Top Banner
5797-1 Non-Human Primate Models for Evaluation of Anthrax and Plague Vaccines Lovelace Respiratory Research Institute 2425 Ridgecrest Drive SE, Albuquerque, NM 87108 Robert L. Sherwood, PhD Director, Applied Life Sciences & Toxicology
35

Robert L. Sherwood, Ph.D.

Apr 10, 2018

Download

Documents

sathakoil7501
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Robert L. Sherwood, Ph.D.

8/8/2019 Robert L. Sherwood, Ph.D.

http://slidepdf.com/reader/full/robert-l-sherwood-phd 1/35

5797-1

Non-Human Primate Models

for Evaluation of

Anthrax and Plague Vaccines

Lovelace Respiratory Research Institute

2425 Ridgecrest Drive SE, Albuquerque, NM 87108

Robert L. Sherwood, PhD

Director, Applied Life Sciences & Toxicology

Page 2: Robert L. Sherwood, Ph.D.

8/8/2019 Robert L. Sherwood, Ph.D.

http://slidepdf.com/reader/full/robert-l-sherwood-phd 2/35

Page 3: Robert L. Sherwood, Ph.D.

8/8/2019 Robert L. Sherwood, Ph.D.

http://slidepdf.com/reader/full/robert-l-sherwood-phd 3/35

5797-3

Bacillus anthracis 

• Bacillus anthracis is very large, Gram-positive, sporeforming

rod, 1 - 1.2µm in width x 3 - 5µm in length.

• The bacterium can be cultivated in ordinary nutrient medium

under aerobic or anaerobic conditions.

• Member of the Bacillus cereus family

 –  Includes B. cereus, B. thuringiensis, and B. anthracis 

Gamma phage lysis

Page 4: Robert L. Sherwood, Ph.D.

8/8/2019 Robert L. Sherwood, Ph.D.

http://slidepdf.com/reader/full/robert-l-sherwood-phd 4/35

5797-4

Bacillus anthracis 

• Causative agent of anthrax

 – Cutaneous (skin contact with infected material)

• Skin infection begins as a raised itchy bumpthat resembles an insect bite but within 1-2days develops into a vesicle and then apainless ulcer, usually 1-3 cm in diameter, witha characteristic black necrotic (dying) area inthe center.

• Edema or swelling of the surrounding tissuesmay develop and lymph glands in the adjacentarea may swell.

• About 20% of untreated cases of cutaneousanthrax will result in death.

 –  Intestinal (ingestion of infected meat)

• Symptoms include nausea, loss of appetite,vomiting, fever are followed by abdominalpain, vomiting of blood, and severe diarrhea.

• Intestinal anthrax results in death in 25% to60% of cases.

 –  Inhalation (breathing spores)

Symptoms of the common cold progressing tosevere breathing problems and shock

• Inhalation anthrax is usually fatal

Page 5: Robert L. Sherwood, Ph.D.

8/8/2019 Robert L. Sherwood, Ph.D.

http://slidepdf.com/reader/full/robert-l-sherwood-phd 5/35

5797-5

Yersinia pestis 

• Gram-negative coccobacilli

 –  Nonmotile, nonhemolytic

 – Capsule

• Member of Enterobacteriacea 

 –  Facultative aerobe

• Carries 3 plasmids

 –  9.5 kb pPla

• Plasminogen activator

 –  64 kb pCD1 (pYV or pCad)

• Yop proteins

 –  100-100 kb pMT1 (pFra)

Fraction 1 capsule antigen

Page 6: Robert L. Sherwood, Ph.D.

8/8/2019 Robert L. Sherwood, Ph.D.

http://slidepdf.com/reader/full/robert-l-sherwood-phd 6/35

5797-6

Y. pestis (causative agent of Plague)

bubo

Page 7: Robert L. Sherwood, Ph.D.

8/8/2019 Robert L. Sherwood, Ph.D.

http://slidepdf.com/reader/full/robert-l-sherwood-phd 7/355797-7

Why NHP?

• FDA “Animal Rule”

 –  Title 21, Subchapter D, Part 314, Subpart I – Approval of NewDrugs When Human Efficacy Studies are Not Ethical or Feasible

 –  Requires the following:

• Adequate and well-controlled animal studies that

establish that the drug product is reasonably likely toproduce clinical benefit in humans

• Reasonably well-understood pathophysiologicalmechanism

• Effect is demonstrated in more than one animal species

expected to react with a response predictive for humans

• The animal study endpoint is clearly related to thedesired benefit in humans

• The data on the kinetics and pharmacodynamics allowsselection of an effective dose in humans

Page 8: Robert L. Sherwood, Ph.D.

8/8/2019 Robert L. Sherwood, Ph.D.

http://slidepdf.com/reader/full/robert-l-sherwood-phd 8/355797-8

Why NHP?

• Animal model correlation to human disease is required

 –  Multiple models may be necessary

 –  Monkey will probably be closest correlate to human

Page 9: Robert L. Sherwood, Ph.D.

8/8/2019 Robert L. Sherwood, Ph.D.

http://slidepdf.com/reader/full/robert-l-sherwood-phd 9/35

5797-9

Microbiological Characterization

•The bacteriology of the microbial challenge needs to be wellunderstood and well characterized

• Does your microbial growth method recover optimally?

• What samples are going to be analyzed? Liquid, tissue?

Recovery from tissue? Clumping?

• Are appropriate samples analyzed to assess purity and titer?

• What is the process? Fresh growth vs. frozen?

• Is there an effect on results from small variations in target dose?

• Working from a well characterized stock? Seed stock, workingstock. Known titers, purity, genetic stability.

Page 10: Robert L. Sherwood, Ph.D.

8/8/2019 Robert L. Sherwood, Ph.D.

http://slidepdf.com/reader/full/robert-l-sherwood-phd 10/35

Page 11: Robert L. Sherwood, Ph.D.

8/8/2019 Robert L. Sherwood, Ph.D.

http://slidepdf.com/reader/full/robert-l-sherwood-phd 11/35

5797-11

Descriptive Method

incubate

centrifuge

Set up spraysor Perform

aerosols

Recover spray& AGI

suspensionsSerial dilutions

and plating

Countplates

incubate

Page 12: Robert L. Sherwood, Ph.D.

8/8/2019 Robert L. Sherwood, Ph.D.

http://slidepdf.com/reader/full/robert-l-sherwood-phd 12/35

5797-12

Final Method for Y. pestis NHP Challenge• Inoculate TBAB slants with loop of frozen stock suspension

• Incubate at 28ºC for 48 – 96 hrs

• Harvest growth from TBAB slants into 1% peptone (2 mL per slant)

• Centrifuge and resuspend in 4 ml 1% peptone

• Take OD of suspension to estimate titer

• Compare OD to standard curve

• Dilute microbial suspension to dose in BHI

• Set up sprays with 10 mL BHI of dose suspension (weigh vials)

• Set up impingers with 20 mL of BHI + antifoam (weigh vials)

• Perform sprays

• Reweigh spray and impinger vials to determine loss

• Titer viable CFU in 1:10 dilutions of sterile 1% peptone

• Plate on TSA and incubate for 48-72 hrs at 28ºC

• Count colonies

• Calculate dose

Page 13: Robert L. Sherwood, Ph.D.

8/8/2019 Robert L. Sherwood, Ph.D.

http://slidepdf.com/reader/full/robert-l-sherwood-phd 13/35

5797-13

Bioaerosol Characterization

• Very important to understand effects of aerosolization on

microbial agent

• May require some form of protection (high protein medium)

• Humidity requirement?

• Collison nebulizer efficiently creates a uniform microbialaerosol; it also efficiently inactivates microbes

• Need to understand the operating parameters of the bioaerosol

system so that target challenge doses can be achievedreproducibly

Page 14: Robert L. Sherwood, Ph.D.

8/8/2019 Robert L. Sherwood, Ph.D.

http://slidepdf.com/reader/full/robert-l-sherwood-phd 14/35

5797-14

Bioaerosol Set Up

Collison

nebulizer

16 L Head-only

Exposure

Chamber

NHP whole body

plethysmography box

AGI

HEPA-

filtered air

3X HEPA filter

Page 15: Robert L. Sherwood, Ph.D.

8/8/2019 Robert L. Sherwood, Ph.D.

http://slidepdf.com/reader/full/robert-l-sherwood-phd 15/35

5797-15

NHP Head-only Exposure Chamber

Page 16: Robert L. Sherwood, Ph.D.

8/8/2019 Robert L. Sherwood, Ph.D.

http://slidepdf.com/reader/full/robert-l-sherwood-phd 16/35

5797-16

Bioaerosol Chamber

Page 17: Robert L. Sherwood, Ph.D.

8/8/2019 Robert L. Sherwood, Ph.D.

http://slidepdf.com/reader/full/robert-l-sherwood-phd 17/35

5797-17

Target vs. Predicted SprayConcentrations

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Log10 CFU

   L   o   g   1   0    C   F   U

Page 18: Robert L. Sherwood, Ph.D.

8/8/2019 Robert L. Sherwood, Ph.D.

http://slidepdf.com/reader/full/robert-l-sherwood-phd 18/35

5797-18

Effect of Spray Conc. On Spray Factor

Actual CFU vs. SprayFactor

-9

-8

-7

-6

-5

-4

-3

2 3 4 5 6 7 8 9 10

Log10 CFU in Spray

    S   p   r   a

   y   F   a   c   t   o   r   (   L   o   g   1   0   )

Avg. SprayFactor =

1.42x10-6

Page 19: Robert L. Sherwood, Ph.D.

8/8/2019 Robert L. Sherwood, Ph.D.

http://slidepdf.com/reader/full/robert-l-sherwood-phd 19/35

5797-19

NHP Models

• Cynomolgus macaques (Macaca fascicularis )

• Cyno does not necessarily equal a cyno

 –  Chinese cyno

 –  Indonesian cyno

 – Vietnamese cyno

 –  Mauritius cyno (less genetic diversity)

 –  Need to indicate origin of animal in model developmentbecause the origin may have an effect on results

Page 20: Robert L. Sherwood, Ph.D.

8/8/2019 Robert L. Sherwood, Ph.D.

http://slidepdf.com/reader/full/robert-l-sherwood-phd 20/35

5797-20

Anthrax and Plague NHP Model Overview

Infectiouschallenge(250 LD50)

Death

Bacteremia

Anthrax

Plague

Death

Infectious

challenge(50 LD50)

Bacteremia

Lethargy, Diarrhea,Stop eatingIncrease body

temp

Drop inBody Temp

Lethargy, Diarrhea,Respiration changes,

Stop eating

Page 21: Robert L. Sherwood, Ph.D.

8/8/2019 Robert L. Sherwood, Ph.D.

http://slidepdf.com/reader/full/robert-l-sherwood-phd 21/35

5797-21

Anthrax Data

• Combined data from 3 separate passive transfer

studies

 –  Ab infusion 1 hr pre-challenge

• Pulmonary challenge (approx. 250 LD50 doses)

• 15 days of observation

• Daily bleeds for bacteremia

• Tissue load at euthanasia (day 3 to 15)

Page 22: Robert L. Sherwood, Ph.D.

8/8/2019 Robert L. Sherwood, Ph.D.

http://slidepdf.com/reader/full/robert-l-sherwood-phd 22/35

5797-22

Survival Time of Treated NHP Exposed to PlagueAerosol Challenge

0

20

40

60

80

100

120

  D   0

  D   2

  D  4

  D   6

  D   8

  D   1  0

  D   1  2

  D   1 4

Study Day

   %    S

  u  r  v   i  v  a   l

PBS 0

MAb A 10

MAb B 10

MAb C 10

MAb B 2

MAb B 1

Page 23: Robert L. Sherwood, Ph.D.

8/8/2019 Robert L. Sherwood, Ph.D.

http://slidepdf.com/reader/full/robert-l-sherwood-phd 23/35

5797-23

NHP Anthrax Time to Death

0

2

4

6

8

10

12

14

   T   i   m   e   (   D   a  y   s

   )PBS 0

Mab A 10

Mab B 10

Mab C 10

Mab B 2

Mab B 1

12 5 11 5 54N=

Page 24: Robert L. Sherwood, Ph.D.

8/8/2019 Robert L. Sherwood, Ph.D.

http://slidepdf.com/reader/full/robert-l-sherwood-phd 24/35

5797-24

NHP Anthrax Bacteremia

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

D0 D1 D2 D3 D4 D5 D6 D9 Term

Days

   L   o   g   1   0    C   F

   U

PBS 0

Mab A 10

Mab B 10Mab C 10

Mab B 2

Mab B 1

Page 25: Robert L. Sherwood, Ph.D.

8/8/2019 Robert L. Sherwood, Ph.D.

http://slidepdf.com/reader/full/robert-l-sherwood-phd 25/35

5797-25

NHP Anthrax Tissue Load

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

Spleen Liver Trach LN Lung

   L   o   g   1   0    C   F   U   /   g

PBS 0

Mab A 10

Mab B 10

Mab C 10

Mab B 2

Mab B 1

Page 26: Robert L. Sherwood, Ph.D.

8/8/2019 Robert L. Sherwood, Ph.D.

http://slidepdf.com/reader/full/robert-l-sherwood-phd 26/35

5797-26

Anthrax Summary

• Animals with early bacteremia succumb quickly

• Bacteremia indicates vegetative microbes escaping host defense

• Tissue loads can reach very high levels of vegetative microbesin as little as 2-3 days

• Spore counts in the lung decrease slowly over time, but maytake a long time to drop to levels that the host defense can

manage

• Antibody pretreatment can result in significant survival from

pulmonary anthrax challenge (Mab C @ 10 mg had highestsurvival)

Page 27: Robert L. Sherwood, Ph.D.

8/8/2019 Robert L. Sherwood, Ph.D.

http://slidepdf.com/reader/full/robert-l-sherwood-phd 27/35

5797-27

Plague Data

• Combined data from 3 vaccine efficacy studies

 –  1, 2, or 3 challenges

 –  + / - adjuvant

 –  Low (25 µg) or high (250 µg) dose

• Pulmonary challenge (approx. 75 LD50 doses)

• 15 days of observation post infection

• Daily bleeds for bacteremia (Days 2, 3, 4, 5, 6, Term)

• Tissue load at euthanasia (Day 3 to 15)

Page 28: Robert L. Sherwood, Ph.D.

8/8/2019 Robert L. Sherwood, Ph.D.

http://slidepdf.com/reader/full/robert-l-sherwood-phd 28/35

5797-28

Survival Time of Vaccinated NHP Exposed to PlagueAerosol Challenge

0

20

40

60

80

100

120

   D    0

   D    2

   D   4

   D    6

   D    8

   D   1   0

   D   1   2

   D   1  4

Study Day

   %

   S  u   r  v   i  v

   a   l

Ag+Adj

Ag A + Adj 250 1

Ag A + Adj 250 2

Ag A + Adj 250 3

Ag A + Adj 25 3

Ag A 250 3

Page 29: Robert L. Sherwood, Ph.D.

8/8/2019 Robert L. Sherwood, Ph.D.

http://slidepdf.com/reader/full/robert-l-sherwood-phd 29/35

5797-29

0

2

4

6

810

12

14

Ag+AdjAg A +Adj250 1

Ag A +Adj250 2

Ag A +Adj250 3

Ag A +Adj25 3

Ag A 250 3

NHP Plague Time to Death

16 5 5 320 3N=

Page 30: Robert L. Sherwood, Ph.D.

8/8/2019 Robert L. Sherwood, Ph.D.

http://slidepdf.com/reader/full/robert-l-sherwood-phd 30/35

5797-30

NHP Plague Bacteremia

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

   D   0

   D  1

   D   2

   D  3

   D  4

   D   5

   D   6

   D   7

   D  1   0

   D  1  4

Days

   L   o   g   1   0

   C   F   U

Ag+Adj 0 3

Ag A + Adj 250 1

Ag A + Adj 250 2

Ag A + Adj 250 3

Ag A + Adj 25 3

Ag A 250 3

Page 31: Robert L. Sherwood, Ph.D.

8/8/2019 Robert L. Sherwood, Ph.D.

http://slidepdf.com/reader/full/robert-l-sherwood-phd 31/35

Page 32: Robert L. Sherwood, Ph.D.

8/8/2019 Robert L. Sherwood, Ph.D.

http://slidepdf.com/reader/full/robert-l-sherwood-phd 32/35

5797-32

Plague Summary

•Plague bacteremia indicates early break out from host defense

• Lower bacteremia correlates with better survival prognosis

• Tissue loads can reach very high bacterial concentrations in 4-5days

• Lower bacteremia also correlates with lower tissue loads

• 3 challenge doses > 2 doses > 1 dose

• Adjuvant was required for optimal host response

Page 33: Robert L. Sherwood, Ph.D.

8/8/2019 Robert L. Sherwood, Ph.D.

http://slidepdf.com/reader/full/robert-l-sherwood-phd 33/35

5797-33

Summary

• Pulmonary anthrax and plague in Cynomolgus macaques havemany similarities to human disease

• Therapies that impact spread of vegetative anthrax have

improved results in NHP anthrax model

•Therapies that decrease septicemia of plague have improvedresults in NHP plague model

Page 34: Robert L. Sherwood, Ph.D.

8/8/2019 Robert L. Sherwood, Ph.D.

http://slidepdf.com/reader/full/robert-l-sherwood-phd 34/35

5797-34

Acknowledgments

• Vidadi Yusibov, PhD (Fraunhofer USA)

• NIAID

• LRRI

 –  Microbiology group

• Trevor Brasel, PhD

• Liz Zinter

• Rebecca Wisecup

 –  Bioaerosol group

• Ed Barr

• Steve Storch

 –  Toxicology Group

• Ron Couch, PhD

• Michelle Valderas, PhD

Page 35: Robert L. Sherwood, Ph.D.

8/8/2019 Robert L. Sherwood, Ph.D.

http://slidepdf.com/reader/full/robert-l-sherwood-phd 35/35

Lov e lac e™