

Nonlinear Measurement Example

• Speaker generates harmonic series

r(t) = g(t) ∗ ( k)sin k ( )d0

t

∫( )k

∑ , k (t) = k ⋅ (t)

s(t)(·)

speaker

g(t)

room

r(t)

Page 9: Room Impulse Response

Music 318, Winter 2007, Impulse Response Measurement 9

exponential sweep response

time - seconds

freq

uenc

y -

kHz

0.2 0.4 0.6 0.8 1 1.2 1.4 1.610-1

100

101

Exponential Sweep (Farina, 2000)

• Sweep harmonic trajectories isomorphic; appear astime-offset exponential sweeps

(t) = 0 ⋅e t, =1

Tlog 0

T

= (t + 1 log k)

k (t) = k ⋅ 0 ⋅e t

= 0 ⋅e(t + 1 log k)

Page 10: Room Impulse Response

Music 318, Winter 2007, Impulse Response Measurement 10

0 0.5 1 1.5 2-0.5

0

0.5

1processed response

time - secondsam

plitu

de

exponential sweep response

time - seconds

freq

uenc

y -

kHz

0 0.5 1 1.5 210-1

100

101

Exponential Sweep Response

• Processing using the sweep inverse produces a series oftime-shifted responses, one for each harmonic present.

• The "linear" response is the impulse response; the remainingresponses are used to estimate THD.

Page 11: Room Impulse Response

Music 318, Winter 2007, Impulse Response Measurement 11

0 0.5 1 1.5 2-0.5

0

0.5

1processed response

time - seconds

ampl

itude

exponential sweep response

time - seconds

freq

uenc

y -

kHz

0 0.5 1 1.5 210-1

100

101

System Linear Portion

• Power nonlinearities generate even/odd harmonicseries, depending on the sense of p; e.g., for p odd,

cosp t = 21− p p

k

cos( p − 2k)k =0

( p −1)/2

∑ ⋅ t

→ The time-separated "linear" response may not bethe desired system linear portion.

s(t)g(t)

room

(·)

mic preamp

r(t)

preamp nonlinearity

Page 12: Room Impulse Response

Music 318, Winter 2007, Impulse Response Measurement 12

0 500 1000 1500-0.5

0

0.5sine sweep, s(t)

ampl

itude

freq

uenc

y -

kHz

sine sweep spectrogram

0 200 400 600 800 10000

5

10

0 500 1000 1500-0.5

0

0.5sine sweep response, r(t)

time - milliseconds

ampl

itude

time - milliseconds

freq

uenc

y -

kHz

sine sweep response spectrogram

0 200 400 600 800 10000

5

10

0 5 10 15 20 25 30 35 40-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2measured impulse response

time - milliseconds

ampl

itude

Acoustic Tube Measurment Example

s(t)

r(t)

ˆ h (t)

Page 13: Room Impulse Response

Music 318, Winter 2007, Impulse Response Measurement 13

0 500 1000 1500-0.5

0

0.5sine sweep, s(t)

ampl

itude

freq

uenc

y -

kHz

sine sweep spectrogram

0 200 400 600 800 10000

5

10

0 500 1000 1500 2000-1

-0.5

0

0.5

1sine sweep response, r(t)

time - milliseconds

ampl

itude

time - milliseconds

freq

uenc

y -

kHz

sine sweep response spectrogram

0 500 1000 1500 20000

5

10

0 100 200 300 400 500 600 700 800 900 1000-0.04

-0.02

0

0.02

0.04

0.06

0.08measured impulse response

time - milliseconds

ampl

itude

CCRMA Lobby Measurment Example

s(t)

r(t)

ˆ h (t)

Page 14: Room Impulse Response

Music 318, Winter 2007, Impulse Response Measurement 14

Impulse Response Measurement Analysis

0 10 20 30 40 50 60 70 80 90 100-0.4

-0.2

0

0.2

0.4

0.6

0.8

1CCRMA Lobby Impulse Response

time - milliseconds

direct path

early reflections

late-field reverberation

• The impulse response of a reverberant environmentwill often have a direct path, followed by a few earlyreflections and the late-field reverberation.

Page 15: Room Impulse Response

Music 318, Winter 2007, Impulse Response Measurement 15

0 20 40 60 80 100 120 140 160 180 200-0.5

0

0.5

1impulse response

time - milliseconds

0 20 40 60 80 100 120 140 160 180 2000

0.2

0.4

0.6

0.8

1

echo density profile, 20-msec. frames.

time - msec.

Echo Density Profile

• Echo density can be measured along an impulseresponse by comparing the percentage of tapslying outside the local standard deviation to thatexpected for Gaussian noise.

Page 16: Room Impulse Response

Music 318, Winter 2007, Impulse Response Measurement 16

Echo Density Psychoacoustics

0 100 200 300 400 500 600 700 800 900-2

0

2

4

6impulse responses

time - milliseconds

0 100 200 300 400 500 600 700 800 9000

0.2

0.4

0.6

0.8

1

echo density profile, 20-msec. frames.

time - msec.

Page 17: Room Impulse Response

Music 318, Winter 2007, Impulse Response Measurement 17

Late-Field Time-Frequency Analysis

power - dB

0

10

20

30

40

50

60

response spectra

frequency - Bark0 5 10 15 20 25

0

200

400

600

800

1000

1200

1400

Page 18: Room Impulse Response

Music 318, Winter 2007, Impulse Response Measurement 18

Late-Field Time-Frequency Analysis

10-1 100 101-80

-70

-60

-50

-40

-30

-20

-10

0response spectra, 70-msec. interval between frames.

frequency - kHz

Page 19: Room Impulse Response

Music 318, Winter 2007, Impulse Response Measurement 19

Late-Field Time-Frequency Analysis

0 200 400 600 800 1000 1200 1400-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0response power spectrum, Bark-spaced frequencies.

time - milliseconds

Page 20: Room Impulse Response

Music 318, Winter 2007, Impulse Response Measurement 20

0 200 400 600 800 1000 1200 1400-120

-100

-80

-60

-40

-20

0measured, modeled response energy profile

time - milliseconds

Late-Field Decay Rate Estimation

Page 21: Room Impulse Response

Music 318, Winter 2007, Impulse Response Measurement 21

Equalization and Reverberation Time

10-1 100 101

-10

-5

0q - resonance spectrum.

frequency - kHz

10-1 100 10110-1

100

101T_{60} - 60-dB decay time.

frequency - kHz

Page 22: Room Impulse Response

Music 318, Winter 2007, Impulse Response Measurement 22

EMT140 Plate Reverberator Responses

power - dB

0

10

20

30

40

50

60

EMT140B response spectra, various damping settings

frequency - Bark0 5 10 15 20 25

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

10-1 100 10110-1

100

101T_{60} - 60-dB decay time, various low-frequency absorption settings.

frequency - kHz

impulse response spectrograms

late-field decay times