Top Banner
Rock, Rattle and Slide bifurcation theory for piecewise-smooth systems Alan Champneys Department of Engineering Mathematics, University of Bristol Mario di Bernardo, Chris Budd, Piotr Kowalczyk Arne Nordmark Harry Dankowicz, Gabor Licsko, Csaba Bazso ... Milan 4/6/09 – p. 1
97

Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

Sep 17, 2018

Download

Documents

NguyenKiet
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

Rock, Rattle and Slidebifurcation theory for piecewise-smooth systems

Alan Champneys

Department of Engineering Mathematics, University of Bristol

Mario di Bernardo, Chris Budd, Piotr Kowalczyk

Arne Nordmark Harry Dankowicz, Gabor Licsko, Csaba Bazso . . .

Milan 4/6/09 – p. 1

Page 2: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

Contents

1: Nonsmoothness and discontinuity-inducedbifurcation

Milan 4/6/09 – p. 2

Page 3: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

Contents

1: Nonsmoothness and discontinuity-inducedbifurcation

2: grazing bifurcation in impacting systemsEx. i. a rattling heating valve

Milan 4/6/09 – p. 2

Page 4: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

Contents

1: Nonsmoothness and discontinuity-inducedbifurcation

2: grazing bifurcation in impacting systemsEx. i. a rattling heating valve

3: grazing & corner bifurcation in PWS systemsEx. ii. extended model for stick-slip

Milan 4/6/09 – p. 2

Page 5: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

Contents

1: Nonsmoothness and discontinuity-inducedbifurcation

2: grazing bifurcation in impacting systemsEx. i. a rattling heating valve

3: grazing & corner bifurcation in PWS systemsEx. ii. extended model for stick-slip

4: sliding bifurcation in Filippov systemsEx. iii. relay controller

Milan 4/6/09 – p. 2

Page 6: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

Contents

1: Nonsmoothness and discontinuity-inducedbifurcation

2: grazing bifurcation in impacting systemsEx. i. a rattling heating valve

3: grazing & corner bifurcation in PWS systemsEx. ii. extended model for stick-slip

4: sliding bifurcation in Filippov systemsEx. iii. relay controller

5: nonsmooth impact laws with frictionEx. iv. Painlevé paradox of falling rod

Milan 4/6/09 – p. 2

Page 7: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

Contents

1: Nonsmoothness and discontinuity-inducedbifurcation

2: grazing bifurcation in impacting systemsEx. i. a rattling heating valve

3: grazing & corner bifurcation in PWS systemsEx. ii. extended model for stick-slip

4: sliding bifurcation in Filippov systemsEx. iii. relay controller

5: nonsmooth impact laws with frictionEx. iv. Painlevé paradox of falling rod

6: Conclusion

Milan 4/6/09 – p. 2

Page 8: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

smooth bifurcation theory

x = f(x, µ), x ∈ D ⊂ Rn, µ ∈ R

p, f smooth

Generates semiflow Φµ(x, t) andphase portrait = set of all trajectories {Φ(x, ·), ∀ x ∈ D}.

Milan 4/6/09 – p. 3

Page 9: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

smooth bifurcation theory

x = f(x, µ), x ∈ D ⊂ Rn, µ ∈ R

p, f smooth

Generates semiflow Φµ(x, t) andphase portrait = set of all trajectories {Φ(x, ·), ∀ x ∈ D}.

Two notions of bifurcation:

Milan 4/6/09 – p. 3

Page 10: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

smooth bifurcation theory

x = f(x, µ), x ∈ D ⊂ Rn, µ ∈ R

p, f smooth

Generates semiflow Φµ(x, t) andphase portrait = set of all trajectories {Φ(x, ·), ∀ x ∈ D}.

Two notions of bifurcation:

Analytic Branch of invariant sets Γ(µ). Bifurcation is aµ-value where Implicit Function Theorem (IFT) fails.⇒ Branching (Lyapunov-Schmidt reduction)

Milan 4/6/09 – p. 3

Page 11: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

smooth bifurcation theory

x = f(x, µ), x ∈ D ⊂ Rn, µ ∈ R

p, f smooth

Generates semiflow Φµ(x, t) andphase portrait = set of all trajectories {Φ(x, ·), ∀ x ∈ D}.

Two notions of bifurcation:

Analytic Branch of invariant sets Γ(µ). Bifurcation is aµ-value where Implicit Function Theorem (IFT) fails.⇒ Branching (Lyapunov-Schmidt reduction)

Topological Bifurcation is a µ-value where there isnon-structurally stable phase portrait.⇒ local bifurcations Hopf, fold, flip, torus,. . .⇒ global bifurcations homoclinic, tangency, crisis . . .Classification by co-dimension

Milan 4/6/09 – p. 3

Page 12: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

smooth bifurcation theory

x = f(x, µ), x ∈ D ⊂ Rn, µ ∈ R

p, f smooth

Generates semiflow Φµ(x, t) andphase portrait = set of all trajectories {Φ(x, ·), ∀ x ∈ D}.

Two notions of bifurcation:

Analytic Branch of invariant sets Γ(µ). Bifurcation is aµ-value where Implicit Function Theorem (IFT) fails.⇒ Branching (Lyapunov-Schmidt reduction)

Topological Bifurcation is a µ-value where there isnon-structurally stable phase portrait.⇒ local bifurcations Hopf, fold, flip, torus,. . .⇒ global bifurcations homoclinic, tangency, crisis . . .Classification by co-dimension

IFT & struct. stabilty need continuity & smoothness . . .

Milan 4/6/09 – p. 3

Page 13: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

three types of nonsmoothness

Impacting systems:

F

x

Milan 4/6/09 – p. 4

Page 14: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

three types of nonsmoothness

Impacting systems:

F

x

Milan 4/6/09 – p. 4

Page 15: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

three types of nonsmoothness

Impacting systems:

F

x

Piecewise smooth continuous systems:

Nonlinear Nonsmooth

Milan 4/6/09 – p. 4

Page 16: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

three types of nonsmoothness

Impacting systems:

F

x

Piecewise smooth continuous systems:

Nonlinear Nonsmooth

Y Y YX X X

T

PQ

a

ug

tlz

R

al

ug

b

T

tgz

P

Q

Milan 4/6/09 – p. 4

Page 17: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

three types of nonsmoothness

Impacting systems:

F

x

Piecewise smooth continuous systems:

Nonlinear Nonsmooth

Filippov systems:

F

x

F1

F2

x=0

Milan 4/6/09 – p. 4

Page 18: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

three types of nonsmoothness

Impacting systems:

F

x

Piecewise smooth continuous systems:

Nonlinear Nonsmooth

Filippov systems:

F

x

F1

F2

x=0

Milan 4/6/09 – p. 4

Page 19: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

a motivating example

Oscillations of a pressure relief valve. Licsko, C. & Hös

noise at ∼ 375Hz at a range of flow speeds

0100

200300

400500

0

10

20

300

1

2

3

4

x 104

n [1/s] f [Hz]

Am

plitu

de

0100

200300

400500

0

5

10

150

0.5

1

1.5

2

x 106

n [1/s] f [Hz]

Am

plitu

de

Milan 4/6/09 – p. 5

Page 20: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

a simple (dimensionless) model

y1 = y2

y2 = −κy2 − (y1 + δ) + y3

y3 = β (q −√y3y1)

y1 > 0 valve displacement; y2 valve velocity, y3 pressure

β valve spring stiffness; δ valve pre-stressq, flow rate; κ, fluid damping

at y1 = 0 apply a Newtonian restitution law:

y2(t+∗) = −ry2(t

∗)

Low κ ⇒ limit cycles between 2 Hopf bifs q = qmin, qmax.

Milan 4/6/09 – p. 6

Page 21: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

brute force numerics

κ = 1.25, β = 20, δ = 10 (representative of experiment)

01

23

45

6 −10

−5

0

5

100

10

20

30

40

50

vel

disp

pres

−20

24

68

10 −10

0

10

20

0

10

20

30

40

50

60

70

80

vel

disp

pres

−20

24

68 −10

0

10

200

10

20

30

40

50

60

vel

disp

pres

−10

12

34

5 −10

−5

0

5

10

0

5

10

15

20

25

30

35

40

vel

disp

pres

−0.5

0

0.5

1 −4

−2

0

2

40

5

10

15

20

veldisp

pres

q

Chaotic rattling due to Grazing events at q ≈ 7.54, 5.95

Milan 4/6/09 – p. 7

Page 22: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

more realistic PDE model

Bazso, C. & Hös

1.38 1.4 1.42 1.44 1.46 1.48 1.5

x 106

0

0.5

1

1.5

2

2.5

3

3.5x 10

−3

pv [Pa]

x [m

]

1.38 1.385 1.39 1.395 1.4

x 106

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1x 10

−3

pv [Pa]

x [m

]

Similar results including chattering at low pressureMilan 4/6/09 – p. 8

Page 23: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

(in)Formalisms for nonsmooth system

A piecewise smooth (PWS) system is set of ODEs

x = Fi(x, µ), if x ∈ Si,

Milan 4/6/09 – p. 9

Page 24: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

(in)Formalisms for nonsmooth system

A piecewise smooth (PWS) system is set of ODEs

x = Fi(x, µ), if x ∈ Si,

discontinuity set Σij := Si ∩ Sj is R(n−1)-dim manifold

⊂ ∂Sj ∪∂Si. Each Fi smooth in Si generates flow Φi(x, t)

x(t)

Si

Sj

Σij

Milan 4/6/09 – p. 9

Page 25: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

(in)Formalisms for nonsmooth system

A piecewise smooth (PWS) system is set of ODEs

x = Fi(x, µ), if x ∈ Si,

discontinuity set Σij := Si ∩ Sj is R(n−1)-dim manifold

⊂ ∂Sj ∪∂Si. Each Fi smooth in Si generates flow Φi(x, t)

x(t)

Si

Sj

Σij

Degree of smoothness of x ∈ Σij is order of 1stnon-zero term in Taylor expansion of Φi(x, t) − Φj(x, t)

Milan 4/6/09 – p. 9

Page 26: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

(in)Formalisms for nonsmooth system

A piecewise smooth (PWS) system is set of ODEs

x = Fi(x, µ), if x ∈ Si,

discontinuity set Σij := Si ∩ Sj is R(n−1)-dim manifold

⊂ ∂Sj ∪∂Si. Each Fi smooth in Si generates flow Φi(x, t)

x(t)

Si

Sj

Σij

Degree of smoothness of x ∈ Σij is order of 1stnon-zero term in Taylor expansion of Φi(x, t) − Φj(x, t)

Milan 4/6/09 – p. 9

Page 27: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

impacting systems: deg. 0 need reset map

x 7→ Rij(x, µ), if x ∈ Σij

Milan 4/6/09 – p. 10

Page 28: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

impacting systems: deg. 0 need reset map

x 7→ Rij(x, µ), if x ∈ Σij

PWS continuous systems: deg. ≥ 2

i.e. Fi(x) = Fj(x) but ∃k ≥ 1 s.t. dkFi

dxk 6= dkFj

dxk

Milan 4/6/09 – p. 10

Page 29: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

impacting systems: deg. 0 need reset map

x 7→ Rij(x, µ), if x ∈ Σij

PWS continuous systems: deg. ≥ 2

i.e. Fi(x) = Fj(x) but ∃k ≥ 1 s.t. dkFi

dxk 6= dkFj

dxk

Filippov systems deg. 1. Have possibility of slidingmotion. E.g. if Σij := {H(x) = 0},

(HxF1) · (HxF2) < 0.

(a) (b)

F1

F2

Σ

Milan 4/6/09 – p. 10

Page 30: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

impacting systems: deg. 0 need reset map

x 7→ Rij(x, µ), if x ∈ Σij

PWS continuous systems: deg. ≥ 2

i.e. Fi(x) = Fj(x) but ∃k ≥ 1 s.t. dkFi

dxk 6= dkFj

dxk

Filippov systems deg. 1. Have possibility of slidingmotion. E.g. if Σij := {H(x) = 0},

(HxF1) · (HxF2) < 0.

(a) (b)

F1

F2

Σ

Milan 4/6/09 – p. 10

Page 31: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

bifurcation

All smooth bifurcations can occur in PWS systems(because Poincaré map is typically analytic!)

Milan 4/6/09 – p. 11

Page 32: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

bifurcation

All smooth bifurcations can occur in PWS systems(because Poincaré map is typically analytic!)

Also discontinuity induced bifurcations (DIB) whereinvariant sets have non-structurally stable interactionwith a Σij .

Milan 4/6/09 – p. 11

Page 33: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

bifurcation

All smooth bifurcations can occur in PWS systems(because Poincaré map is typically analytic!)

Also discontinuity induced bifurcations (DIB) whereinvariant sets have non-structurally stable interactionwith a Σij .

Can lead to classical (topological) bifurcation or not(a) (b)

S1

S2

S3

S4

S1

S2

S3

S4

Milan 4/6/09 – p. 11

Page 34: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

bifurcation

All smooth bifurcations can occur in PWS systems(because Poincaré map is typically analytic!)

Also discontinuity induced bifurcations (DIB) whereinvariant sets have non-structurally stable interactionwith a Σij .

Can lead to classical (topological) bifurcation or not(a) (b)

S1

S2

S3

S4

S1

S2

S3

S4

idea topological DIB ⇐ PW structural stabilityMilan 4/6/09 – p. 11

Page 35: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

types of DIB

Boundary equilibrium bifurcations

mlz

b

mezmgz

Milan 4/6/09 – p. 12

Page 36: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

types of DIB

Boundary equilibrium bifurcations

Grazing bifurcations of limit cyclesc

mezmlz

mgz

Milan 4/6/09 – p. 12

Page 37: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

types of DIB

Boundary equilibrium bifurcations

Grazing bifurcations of limit cycles

Sliding and sticking bifurcations

Milan 4/6/09 – p. 12

Page 38: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

types of DIB

Boundary equilibrium bifurcations

Grazing bifurcations of limit cycles

Sliding and sticking bifurcations

−0.10

0.1 12

3

0

0.005

0.01

t

dx/dt

x

Milan 4/6/09 – p. 12

Page 39: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

types of DIB

Boundary equilibrium bifurcations

Grazing bifurcations of limit cycles

Sliding and sticking bifurcations

Invariant tori bifurcations

Milan 4/6/09 – p. 12

Page 40: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

types of DIB

Boundary equilibrium bifurcations

Grazing bifurcations of limit cycles

Sliding and sticking bifurcations

Invariant tori bifurcations

Σ

Milan 4/6/09 – p. 12

Page 41: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

types of DIB

Boundary equilibrium bifurcations

Grazing bifurcations of limit cycles

Sliding and sticking bifurcations

Invariant tori bifurcations

Possible global bifurcations

Milan 4/6/09 – p. 12

Page 42: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

types of DIB

Boundary equilibrium bifurcations

Grazing bifurcations of limit cycles

Sliding and sticking bifurcations

Invariant tori bifurcations

Possible global bifurcations

(c)(a) (b)

Milan 4/6/09 – p. 12

Page 43: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

this talk: periodic orbit DIBs

Goal: Catalogue & unfold codim-1 possibilities.E.g. ‘grazing bifurcation’: [Nordmark]

Milan 4/6/09 – p. 13

Page 44: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

this talk: periodic orbit DIBs

Goal: Catalogue & unfold codim-1 possibilities.E.g. ‘grazing bifurcation’: [Nordmark]

Derive map close to DIB as composition of smoothPoincaré map Pπ and discontinuity mapping PDM

Πp(t)

Σ : {H(x) = 0}PDM

Milan 4/6/09 – p. 13

Page 45: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

this talk: periodic orbit DIBs

Goal: Catalogue & unfold codim-1 possibilities.E.g. ‘grazing bifurcation’: [Nordmark]

Derive map close to DIB as composition of smoothPoincaré map Pπ and discontinuity mapping PDM

Πp(t)

Σ : {H(x) = 0}PDM

Use results on border collisions of maps to classifydynamics [Feigin] [Yorke, Banergee et al]

Milan 4/6/09 – p. 13

Page 46: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

this talk: periodic orbit DIBs

Goal: Catalogue & unfold codim-1 possibilities.E.g. ‘grazing bifurcation’: [Nordmark]

Derive map close to DIB as composition of smoothPoincaré map Pπ and discontinuity mapping PDM

Πp(t)

Σ : {H(x) = 0}PDM

Use results on border collisions of maps to classifydynamics [Feigin] [Yorke, Banergee et al]

Nb. piecewise linear (PWL) flow 6⇒ PWL mapMilan 4/6/09 – p. 13

Page 47: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

2. Grazing bifurcation in impact systems

cf. Theory of impact oscillators: [Peterka] 1970s,[Thompson & Ghaffari], [Shaw & Holmes] 1980s,[Budd et al], [Nordmark] 1990s.

Consider single impact surface Σ := {H(x) = 0}with impact law:

x+ = R(x−) = x− + W (x−)HxF (x−)

W is smooth function and HxF (x−) is ‘velocity’. e.g.

W = −(1 + r)Hx ⇒ Newton’s ‘restitution law’

More complex impact laws are possible, e.g. impactwith friction (see later)

Milan 4/6/09 – p. 14

Page 48: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

discontinuity mapping (PDM)

−0.6 0 0.4−0.1

0

0.1

HxF

H

x2 x3

x5

x1

x4

x0

x6

Σ

Π

PDM: x1 7→ x5 maps Poincaré sectionΠ = {HxF (x) = 0} to itself

Computes correction to trajectory as if Σ were absent

Milan 4/6/09 – p. 15

Page 49: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

explicit form of PDM

cf. [Fredrickson & Nordmark]

x 7→{

x if H(x) ≥ 0

x + β(x, y)y if H(x) < 0

}

where β = −√

2a

(

W − (HxF )xW

aF

)

+ O(y2),

where y =√−H and

a(x) = d2H/dt2 = (HxF )xF = HxxFF + HxFxF

⇒ square root map

Milan 4/6/09 – p. 16

Page 50: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

Proof is by Taylor expansion of flow in (x, y) and IFT

Milan 4/6/09 – p. 17

Page 51: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

Proof is by Taylor expansion of flow in (x, y) and IFT

Use PDM to correct non-grazing Poincaré map Pπ :PN = Pπ ◦ PPDM

PN (x, µ) = M1x + Nµ + O(x2, µ2) if H(x) > 0

= M2x + Nµ + B√

|H(x)| + O(x2, µ2) H(x) < 0

Milan 4/6/09 – p. 17

Page 52: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

Proof is by Taylor expansion of flow in (x, y) and IFT

Use PDM to correct non-grazing Poincaré map Pπ :PN = Pπ ◦ PPDM

PN (x, µ) = M1x + Nµ + O(x2, µ2) if H(x) > 0

= M2x + Nµ + B√

|H(x)| + O(x2, µ2) H(x) < 0

Conditions on M1,2, B, C for given periodic orbit to exist

Milan 4/6/09 – p. 17

Page 53: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

Proof is by Taylor expansion of flow in (x, y) and IFT

Use PDM to correct non-grazing Poincaré map Pπ :PN = Pπ ◦ PPDM

PN (x, µ) = M1x + Nµ + O(x2, µ2) if H(x) > 0

= M2x + Nµ + B√

|H(x)| + O(x2, µ2) H(x) < 0

Conditions on M1,2, B, C for given periodic orbit to exist

Attractor for µ > 0 depends on linearisation of orbit forµ < 0.

Milan 4/6/09 – p. 17

Page 54: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

Proof is by Taylor expansion of flow in (x, y) and IFT

Use PDM to correct non-grazing Poincaré map Pπ :PN = Pπ ◦ PPDM

PN (x, µ) = M1x + Nµ + O(x2, µ2) if H(x) > 0

= M2x + Nµ + B√

|H(x)| + O(x2, µ2) H(x) < 0

Conditions on M1,2, B, C for given periodic orbit to exist

Attractor for µ > 0 depends on linearisation of orbit forµ < 0.

Simplest case:λ1 real leading eigenvalue of M1 . . ., then dynamics isdetermined by 1D map:

Milan 4/6/09 – p. 17

Page 55: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

dynamics of 1D map

f(x) =√

µ − x + λ1µ x < µ, f(x) = λ1x x > µ,

1. 2/3 < |λ1| < 1: robust chaotic attractor size ∼ √µ.

2. If 1/4 < |λ1| < 2/3 alternating series of chaos andperiod-n orbits, n → ∞ as µ → 0.

3. 0 < |λ1| < 1/4: just period-adding cascade

Milan 4/6/09 – p. 18

Page 56: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

return to Ex.i: valve rattle

Two grazing bifurcation events q = 7.54, q = 5.95

q = 5.95: λ1 < 0 ⇒ discontinuous jump in attractorq = 7.54: λ1 = 0.8537 ⇒ jump to chaos. Iterate map

7.4 7.45 7.5 7.55 7.6 7.65−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

y[−

]

Milan 4/6/09 – p. 19

Page 57: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

3. DIBs in PWS continuous systems

Simplest case: grazing bifurcationAnalyse using discontinuity mapping: PDM

��������

��������

��������

��������

��������

��������

��������

��������

��

����

��

δ∆

Σx x

fx

0xε

01tst 2t ft

S

S

ε

DiscontinuityMap

0

-

+

ΠΠ 1

2

Π

-

Milan 4/6/09 – p. 20

Page 58: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

general results for PDM

Map discontinuity

degree F jump Uniform Case Non-uniform0 δ-function x square-root1 bounded F - O(1/2)

2 C0 Fx O(3/2) O(3/2)-type3 C1 Fxx O(5/2) O(3/2)-type

F (x) continuous at Σ ⇒ no immediate jump in attractor

Milan 4/6/09 – p. 21

Page 59: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

1D map with O(3/2) singularity

Consider [Halse, di Bernardo et al]

x 7→{

νx − µ x ≤ 0

νx + ηx3/2 − µ x > 0

0 < ν < 1 ⇒ simple fixed point. No bifurcation at µ = 0.

but with η < 0 get nearby fold at µ = −4(1−ν)3

3η2 (muchcloser than smooth fold if ν ≈ 1)

Milan 4/6/09 – p. 22

Page 60: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

Also, get period-adding cascades. E.g. for γ = 3/2, η = −1.Then stable Lk−1R orbits exist for

−8(νk + 1)3 − 12(1 − νk)(1 + νk)2

27ν2(k−1)(1 + ν + ν2 + . . . + νk−1)< µ < −

(

νk − 1

νk−1(ν − 1)

)2

.

case γ = 2:

0 0.2 0.40

50

100

150

200

250

300

350

400

450

500

α

βµ

k=2

k=3

k=4

k=5

k=6 k=7

Milan 4/6/09 – p. 23

Page 61: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

Ex.ii: A realistic stick-slip oscillator

Dankowicz 1999

U = 1

y1

y3

y5

y1 - horizontal displacement; y2 = y1

y3 - vertical displacement; y4 = y3

y5 - shear deformation of asperitiesbelt velocity U = 1

Milan 4/6/09 – p. 24

Page 62: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

equations of motion

y1 = y2,

y2 = −1 +[

1 − γU |1 − y4|y2 + βU2(1 − y4)2√

K(y1)]

ey1−d,

y3 = y4,

y4 = −sy3 +

√gσ

Ue−d

[

µ(y5e−y1 − 1) + αU2S(y1, y4)

]

,

y5 =1

τ[(1 − y4) − |1 − y4|y5],

where K(y1) = 1 − y1−d∆ ,

S(y1, y4) = (1 − y4)|1 − y4|K(y1)e−y1 − 1 + d

∆ .

⇒ PWS continuous across discontinuity boundary y4 = 1.

Milan 4/6/09 – p. 25

Page 63: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

grazing bifurcation analysis

Dankowicz & Nordmark 20003 successive zooms of bifurcation diagram:

Milan 4/6/09 – p. 26

Page 64: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

grazing bifurcation analysis

Dankowicz & Nordmark 2000Simulation (left) and iteration of DM (right)

in local map co-ordinates ∼ y4 × 10−4

Milan 4/6/09 – p. 26

Page 65: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

4. Sliding DIBs in Filippov systems

Kowalczyk, Nordmark, diBernardoFour possible DIB involving collision of limit cycle withsliding boundary ∂Σ−; see Mike Jeffrey’s talk

(a)

S

S

+

B AC

crossing sliding(b)

S+

C

B

A

grazing sliding

(c) S−

S+

A

C

B

switching sliding(d) C

S+

B

A

adding slidingMilan 4/6/09 – p. 27

Page 66: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

Unfold with discontinuity mapping Di Bernardo, Kowalczyk,Nordmark

Bifurcation type DM leading-order term Map singularity

crossing sliding ε2 + O(ε3) 2grazing sliding ε + O(ε3/2) 1

switching sliding ε3 + O(ε4) 3adding sliding ε2 + O(ε5/2) 2

Maps are non-invertible on one side

Only grazing sliding ⇒ jump in attractor

Milan 4/6/09 – p. 28

Page 67: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

Ex.iv: a relay control system

x = Ax − Bsgn(y), y = CT x,

A =

0

B

B

@

−a1 1 0

−a2 0 1

−a3 0 0

1

C

C

A

, B =

0

B

B

@

b1

b2

b3

1

C

C

A

, CT =

0

B

B

@

1

0

0

1

C

C

A

T

.

Complex dynamics:

−2

0

2

−4

0

4−0.1

0

0.1

x1

x2x3 z

z

z

0p1

m4

p2

m2

p4m0p1

b = (1,−2, 1)T , a31 = −5 a21 = −99.3, and(a) a11 = 1.206, 1.35, periodic; (b) nearby, chaotic

Milan 4/6/09 – p. 29

Page 68: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

bifurcation diagram

A grazing-sliding cascade

0.02 0.025 0.03 0.035 0.04 0.045 0.05

2.4

2.5

2.6

SN

GS5GS4

GS3

GS2

GS1

AS

−2−1

01

2

−5

0

5−0.1

0

0.1

x2

x3

x1

x1

x2x3 −2

0

2

−4

0

4−0.1

0

0.1

x2

x3

x1

x1

x2x3

near grazing−sliding behaviour sliding segment born

in grazing−sliding

Milan 4/6/09 – p. 30

Page 69: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

5. Impact with friction

Dankowicz Nordmark & C.

q ∈ Rn, with rigid contact in 2D + Coulomb friction

M (q, t) q = f(q, q, t) + λT cTu (q, t) + λNcT

v (q, t),

Scalar constraint y ≥ 0, y ∈ R normal distance;λN ≥ 0, λT ∈ R normal and tangential forces;

Coulomb friction, |λT | ≤ µλN , λT = −sign(u)µλN if u 6= 0

e.g. rod & table Painlevé 1905, Brogliato et al.

P1

P2

¸N

¸T

X

Y

Sx

Sy

(x; y)

¹

u

¡¹

¡¸T =¸N

Milan 4/6/09 – p. 31

Page 70: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

contact dynamics

Project Lagrangian onto u and v directions:

u = a (q, q, t) + λT A (q, t) + λNB (q, t) ,

v = b (q, q, t) + λT B (q, t) + λNC (q, t) ,

A = cu · M−1· cT

u , B = cu · M−1· cT

v , C = cv · M−1· cT

v ,

positive definite M ⇒ A > 0 C > 0, AC − B2 > 0

special case B = 0 ⇒ “independent” normal andtangential motion ⇒ can use Newtonian restitutionv → −rv at impact (well posed)

what if B 6= 0?, e.g. for rod example (l = 2, m = 2):A = 1 + 3 sin2 θ,B = 3 sin 2θ, C = 1 + 3 cos2 θ

Milan 4/6/09 – p. 32

Page 71: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

modes of sustained motion

free flight : y > 0. No contact forces:

(λT , λN ) = (0, 0).

positive/negative slip : y = 0, v = 0, λN > 0, u 6= 0. Full frictionλT = −sign(u)µλN .

(λT , λN ) =b

C − sign(u)µB(sign(u)µ,−1).

stick : y = 0, v = 0, λN > 0, u = 0, |λT | < µλN .

(λT , λN ) =1

AC − B2(bB − aC, aB − bA)

Milan 4/6/09 – p. 33

Page 72: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

impacts

Def: impact phase infinitesimal time intervals in whichλN and λT are impulses (distributions)

key idea: re-scale τ = t/ε, ΛN,T = ελN,T = O(1) andlet ε → 0.

impact-phase dynamics: q′ = 0 and

u′ = AΛT + BΛN , v′ = BΛT + CΛN

(A,B,C are constant during impact since q′ = 0.

integrating IN,T =∫

impact ΛN,T dτ gives:

(IT , IN ) = 1AC−B2 (C∆u − B∆v,A∆v − B∆u).

Change in q is then: ∆q = M−1(cTu IT + cT

v IN )

Milan 4/6/09 – p. 34

Page 73: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

but how to compute∆u, ∆v?

u′ = AΛT + BΛN , v′ = BΛT + CΛN ,

⇒ 3 modes of impulsive motion:

impulsive positive slip : u > 0. Full friction λT = −µλN .

impulsive negative slip : u < 0. Full friction λT = µλN .

impulsive stick : u = 0, |λT | < µλN . Only possible if |B| < µA.

⇒ For all modes: u′ = kuλN , v′ = kvλN where

(ku, kv) = (k+u , k+

v ) = (B − µA, C − µB) for pos. slip

(ku, kv) = (k−

u , k−

v ) = (B + µA, C + µB) for neg. slip

(ku, kv) = (k0u, k0

v) = (0,AC − B2

A) for stick

Milan 4/6/09 – p. 35

Page 74: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

when is the impact finished?

3 possibilities :

1. Newtonian coefficient of restitution Relate post-impactvelocities to pre-impact: v1 = −rv0

2. Poisson coefficient of restitution (Glocker) Relate normalimpulses during compression and restitution:Ir = −rIc

3. Energetic coefficient of restitution (Stronge) Relatenormal-force work during compression and restitution:Wr = −r2Wc

If impact phase has a single mode ⇒ all 3 agree.But (Stewart) 1 & 2 may increase kinetic energy for r < 1.Hence we use 3 & derive explicit formulae (cf. Stronge)

Milan 4/6/09 – p. 36

Page 75: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

impulsive motion follows straight lines

u

v

12

810

k+u > 0

u

v

2

4

5

6

k+v < 0

1

2

79

u < 0

u

v

1

35

6

v < 0

u

v

12

3456

<

>

>

k+u

k+v

u

v >

0

0

0

0

(a)

(b) (c)

(d) (e)v

Milan 4/6/09 – p. 37

Page 76: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

discontinuity-induced bifurcation

dynamics cross region boundary as parameters vary

⇒ hybrid flow map can be C1 (no bifurcation) or C0

(jump in multipliers)

e.g. loss of period-one impacting periodic orbit

0:01

0:005

0

!

0:85 0:87 0:89¹ 0:85 0:87 0:89¹0

1

2

j¸ij

0:17

0:16

0:150:52 0:54 0:56 0:58 ¹

!

0:52 0:54 0:56 0:58 ¹

0

0:2

0:4

0:6

j¸ij

(a) (b)

(c) (d)

rod example with Van-der-pol type forcing: Sx = −k1(x − udrt) − c1(u − udr)

Sy = −k2(y − y0) − c2(y − y0)2 − y21)v R = −k3(θ − θ0) − c3θ

Milan 4/6/09 – p. 38

Page 77: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

ambiguities during sustained motion

To to simulate as a hybrid system, need to resolve:

A. Painlev e paradox for slip If y = 0, v = 0, b > 0 andC − µB < 0, u > 0 (or C + µB < 0, u < 0), then motioncould continue with

Sustained free flightSustained positive (negative) slipAn impact with zero initial normal velocity

B. Painlev e paradox for stick If y = 0, v = 0, u = 0, b > 0,|bB − aC| < µ(aB − bA) and C − µB < 0, (orC + µB < 0), then motion could continue with

Sustained free flightSustained stick

Milan 4/6/09 – p. 39

Page 78: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

show consistency via smoothing

Introduce constitutive relation λN (y, v) that is “stiff”,“restoring”, and “dissipative”.

Case A slip (WLOG positive slip),

y = v, v = b + (C − µB)λN (y, v).

b > 0, C − µB < 0 ⇒ large negative stiffness,⇒ slipping will never occur, must immediately lift off(y > 0) or take impact (y < 0)

Case B stick v = (bA−aB)+(AC−B2)λN (y,v)A

⇒ always large positive “stiffness” hence verticalmotion is asymptotically stable (evenifb > 0)

Milan 4/6/09 – p. 40

Page 79: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

ambiguities at mode transitions

Sustained motion is consistent BUT what about transitions

Case a. approach to the Painlevé boundary(C − µB = 0) during (positive) slip.

previous analysis shows: can’t actually reachC − µB = 0, so what happens instead?

Case b. transitions into stick or chatter

Def: chattering (also known as zeno-ness) isaccumulation of impacts. No contradiction if accumulatein forwards time. But can get reverse chatter.

Milan 4/6/09 – p. 41

Page 80: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

a. unfolding C − µB → 0 while slipping

cf. Genôt & Brogliato

Re-scale time t = (C − µB)s ⇒

d

ds

(

C − µB

b

)

=

(

α1 0

α2 α3

)(

C − µB

b

)

Eigenvector (0, 1)T ⇒ trajectory tend to C − µB = 0,only if b = 0

Milan 4/6/09 – p. 42

Page 81: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

approaching the singular point

C ¡ ¹B

b

C ¡ ¹B

b

C ¡ ¹B

b

C ¡ ¹B

b

C ¡ ¹B

b

C ¡ ¹B

b

C ¡ ¹B

b

C ¡ ¹B

b

C ¡ ¹B

b

C ¡ ¹B

b

C ¡ ¹B

b

C ¡ ¹B

b

®2 < 0

®3 > ®1 > 0

®1 > ®3 > 0

®2 > 0 ®2 > 0

®1 > 0 > ®3

®3 > 0 > ®1

®2 < 0

0 > ®1 > ®3

®2 > 0

0 > ®3 > ®1

®2 < 0

®2 < 0

®1 > 0 > ®3

®2 < 0

0 > ®1 > ®3

®2 < 0

®1 > ®3 > 0

®2 > 0

®3 > ®1 > 0

®2 > 0

®3 > 0 > ®1

®2 > 0

0 > ®3 > ®1

Milan 4/6/09 – p. 43

Page 82: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

what happens after singular point?

could lift off, or take a (zero-velocity) impact.

e.g. simulate example for stiff, compliant contact force

λN (y, v) =(1 + r2) − (1 − r2) tanh

(v

δ

)

2

(

−y

ε

)

for small δ, ε

−0.1 0 0.1 0.2 0.3−0.4

−0.2

0

0.2

0.4

0.6

C−µ B

b

resolvable (ongoing work) ⇒(?) impact always occurs

Milan 4/6/09 – p. 44

Page 83: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

b. transition into stick or chatter

e.g. nearby initial conditions with b < 0

0 0.5 1 1.5 2−0.04

−0.02

0

0.02

0.04

t

v

0 0.5 1 1.5−1

−0.5

0

0.5

1x 10−6

t

v

. . . Define multiplier e: v → ev after impact + lift off.

u1 u0u2

v2v0

v1

Milan 4/6/09 – p. 45

Page 84: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

analysis of chatter

Find parameter regions in which e > 1 (reverse chatter)despite r < 1 - even in the “non-Painlevé” case

Milan 4/6/09 – p. 46

Page 85: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

analysis of chatter

Find parameter regions in which e > 1 (reverse chatter)despite r < 1 - even in the “non-Painlevé” case

then we would have “infinite” non-uniqueness inforwards time -:(

Milan 4/6/09 – p. 46

Page 86: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

analysis of chatter

Find parameter regions in which e > 1 (reverse chatter)despite r < 1 - even in the “non-Painlevé” case

then we would have “infinite” non-uniqueness inforwards time -:(

but can such transitions occur?

Milan 4/6/09 – p. 46

Page 87: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

analysis of chatter

Find parameter regions in which e > 1 (reverse chatter)despite r < 1 - even in the “non-Painlevé” case

then we would have “infinite” non-uniqueness inforwards time -:(

but can such transitions occur?

analysis of smoothed “stiff” systems suggest yes . . .

Milan 4/6/09 – p. 46

Page 88: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

analysis of chatter

Find parameter regions in which e > 1 (reverse chatter)despite r < 1 - even in the “non-Painlevé” case

then we would have “infinite” non-uniqueness inforwards time -:(

but can such transitions occur?

analysis of smoothed “stiff” systems suggest yes . . .

it depends how you take the smoothing -:(

Milan 4/6/09 – p. 46

Page 89: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

analysis of chatter

Find parameter regions in which e > 1 (reverse chatter)despite r < 1 - even in the “non-Painlevé” case

then we would have “infinite” non-uniqueness inforwards time -:(

but can such transitions occur?

analysis of smoothed “stiff” systems suggest yes . . .

it depends how you take the smoothing -:(

ongoing work . . .

Milan 4/6/09 – p. 46

Page 90: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

6. Conclusion

used piecewise-smooth as formalism.

Milan 4/6/09 – p. 47

Page 91: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

6. Conclusion

used piecewise-smooth as formalism.

⇒ degree of smoothness case by case

Milan 4/6/09 – p. 47

Page 92: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

6. Conclusion

used piecewise-smooth as formalism.

⇒ degree of smoothness case by case

⇒ discontinuity induced bifurcationclassification with DMs ⇒ sudden jumps to chaos, etc.

Milan 4/6/09 – p. 47

Page 93: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

6. Conclusion

used piecewise-smooth as formalism.

⇒ degree of smoothness case by case

⇒ discontinuity induced bifurcationclassification with DMs ⇒ sudden jumps to chaos, etc.

provides natural explanation of observed behaviour

Milan 4/6/09 – p. 47

Page 94: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

6. Conclusion

used piecewise-smooth as formalism.

⇒ degree of smoothness case by case

⇒ discontinuity induced bifurcationclassification with DMs ⇒ sudden jumps to chaos, etc.

provides natural explanation of observed behaviour

much on-going work, e.g.impact + friction Dankowitz, Nordmark & C.catastrophic sliding bifurcations ∼ canards Jeffrey,C. di Bernardo, Shaw, Moehlis

Milan 4/6/09 – p. 47

Page 95: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

6. Conclusion

used piecewise-smooth as formalism.

⇒ degree of smoothness case by case

⇒ discontinuity induced bifurcationclassification with DMs ⇒ sudden jumps to chaos, etc.

provides natural explanation of observed behaviour

much on-going work, e.g.impact + friction Dankowitz, Nordmark & C.catastrophic sliding bifurcations ∼ canards Jeffrey,C. di Bernardo, Shaw, Moehlis

Piecewise-Smooth Dynamical Systems: Theory &Applications diBernardo, Budd, C. & KowalczykSpringer Jan 08. . . + SIAM review Dec 08

Milan 4/6/09 – p. 47

Page 96: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

6. Conclusion

used piecewise-smooth as formalism.

⇒ degree of smoothness case by case

⇒ discontinuity induced bifurcationclassification with DMs ⇒ sudden jumps to chaos, etc.

provides natural explanation of observed behaviour

much on-going work, e.g.impact + friction Dankowitz, Nordmark & C.catastrophic sliding bifurcations ∼ canards Jeffrey,C. di Bernardo, Shaw, Moehlis

Piecewise-Smooth Dynamical Systems: Theory &Applications diBernardo, Budd, C. & KowalczykSpringer Jan 08. . . + SIAM review Dec 08

Milan 4/6/09 – p. 47

Page 97: Rock, Rattle and Slide - Politecnico di Milanotba2009.dei.polimi.it/material/champneys_slides.pdf · Rock, Rattle and Slide ... nonsmooth impact laws with friction Ex. iv. Painlevé

6. Conclusion

used piecewise-smooth as formalism.

⇒ degree of smoothness case by case

⇒ discontinuity induced bifurcationclassification with DMs ⇒ sudden jumps to chaos, etc.

provides natural explanation of observed behaviour

much on-going work, e.g.impact + friction Dankowitz, Nordmark & C.catastrophic sliding bifurcations ∼ canards Jeffrey,C. di Bernardo, Shaw, Moehlis

Piecewise-Smooth Dynamical Systems: Theory &Applications diBernardo, Budd, C. & KowalczykSpringer Jan 08. . . + SIAM review Dec 08

Milan 4/6/09 – p. 47