Top Banner
Rigid Body Kinematics University of Pennsylvania 1 Rigid Body Transformations Vijay Kumar
16

Rigid Body Transformations

Dec 23, 2015

Download

Documents

arafatasghar

Part of Upenn's Courseware on Advanced Robotics.
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Rigid Body Transformations

Rigid Body Kinematics

University of Pennsylvania

1

Rigid Body Transformations

Vijay Kumar

Page 2: Rigid Body Transformations

Rigid Body Kinematics

University of Pennsylvania

2

Remark about Notation

Vectors x, y, a, … Ax u, v, p, q, …

Matrices A, B, C, … AAB

g, h, …

Potential for Confusion!

Page 3: Rigid Body Transformations

Rigid Body Kinematics

University of Pennsylvania

3

The 3vector a and its 3skew symmetric matrix counterpart a

For any vector b

ab = A b

3

2

1

12

13

23

2112

3113

2332

3

2

1

3

2

1

0

0

0

b

b

b

aa

aa

aa

baba

baba

baba

b

b

b

a

a

a

a

a = A

Page 4: Rigid Body Transformations

Rigid Body Kinematics

University of Pennsylvania

4

Rigid Body Transformation

Rigid Body Displacement

Rigid Body Motion

3: ROtg

O

R33: ROg t

Page 5: Rigid Body Transformations

Rigid Body Kinematics

University of Pennsylvania

5

Coordinate Transformations and Displacements

Transformations of points Transformation (g) of points induces an action (g*) on vectors

What are rigid body transformations? Displacements? g preserves lengths g* preserves cross products

p

qg (p)

g (q)

v

g* (v)

Page 6: Rigid Body Transformations

Rigid Body Kinematics

University of Pennsylvania

6

Rigid Body Transformations in R3

Can show that the most general coordinate transformation from {B} to {A} has the following form

position vector of P in {B} is transformed to position vector of P in {A}

description of {B} as seen from an observer in {A}

OAPBB

APA rrRr

x

y

z

ArP

O

BrP

ArO’

z'

y'

x'

{A}

O'

A

BP

Rotation of {B} with respect to

{A}

Translation of the origin of {B} with respect to origin of {A}

Page 7: Rigid Body Transformations

Rigid Body Kinematics

University of Pennsylvania

7

Rotational transformations in R3

Properties of rotation matrices Transpose is the inverse Determinant is +1

Rotations preserve cross products

R u R v = R (u v)

Rotation of skew symmetric matrices

For any rotation matrix R:

R w RT = (R w)

Page 8: Rigid Body Transformations

Rigid Body Kinematics

University of Pennsylvania

8

Example: Rotation Rotation about the x-axis through

cossin0

sincos0

001

,xRot

x

y

z

Displacement

x

y

z

Page 9: Rigid Body Transformations

Rigid Body Kinematics

University of Pennsylvania

9

Example: RotationRotation about the y-axis through

y

z

x

z'x'

cos0sin

010

sin0cos

,yRot

Rotation about the z-axis through

100

0cossin

0sincos

,zRot

y

z

x

y'

x'

Page 10: Rigid Body Transformations

Rigid Body Kinematics

University of Pennsylvania

10

Rigid Motion in R3

The same equation can have two interpretations: It transforms the position vector of any point in {B} to the position vector in {A} It transforms the position vector of any point in the first position/orientation (described

by {A}) to its new position vector in the second position orientation (described by{B}).

x

y

z

ArP’

O

ArO’

z'

y'

x'

{A}

O'

{B}

ArP P

P’

BrP’

x

y

z

ArP

O

BrP

ArO’

z'

y'

x'

{A}

O'

A

BP

OAPBB

APA rrRr OAPAB

APA rrRrCoordinate transformation from {B} to {A} Displacement of a body-fixed frame from {A} to {B}

Page 11: Rigid Body Transformations

Rigid Body Kinematics

University of Pennsylvania

11

Mobile Robots

x

y

100

cossin

sincos

y

x

gWRW

R

WAR

Page 12: Rigid Body Transformations

Rigid Body Kinematics

University of Pennsylvania

12

The Lie group SE(3)

IRRRRrR

0

rRAA TTRRSE ,,,

13 333

31

http://www.seas.upenn.edu/~meam520/notes02/RigidBodyMotion3.pdf

Page 13: Rigid Body Transformations

Rigid Body Kinematics

University of Pennsylvania

13

SE(3) is a Lie groupSE(3) satisfies the four axioms that must be satisfied by the elements of an algebraic group:

The set is closed under the binary operation. In other words, if A and B are any two matrices in SE(3), AB SE(3).

The binary operation is associative. In other words, if A, B, and C are any three matrices SE(3), then (AB) C = A (BC).

For every element A SE(3), there is an identity element given by the 44 identity matrix, ISE(3), such that AI = A.

For every element A SE(3), there is an identity inverse, A-1 SE(3), such that A A-1 = I.

SE(3) is a continuous group. the binary operation above is a continuous operation the product of any two

elements in SE(3) is a continuous function of the two elements the inverse of any element in SE(3) is a continuous function of that element.

In other words, SE(3) is a differentiable manifold. A group that is a differentiable manifold is called a Lie group[ Sophus Lie (1842-1899)].

Page 14: Rigid Body Transformations

Rigid Body Kinematics

University of Pennsylvania

14

Composition of DisplacementsDisplacement from {A} to {B}

Displacement from {B} to {C}

Displacement from {A} to {C}x

y

z

O

z'

y'

x'

{A}

O'

z''

x''

y''

O''

{B}

POSITION 1

POSITION 2

POSITION 3

{C}

,131

'

0

rRA

OAB

A

BA

,131

0

rRA

OBC

B

CB

1

11

1

0

rrRRR

0

rR

0

rR

0

rRA

OAOBB

AC

BB

A

OBC

BOAB

A

OAC

A

CA

Note XAY describes the displacement of the body-fixed frame from {X} to {Y} in reference frame {X}

Page 15: Rigid Body Transformations

Rigid Body Kinematics

University of Pennsylvania

15

Composition (continued)

x

y

z

O

z'

y'

x'

{A}

O'

z''

x''

y''

O''

{B}

POSITION 1

POSITION 2

POSITION 3

{C}

Note XAY describes the displacement of the body-fixed frame from {X} to {Y} in reference frame {X}

Composition of displacements Displacements are generally described

in a body-fixed frame Example: BAC is the displacement of a

rigid body from B to C relative to the axes of the “first frame” B.

Composition of transformations Same basic idea AAC = AAB BAC

Note that our description of transformations (e.g., BAC) is relative to the “first frame” (B, the frame with the leading superscript).

Page 16: Rigid Body Transformations

Rigid Body Kinematics

University of Pennsylvania

16

S u b g r o u p N o t a t i o n D e f i n i t i o n S i g n i f i c a n c e

T h e g r o u p o fr o t a t i o n s i n

t h r e ed i m e n s i o n s

S O ( 3 ) T h e s e t o f a l l p r o p e r o r t h o g o n a lm a t r i c e s .

S O R T T3 3 3 R R R R R R I,

A l l s p h e r i c a l d i s p l a c e m e n t s .O r t h e s e t o f a l l d i s p l a c e m e n t s

t h a t c a n b e g e n e r a t e d b y as p h e r i c a l j o i n t ( S - p a i r ) .

S p e c i a lE u c l i d e a n

g r o u p i n t w od i m e n s i o n s

S E ( 2 ) T h e s e t o f a l l 3 3 m a t r i c e s w i t h t h es t r u c t u r e :

c o s s i n

s i n c o s

r

rx

y

0 0 1

w h e r e , r x , a n d r y a r e r e a l n u m b e r s .

A l l p l a n a r d i s p l a c e m e n t s . O rt h e s e t o f d i s p l a c e m e n t s t h a tc a n b e g e n e r a t e d b y a p l a n a r

p a i r ( E - p a i r ) .

T h e g r o u p o fr o t a t i o n s i n

t w od i m e n s i o n s

S O ( 2 ) T h e s e t o f a l l 2 2 p r o p e r o r t h o g o n a lm a t r i c e s . T h e y h a v e t h e s t r u c t u r e :

c o s s i n

s i n c o s

,

w h e r e i s a r e a l n u m b e r .

A l l r o t a t i o n s i n t h e p l a n e , o rt h e s e t o f a l l d i s p l a c e m e n t s

t h a t c a n b e g e n e r a t e d b y as i n g l e r e v o l u t e j o i n t ( R - p a i r ) .

T h e g r o u p o ft r a n s l a t i o n s i nn d i m e n s i o n s .

T ( n ) T h e s e t o f a l l n 1 r e a l v e c t o r s w i t hv e c t o r a d d i t i o n a s t h e b i n a r y

o p e r a t i o n .

A l l t r a n s l a t i o n s i n nd i m e n s i o n s . n = 2 i n d i c a t e s

p l a n a r , n = 3 i n d i c a t e s s p a t i a ld i s p l a c e m e n t s .

T h e g r o u p o ft r a n s l a t i o n s i n

o n ed i m e n s i o n .

T ( 1 ) T h e s e t o f a l l r e a l n u m b e r s w i t ha d d i t i o n a s t h e b i n a r y o p e r a t i o n .

A l l t r a n s l a t i o n s p a r a l l e l t o o n ea x i s , o r t h e s e t o f a l l

d i s p l a c e m e n t s t h a t c a n b eg e n e r a t e d b y a s i n g l e

p r i s m a t i c j o i n t ( P - p a i r ) .

T h e g r o u p o fc y l i n d r i c a l

d i s p l a c e m e n t s

S O ( 2 ) T ( 1 ) T h e C a r t e s i a n p r o d u c t o f S O ( 2 ) a n dT ( 1 )

A l l r o t a t i o n s i n t h e p l a n e a n dt r a n s l a t i o n s a l o n g a n a x i s

p e r p e n d i c u l a r t o t h e p l a n e , o rt h e s e t o f a l l d i s p l a c e m e n t s

t h a t c a n b e g e n e r a t e d b y ac y l i n d r i c a l j o i n t ( C - p a i r ) .

T h e g r o u p o fs c r e w

d i s p l a c e m e n t s

H ( 1 ) A o n e - p a r a m e t e r s u b g r o u p o f S E ( 3 ) A l l d i s p l a c e m e n t s t h a t c a n b eg e n e r a t e d b y a h e l i c a l j o i n t

( H - p a i r ) .

Subgroups of SE(3)