Top Banner
Robustness in biology Eörs Szathmáry Eötvös University Collegium Budapest
43

Robustness in biology Eörs Szathmáry Eötvös University Collegium Budapest.

Dec 13, 2015

Download

Documents

Pamela Beasley
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Robustness in biology Eörs Szathmáry Eötvös University Collegium Budapest.

Robustness in biology

Eörs Szathmáry

Eötvös University Collegium Budapest

Page 2: Robustness in biology Eörs Szathmáry Eötvös University Collegium Budapest.

A genotype-phenotype model

Page 3: Robustness in biology Eörs Szathmáry Eötvös University Collegium Budapest.

Robustness and adaptation time

Page 4: Robustness in biology Eörs Szathmáry Eötvös University Collegium Budapest.

The explanation

Page 5: Robustness in biology Eörs Szathmáry Eötvös University Collegium Budapest.

Robustness and diversity

Page 6: Robustness in biology Eörs Szathmáry Eötvös University Collegium Budapest.

Drosophila melanogaster• Each segment in the adult fly is anatomically

distinct– Characteristic appendages

Page 7: Robustness in biology Eörs Szathmáry Eötvös University Collegium Budapest.

Drosophila embryonic development• Subsequent embryonic events create clearly

visible segments– Initially look very similar

• Some cells move to new positions– Organs form

• Wormlike larva hatches– Eats, grows, & molts

Page 8: Robustness in biology Eörs Szathmáry Eötvös University Collegium Budapest.

Drosophila early gradients• Bicoid gene product is concentrated at anterior

end of fly embryo– Gradient of gene product– Essential for setting

up anterior end of fly

• Gradients of other proteins determine the posterior end and the dorsal-ventral axis

Page 9: Robustness in biology Eörs Szathmáry Eötvös University Collegium Budapest.

Drosophila segmentation genes

• Segmentation genes– Genes of embryo– Expression regulated by products of egg-

polarity genes– Direct the actual formation of segments after

the embryo’s major axes are defined

Page 10: Robustness in biology Eörs Szathmáry Eötvös University Collegium Budapest.

Three sets of segmentation genes

• Three sets of segmentation genes are activated sequentially– Gap genes

– Pair-rule genes

– Segment polarity genes

• The activation of these sets of genes defines the animal’s body plan– Each sequential set regulates increasingly fine

details

Page 11: Robustness in biology Eörs Szathmáry Eötvös University Collegium Budapest.

Gap genes• Gap genes

– Map out basic subdivisions along the embryo’s anterior-posterior axis

– Mutations cause “gaps” in the animal’s segmentation

Page 12: Robustness in biology Eörs Szathmáry Eötvös University Collegium Budapest.

Pair-rule genes• Pair-rule genes

– Define pattern in terms of pairs of segments– Mutations result in embryos having half the normal

number of segments

Page 13: Robustness in biology Eörs Szathmáry Eötvös University Collegium Budapest.

Segment polarity genes• Segment polarity genes

– Set the anterior-posterior axis of each segment

– Mutations produce segments where part of the segment mirrors another part of the same segment

Page 14: Robustness in biology Eörs Szathmáry Eötvös University Collegium Budapest.

The segment polarity network in Drosophila

Page 15: Robustness in biology Eörs Szathmáry Eötvös University Collegium Budapest.

The differential equations

Page 16: Robustness in biology Eörs Szathmáry Eötvös University Collegium Budapest.

Expression pattern in vivo

The normal pattern Crisp initial conditions

Page 17: Robustness in biology Eörs Szathmáry Eötvös University Collegium Budapest.

Biomathematics predicts

Without the broken connections With the broken connections

Page 18: Robustness in biology Eörs Szathmáry Eötvös University Collegium Budapest.

1192 solutions found with crips initial conditions

Page 19: Robustness in biology Eörs Szathmáry Eötvös University Collegium Budapest.

Solutions found with degraded initial conditions

Page 20: Robustness in biology Eörs Szathmáry Eötvös University Collegium Budapest.

The degree of robustness

Page 21: Robustness in biology Eörs Szathmáry Eötvös University Collegium Budapest.

Epistasis of mutations

Page 22: Robustness in biology Eörs Szathmáry Eötvös University Collegium Budapest.

Simulated development

Page 23: Robustness in biology Eörs Szathmáry Eötvös University Collegium Budapest.

Formulae

Change in gene expression statesFitness of a genotype in asexual reproduction

Page 24: Robustness in biology Eörs Szathmáry Eötvös University Collegium Budapest.

The model

Page 25: Robustness in biology Eörs Szathmáry Eötvös University Collegium Budapest.

Results

Page 26: Robustness in biology Eörs Szathmáry Eötvös University Collegium Budapest.

Evolution without mutations

Page 27: Robustness in biology Eörs Szathmáry Eötvös University Collegium Budapest.

Recombination favours negative epistasis favours sex

• Only without strong directional selection on a particular gene expression pattern

• Mutational load is lower with recombination AND negative epistasis

• What are the possible predictions?

Page 28: Robustness in biology Eörs Szathmáry Eötvös University Collegium Budapest.

Unambiguous and degenerate

Page 29: Robustness in biology Eörs Szathmáry Eötvös University Collegium Budapest.

The structure of the genetic code

• Amino acids in the same column of the genetic code are more related to each other physico-chemically

• „The genetic code is one in a million” (Freeland & Hurst)

Page 30: Robustness in biology Eörs Szathmáry Eötvös University Collegium Budapest.

Central nucleotide and amino acid properties

Page 31: Robustness in biology Eörs Szathmáry Eötvös University Collegium Budapest.

Constraints on codon reshuffling for statistical investigations

Page 32: Robustness in biology Eörs Szathmáry Eötvös University Collegium Budapest.

Significance of some patterns

Page 33: Robustness in biology Eörs Szathmáry Eötvös University Collegium Budapest.

Robustness in food webs

Page 34: Robustness in biology Eörs Szathmáry Eötvös University Collegium Budapest.

Connectivity

• The average connectivity of the neighbours of the black node with k = 3 links is < kn > = 4.

Page 35: Robustness in biology Eörs Szathmáry Eötvös University Collegium Budapest.

Physical interaction between nuclear proteins

Page 36: Robustness in biology Eörs Szathmáry Eötvös University Collegium Budapest.

A ‘random foodweb’

Page 37: Robustness in biology Eörs Szathmáry Eötvös University Collegium Budapest.

Ythan esturay foodweb

Page 38: Robustness in biology Eörs Szathmáry Eötvös University Collegium Budapest.

Food web patterns

Page 39: Robustness in biology Eörs Szathmáry Eötvös University Collegium Budapest.

Food web robustness

Page 40: Robustness in biology Eörs Szathmáry Eötvös University Collegium Budapest.

Statistical food web properties

Page 41: Robustness in biology Eörs Szathmáry Eötvös University Collegium Budapest.

Secondary extinctions resulting from primary species loss in 16 food webs ordered by

increasing connectance (C ).

Page 42: Robustness in biology Eörs Szathmáry Eötvös University Collegium Budapest.

Robustness of food webs

Page 43: Robustness in biology Eörs Szathmáry Eötvös University Collegium Budapest.

Network structure and biodiversity loss in food webs:

robustness increases with connectance