Top Banner
Elas%c Recoil Detec%on and Positron Annihila%on Studies of the Mild Baking Effect A. Romanenko Fermilab L. Goncharova, P. Simpson Univ. of Western Ontario D. Gidley UMich
25

Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

Aug 04, 2015

Download

Technology

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

Elas%c  Recoil  Detec%on  and  Positron  Annihila%on  Studies  of  the  Mild  

Baking  Effect  A.  Romanenko    

Fermilab  L.  Goncharova,  P.  Simpson    Univ.  of  Western  Ontario  

D.  Gidley    UMich  

Page 2: Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

Different  mild  baking  mechanisms  

•  Models  previously  considered    –  Inters%%al  oxygen-­‐based  models  

– Natural  oxide  modifica%on  

•  Inters%%al  hydrogen  in  the  near-­‐surface  region    •  LaJce  defects  

– Local  misorienta%on  (disloca%on  density)  reduc%on  with  baking  revealed  by  EBSD  studies  

Page 3: Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

Historical  Prospec%ve  

•  “Stage  III  controversy”  •  Origin  -­‐  observa%ons  of  resis%vity  recovery  (strong  change)  in  different  group  V  metals  (tungsten,  molybdenum,  niobium)  aSer  either  deforma%on  or  irradia%on  in  1960-­‐70s  

•  Controversy  essence  -­‐  is  it  inters%%al  impuri%es  or  laJce  defects,  which  are  changing  in  Stage  III  

•  Stage  III  happens  in  niobium  around  -­‐50C  without  any  hydrogen  and  at  around  120C  with  hydrogen  presence    

•  Near-­‐surface  niobium  is  exactly  that  -­‐  niobium  with  some  hydrogen  

Page 4: Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

D.  E.  Peacock,  A.  A.  Johnson,  Philosophical  Magazine,  Volume  8,  Issue  88  April  1963  ,  pages  563  -­‐  577    

A  clear  resis%vity  recovery  stage  in  neutron  irradiated  niobium  iden%fied  at  around  100-­‐120C  

•   Radia%on  damage  –  laJce  defects  –  mostly  vacancies  and  disloca%on  loops  •   Degree  of  recovery  depends  on  the  amount  of  damage  –  the  “recovering”  en%ty  is  laJce  defects  •   Similar  stage  found  in  Mo  

Page 5: Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

L.  Stals  and  J.  Nihoul,  Phys.  Stat.  Sol.  8,  785,  1965  

Same  resis%vity  recovery  stage  in  heavily  cold  worked  niobium  iden%fied  at  around  100-­‐120C  

•   Heavy  cold  work  –  laJce  defects  –  mostly  disloca%ons  and  vacancies  •   From  the  analysis  of  recovery  at  different  temperatures  –  driving  process  most  likely  bimolecular  process  –  vacancies  annihila%ng  with  self-­‐inters%%als  •   Abributed  to  the  recovery  of  point  defects  

Page 6: Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

P.  Hautojarvi  et  al,  Phys.  Rev.  B,  Vol.  32,  Num.  7,  1985  

Positron  annihila%on  –  studies  of  open  volume  defects  (vacancies)  

•   Temperature  of  the  Stage  III  recovery  depends  on  the  hydrogen  presence  -­‐  vacancies  are  bound  by  hydrogen  up  to  100-­‐120C    •   Similar  effect  found  in  Ta  

Page 7: Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

Physica  Scripta.  Vol.  20,683-­‐684,  1979  Annealing  of  Defects  in  Irradiated  Niobium  0.  K.  Alekseeva  et  al.  

Positron  annihila%on  –  studies  of  open  volume  defects  (vacancies)  

•   Clear  decrease  in  open  volume  defects  (i.e.  vacancies)  starts  at  around  120C  

Page 8: Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

Hydrogen-­‐induced  defects  •  Hydrogen  can  cause  laJce  

defects  –  vacancies  and  disloca%ons  depending  on  the  concentra%on  –  equivalent  to  heavy  cold-­‐work  

•  Superabundant  Vacancies  (SAVs)  –  general  phenomenon  recently  uncovered  for  M-­‐H  systems  –  emerges  when  surface  chemisorp%on  is  preferable  to  inters%%al  solu%on  

29  orders  of  magnitude  higher  concentra%on  of  vacancies  in  the  presence  of  hydrogen  as  compared  to  thermal  equilibrium  

For  review  –  A.  Pundt  and  R.  Kirchheim,  Annu.  Rev.  Mater.  Res.  2006.  36:555–608  

Page 9: Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

Inves%ga%on  of  near-­‐surface  hydrogen  

•  Mo%vated  by  the  possible  driving  mechanism  for  the  mild  baking  effect  –  Vac-­‐H  complexes  dissocia%on  occuring  around  100-­‐120C  

•  Leading  to  the  elimina%on  of  the  HFQS  by  – LaJce  defect  density  reduc%on  in  the  near-­‐surface  layer?  [A  Romanenko  and  H  Padamsee  2010  Supercond.  Sci.  Technol.  23  045008]  

– Or  hydrogen  concentra%on  decrease?  -­‐  inves%gated  by  Elas%c  Recoil  Detec%on  (ERD)  

Page 10: Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

Elas%c  Recoil  Detec%on  

•  Based  on  the  detec%on  of  recoiled  H  ions  •  Sensi%vity  of  order  1  at.%  •  Depth  resolu%on  achievable  ~  1  nm  •  Depth  profile  is  reconstructed  from  energy  spectrum  of  ions  

He+  

H+  

Sample  Incident  energy  =  1.6MeV  He+  

Incident  angle  =  75o  

Scabering  Angle  =  29o  

Dose:  normalized  to  1µC  

Facility  at  the  Univ.  of  Western  Ontario  (Prof.  L.  Goncharova)  

Page 11: Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

• Area under each peak corresponds to the concentration of the element in a 1nm slab • Peak shapes and positions come from energy loss, energy straggling and instrumental

resolution. • The sum of the contributions of the different layers describes the depth profile.

Hydrogen Concentration profiles obtained from energy spectra simulations

Page 12: Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

Samples  inves%gated  with  ERD  

Sample   Origin   Treatment  

HA-­‐1   Single  grain  Nb     BCP  150  um  

HA-­‐2   Single  grain  Nb   BCP  150  um  +  800C  4  hrs  

HA-­‐3   Single  grain  Nb   BCP  150  um  +  800C  4  hrs  +  110C  74  hrs  

HA-­‐4   Single  grain  Nb   BCP  150  um  +  800C  4  hrs  +  110C  74  hrs  +  HF  rinse  10  min  

HA-­‐5   Single  grain  Nb   BCP  150  um  +  600C  10  hrs  

HA-­‐6   Single  grain  Nb   BCP  150  um  +  600C  10  hrs  +  110C  54  hrs  

LE1-­‐37  hot  spot   Large  grain  Nb  cavity  cutout  

BCP  200  um  

TE1AES004  cold  spot   Fine  grain  Nb  EP  cavity  cutout    

EP  100  um  +  120C  48  hrs  

Page 13: Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

Experimental  data  (Overview)  

Incident  energy  =  1.6MeV  He+  

Incident  angle  =  75o  

Scabering  Angle  =  29o  

Dose:  normalized  to  1µC  

He+  

H+  

Page 14: Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

Experimental  data  (vs  Energy)  

Page 15: Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

Different  posi%ons  at  the  surface  

ERD  results  for  different  posi%ons  on  the  surface  are  shown;  integrated  intensi%es  for  bulk  (ch.100-­‐240)  and  surface  (ch.240-­‐320)  hydrogen  yield  are  listed  below  

•  difference  between  different  spots  is  noted  in  the  table  

Sample Spot Integrated Yield, ch 100-240 Integrated Yield, ch 240-310

HA-1 1 566 1038

2 513 925

HA-2 1 383 761

2 347 756

3 347 846

BCP  BCP+800C  2  hrs  

Page 16: Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

Different  posi%ons  at  the  surface  

ERD  results  for  different  posi%ons  on  the  surface  are  shown;  integrated  intensi%es  for  bulk  (ch.100-­‐240)  and  surface  (ch.240-­‐320)  hydrogen  yield  are  listed  below  

•  difference  between  different  spots  is  noted  in  the  table  

Sample Spot Integrated Yield, ch 100-240 Integrated Yield, ch 240-310

HA-3 1 355 860

2 365 882

3 354 918

HA-4 1 472 1041

2 521 1136

3 533 1102

Page 17: Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

Different  posi%ons  at  the  surface  

ERD  results  for  different  posi%ons  on  the  surface  are  shown;  integrated  intensi%es  for  bulk  (ch.100-­‐240)  and  surface  (ch.240-­‐320)  hydrogen  yield  are  listed  below  

•  difference  between  different  spots  is  noted  in  the  table  

Sample Spot Integrated Yield, ch 100-240 Integrated Yield, ch 240-310

HA-5 1 393 1220

2 417 1045

HA-6 1 375 855

2 347 696

Page 18: Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

HA-­‐X  ERD  Summary  

Sample  #

Treatment Surface  Content Bulk  Content

HA-­‐1 BCP 53Å  Nb0.79H0.21 Nb0.994H0.008

HA-­‐2   BCP  +  800C  4hrs 48Å  Nb0.80H0.20 Nb0.994H0.006

HA-­‐3   BCP  +  800C  4  hrs  +  110C  54  hrs 53Å  Nb0.80H0.20 Nb0.994H0.006

HA-­‐4 BCP  +  800C  4  hrs  +  110C  54  hrs  +  HF  10  min

110ÅNb0.91H0.09/  170Å  Nb0.96H0.04

Nb0.992H0.008

HA-­‐5   BCP  +  600C  10  hrs 62Å    Nb0.77H0.23 Nb0.994H0.006

HA-­‐6 BCP  +  600C  10  hrs  +  110C  72  hrs 65Å    Nb0.85H0.15 Nb0.994H0.006

Page 19: Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

Data  on  cutout  samples  

•  Used  samples,  which  were  cut  out  of  real  RF  cavi%es  characterized  with  thermometry  during  the  tests    

•  One  sample  from  the  “hotspot”  in  Cornell  high  field  Q-­‐slope  limited  large  grain  BCP  cavity  

•  One  sample  from  FNAL  baked  fine  grain  EP  cavity  –  no  high  field  Q-­‐slope,  cavity  limited  by  local  quench  at  around  150  mT  at  the  other  loca%on    

Page 20: Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

Cutouts  Data  

Incident  energy  =  1.6MeV  He+  

Incident  angle  =  75o  

Scabering  Angle  =  29o  

Dose  =  4µC  

He+  

H+  

Page 21: Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

Sample Spot Integrated Yield, ch 100-240 Integrated Yield, ch 240-310

Large grain BCP cutout 1 464 1666

2 528 1877

3 511 2075

4 506 2082

EP baked cutout 1 579 1829

2 596 2292

3 558 2279

4 636 2121

Large  grain  BCP  hot  spot   Fine  grain  EP  baked  cutout  

Page 22: Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

Sample #

Surface Content Bulk Content

1 7.6 nm Nb0.78H0.22 Nb0.994H0.006

2 7.5 nm Nb0.77H0.23 Nb0.994H0.006

Sample  1  –  Hot  Spot  in  the  high  field  Q-­‐slope  of  large  grain  BCP  cavity  –  strong  dissipa%on  detected  by  thermometry  

Sample  2  from  baked  EP  cavity  –  no  high  field  Q-­‐slope,  losses  negligible  

But  –  hydrogen  profile  is  the  same!  

Page 23: Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

Positron  Annihila%on    Doppler  Broadening  Spectroscopy  

•   Positron  life%me  depends  on  the  electron  density  –  lives  longer  at  open  volume  defects  (i.e.  vacancies)  •   Width  of  the  spectra  of  gamma  quants  produced  on  annihila%on  depends  on  the  local  electron  density  and  momenta  

•   Characterized  by  S-­‐parameter  –  roughly  the  higher  S  the  larger  the  concentra%on  of  open  volume  defects    

•   Varying  positron  energy  –  non-­‐destruc%ve  depth  profiling  

Page 24: Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

Doppler  broadening  spectroscopy  –  preliminary  results  

UMich/NCSU  data   UWO  data  

Baking  120C  in  situ  

Baked/unbaked  

Decrease  in  the  density  of  vacancies  detected  in  both  cases  Life%me  spectra  

Page 25: Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

Conclusions  

•  Hydrogen  seems  to  be  uncorrelated  with  the  mild  baking  improvement  in  the  HFQS  – Same  H  content  with/without  HFQS  

•  HF  rinsing  results  in  the  smearing  of  H-­‐profile  •  Preliminary  positron  annihila%on  data  –  decrease  in  near-­‐surface  laJce  defects  during  mild  baking  

•  Same  samples  from  ERD  are  going  to  be  used  for  further  positron  annihila%on  studies