Top Banner
Robot Control 1 Sami Haddadin, Lars Johannsmeier
32

Robot Control - NIST

Apr 03, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Robot Control - NIST

Robot Control

1

Sami Haddadin, Lars Johannsmeier

Page 2: Robot Control - NIST

Physical Interaction

Page 3: Robot Control - NIST

Overview

performing a specific task

Control Design

Motion planning

SensingActuation

Task planning

Controller choice Stability analysis

e.g. Model-based control e.g. Passivity

Model Identification

Modeling and essential theories

Page 4: Robot Control - NIST

Modeling and Essential Theories

Page 5: Robot Control - NIST

Kinematics

Rotation matrixOrthonormal matrix

9 elements -3 orthogonality relationships -3 unitary relationships= 3 independent elements

Euler angles

Unit quaternions

Non unique and singularities

Transformation matrixAlways invertible Composition:

Direct Kinematics

Inverse Kinematics

JointSpace

TaskSpace

AnalyticJacobian

GeometricJacobian

(Twists)

(Wrenches)

du

al s

pac

es

du

al spaces

Manipulability vs. Singularity

Sic

iliano, B

., Scia

vic

co

, L., V

illani, L

., Orio

lo, G

., Robotic

s: M

odellin

g, P

lannin

g a

nd C

ontro

l, 3rd

Editio

n, S

prin

ger, 2

009

Space of linear operators on vector space V.

When Jacobian loses rank.

How far from singularity?

Page 6: Robot Control - NIST

Redundancy

FRANKA EMIKA Non-invertible Jacobian

Inverse kinematics problems

Moore-Penrose Pseudo-inverseUnique and always existsSuch that (almost ident. for weighted):

Weighted pseudo-inverseDifferential inverse kinematics:Minimization of:

Null-space control

No motion

No Wrench

Task prioritization

Primary task Secondary task

Slo

tine, S

. B. (1

991, J

une). A

genera

l fram

ew

ork

for m

anagin

g m

ultip

le ta

sks in

hig

hly

redundant ro

botic

syste

ms. In

pro

ceedin

g o

f 5th

Inte

rnatio

nal C

onfe

rence o

n A

dvanced R

obotic

s (V

ol. 2

, pp. 1

211

-1216).

On velocity level

On torque level

Page 7: Robot Control - NIST

RedundancyM

ansfre

d, N

., Dje

llab, B

., Rald

ua V

euth

ey, J

., Beck, F

., Ott, C

., Haddadin

, S., Im

pro

vin

g th

e P

erfo

rmance o

f

Bio

mechanic

ally

Safe

Velo

city

Contro

l for R

edundant R

obots

thro

ugh R

efle

cte

d M

ass M

inim

izatio

n

Page 8: Robot Control - NIST

RedundancyM

ansfe

ld, N

., Beck, F

., Die

trich, A

., Haddadin

, S., In

tera

ctiv

e N

ull s

pace C

ontro

l for In

tuitiv

ely

Inte

rpre

table

Reconfig

ura

tion o

f Redundant M

anip

ula

tors

,

Page 9: Robot Control - NIST

Dynamics Direct Dynamics

Inverse Dynamics

Newton-Euler method(Wrench balance approach)

(numeric)

Euler-Lagrange method(energy-based approach)

(symbolic)

vs.

Sic

iliano, B

., Scia

vic

co, L

., Villa

ni, L

., Orio

lo, G

., Robotic

s: M

odellin

g, P

lannin

g a

nd C

ontro

l, 3rd

Editio

n, S

prin

ger, 2

009

Skew-symmetry of:

& skew-symmetric

Operational Space Dynamics

Page 10: Robot Control - NIST

Flexible-joint robots

Fully coupled model

Reduced model (Large transmission ratio)

Inertia shaping

Damping shaping

with: Joint torque sensing

Alb

u-S

chäffe

r, A., O

tt, C., &

Hirz

inger, G

. (2007). A

unifie

d p

assiv

ity-b

ased c

ontro

l fram

ew

ork

for p

ositio

n, to

rque

and im

pedance c

ontro

l of fle

xib

le jo

int ro

bots

. The in

tern

atio

nal jo

urn

al o

f robotic

s re

searc

h, 2

6(1

), 23

-39.

De L

uca, A

., & B

ook, W

. J. (2

016). R

obots

with

flexib

le e

lem

ents

. In S

prin

ger H

andbook o

f Robotic

s (p

p. 2

43

-282).

Sprin

ger In

tern

atio

nal P

ublis

hin

g.

Page 11: Robot Control - NIST

Take Me by the Hand!A

lbu-S

chäffe

r et. a

l. ICR

A 2

002, A

lbu

-Schäffe

r et. a

l. IJR

R2007

Page 12: Robot Control - NIST

Collision HandlingH

addadin

, S., D

e L

uca, A

., Alb

u-S

chäffe

r, A. (2

017). R

obot C

ollis

ions: A

Surv

ey o

n D

ete

ctio

n, Is

ola

tion, a

nd Id

entific

atio

n,

Accepte

d fo

r IEE

E T

ransactio

ns o

n R

obotic

s

Page 13: Robot Control - NIST

External Joint Torque Observer

Generalized momentum:

Component-wise:

Collision on the i-th link: DLR Lightweight Robot

Haddadin

, S., D

e L

uca, A

., Alb

u-S

chäffe

r, A. (2

017). R

obot C

ollis

ions: A

Surv

ey o

n D

ete

ctio

n, Is

ola

tion, a

nd Id

entific

atio

n,

Accepte

d fo

r IEE

E T

ransactio

ns o

n R

obotic

s

Page 14: Robot Control - NIST

Collision HandlingH

addadin

et. a

l. RS

S 2

007

Haddadin

et. a

l. IJR

R 2

009

2012 G

eorg

e G

iralt P

hD

Aw

ard

ICR

A B

est S

erv

ice R

obotic

s A

ward

Page 15: Robot Control - NIST

Model Identification

Page 16: Robot Control - NIST

Identification ProcedureK

halil, W

., & D

om

bre

, E. (2

004). M

odelin

g, id

entific

atio

n a

nd c

ontro

l of ro

bots

. Butte

rworth

-Hein

em

ann.

Page 17: Robot Control - NIST

Control Design

Page 18: Robot Control - NIST

Early pHRI

Page 19: Robot Control - NIST

Joint Impedance Control

Robot dynamics:

Required control input:

Avoidance of inertia shaping:

Desired impedance behavior:

Closed-loop dynamics:

PD+ controller

No need for external joint torque sensing

Compliance control

DLR Lightweight Robot

Ott, C

. (2008). C

arte

sia

n im

pedance c

ontro

l of re

dundant a

nd fle

xib

le-jo

int ro

bots

. Sprin

ger.

Page 20: Robot Control - NIST

Cartesian Impedance Control & Damping Design

Desired impedance behavior (without inertia shaping):

Required control input:

Design of stiffness:

Design of damping:Constant & defined by the application (Normally symmetric & positive).

Constant & diagonal not good.

Non-constant & non-diagonal inertia e.g. based on general eigenvalue decomposition of symmetric matrices

For any positive-definite matrix and symmetric matrix ,there is a non-singular matrix and a diagonal matrix such that:

In quasi-static case, at each position :

Damping factor:

Compliance control

DLR Lightweight Robot

Ott, C

. (2008). C

arte

sia

n im

pedance c

ontro

l of re

dundant a

nd fle

xib

le-jo

int ro

bots

. Sprin

ger.

i-th diagonalelement of

Page 21: Robot Control - NIST

Stiffen up!

Page 22: Robot Control - NIST

Adaptive Impedance Control

Cartesian impedance control with the feedforward wrench

Similar to the principles of motor adaptation:

& Learning rate (positive definite)

Forgetting factor (positive definite)&DLR Lightweight Robot with Adaptive Impedance control in peg-in-hole experiment

e.g.

Yang, C

., Ganesh, G

., Haddadin

, S., P

aru

sel, S

., Alb

u-S

chaeffe

r, A., &

Burd

et, E

. (2011). H

um

an

-like a

dapta

tion o

f forc

e

and im

pedance in

sta

ble

and u

nsta

ble

inte

ractio

ns. IE

EE

transactio

ns o

n ro

botic

s, 2

7(5

), 918

-930.

Page 23: Robot Control - NIST

Hybrid Force Position ControlV

illani, D

e S

chutte

r Handbook o

f Robotic

s 2

008

Khatib

IJR

R, 1

987

Classical approach: partition motion and force space via selection matrix Ω

Disadvantage: Exact environment model has to be known!

Page 24: Robot Control - NIST

Unified Force/Impedance Controller

Page 25: Robot Control - NIST

Without shaping function

With shaping function

Unified Force/Impedance Controller

Page 26: Robot Control - NIST

Assembly and Soft Manipulation

Page 27: Robot Control - NIST

Assembly and Soft Manipulation

Page 28: Robot Control - NIST

Assembly and Soft Manipulation

Page 29: Robot Control - NIST

Assembly Planning

• Framework for multi-agent assembly

• Optimal assignment of agents to tasks is planned

• Local motion and manipulation planning

Page 30: Robot Control - NIST

Assembly Planning

Page 31: Robot Control - NIST

• Robot knows a general strategy• Controller and skill parameters

are learned• Parameter space limits are

derived from known system limits and task context

Assembly Planning

Page 32: Robot Control - NIST

The Endfund

konec

ende

край

enda

Endepää

fineinde

end

ände

τέλος son

ბოლოს

fine

समाप्त

конец

结束

fim

끝پایان

đầu cuối

終わり

ทา้ย

Соңы

അവസാനിക്കുന്നു

finisآخر

النهاية

סוף

krajmwisho

ముగింపు

վերջ

deireadh

aħħar

Sfârşit

עק

oxiri

শেষशेवटी

кінець

duloкрајот

અંત

Поён

diwedd

ọgwụgwụအဆ ုံး