Top Banner
Riemannian Geometry and Machine Learning for NonEuclidean Data Frank C. Park and C.J. Jang Seoul National University
61

Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

Jul 11, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

Riemannian Geometry and Machine Learning for Non‐Euclidean Data 

Frank C. Park and C.J. Jang Seoul National University

Page 2: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

Carl Friedrich Gauss (1777‐1855)

Page 3: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

15th Century Mapmaking

Page 4: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank
Page 5: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

It would be nice if straight lines on maps...

...were shortest paths on the sphere (but in most 

cases they’re not)

Page 6: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

Google Maps (Mercator projection)

Page 7: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

Mercator maps are very accurate for countries near the equator (e.g., Brazil)

Page 8: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

Greenland vs Africa: Sizes on Mercator Map

Page 9: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

Greenland vs Africa: Actual Size Comparison

Page 10: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank
Page 11: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

Mercator Map

Page 12: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

Gall‐Peters Map

Page 13: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

Gall‐Peters Map: Greenland vs Africa

Relative areas are accurate, but shapes are now distorted

Page 14: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

National Geographic Map (Winkel map)

Page 15: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank
Page 16: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

David Hilbert (1862‐1943)

Page 17: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

Isometry (distortion‐free)

Area‐preserving Geodesic‐preserving Angle‐preserving (conformal)

....

A Hierarchy of Mappings

Page 18: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

The unit two‐sphere is parametrized asSpherical coordinates:

Calculus on the Sphere

1.

x cos siny sin sin

cos

Other coordinate parametrizations are possible, e.g., stereographic projection:

21 ,

21 ,

11

Page 19: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

Calculus on the SphereGiven a curve                   on the sphere, its incremental arclength is

, ,

sin

sin 00 1

The matrix  sin 00 1

is called the first fundamental 

form in classical differential geometry (we’ll call it the Riemannian metric).

Page 20: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

Length of 

Area of

Calculus on the Sphere

sin

sin

Calculating lengths and areas on the sphere using spherical coordinates:

Note that the area element is 

Page 21: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

Local coordinates: 

The Riemannian metric:  , sin 00 1

Note 1: Other local coordinates are possible.   Note 2: Other choices of Riemannian metric are also possible by defining differently, e.g., choose any symmetric positive‐definite 3x3 matrix , , and set

Calculus on the Sphere: The Setup So Far

Page 22: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

Calculus on Riemannian Manifolds

Manifold 

local coordinates x

*Invertible with a differentiable inverse. Essentially, one can be smoothly deformed into the other.

A differentiable manifold is a space that is locally diffeomorphic* to Euclidean space (e.g., a multidimensional surface)

Page 23: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

Calculus on Riemannian Manifolds

A Riemannian metric is an inner product defined on each tangent space that varies smoothly over  .

∈symmetric positive-definite

Page 24: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

Calculus on Riemannian Manifolds

Volume of a subset  of  :Volume 

Length of a curve  on  (local coordinates  :

Page 25: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

Mappings Between Riemannian Manifolds

Page 26: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

Given two manifolds  and  , the mapping  : → is an isometry if it preserves distances and angles everywhere:

, , , for all  , in and  are then said to be isometric to each other;  can 

be transformed into  without any stretching or tearing. 

Original

Isometry

isometric to  not isometric to 

Page 27: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

: →

Isometry ⟺

, ∈

Coordinates  metric 

Isometry: Mathematical Formulation

Coordinates metric 

Page 28: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

There is no isometry between manifolds of different Gaussian curvatures. What’s the best one can do in this case?

Isometries and Gaussian Curvature

Page 29: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

: →

Finding Nearly Isometric Maps

Local coordinates  ,metric  Local coordinates  ,metric 

Note: The “distance” must be coordinate‐invariant.

Page 30: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

Coordinate‐Invariance

This is Spinal Tap  (1984)

Page 31: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

A coordinate‐invariant functional of  : → has the general form

, ⋯ , det ⋯

where  · is any symmetric function, and   , ⋯ , are the roots of

.

, , local coord.  , ⋯ ,Riemannian metric 

, , local coord.  , ⋯ ,Riemannian metric 

Coordinate‐Invariant Functionals

Page 32: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

Intuition: Take  to be made of elastic (e.g., rubber) and  to be rigid (e.g., made of steel).

Harmonic Maps

Wrap the elastic so that it covers all of  , and and let  settle to its elastic equilibrium state.  This is the harmonic map solution [Eells and Sampson 1964].

Page 33: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

, ⋯ , ∑ , with boundary conditions   The harmonic mapping functional is

det ⋯

Variational equations:1det

det Γ 0

where  is  , entry of  , Γ are the Christoffel symbols of the   second kind

Harmonic Maps: Formulation

Page 34: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

Finding the minimum distortion map from the unit interval [0,1] to itself:• Find the mapping  that maps the interval [0,1] onto [0,1] so as to minimize 

• Variational equations are  , which correspond to the equations for the line  .

Examples of Harmonic Maps

Page 35: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

Geodesics: Given two points on the Riemannian manifold  , find the path of shortest distance connecting these two points:Find the mapping  with endpoints specified that minimizes 

Variational equations: 

0

1

Examples of Harmonic Maps

Page 36: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

Examples of Harmonic MapsHarmonic Functions: Find the equilibrium temperature distribution over a planar region with the boundary temperatures specified:Find the mapping  with values for specified on the boundary of the region.Variational equations:  (Laplace’s equation)

Page 37: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

Manifold Learning Revisited 

Page 38: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

• Find a lower‐dimensional, minimum distortion, Euclidean representation of high‐dimensional data:

• Examples from locally linear embedding (LLE) (Roweis et al. 2000)

usually , ≪

∈ ∈

Mapping 3‐dim data to 2‐dim space

Face images mapped into 2‐dim space

Manifold Learning

Page 39: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

• Recall the general setup of our global distortion measure:

, ⋯ , det ⋯

Riemannian Manifold Learning

Page 40: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

Choices need to be made:Manifolds  and Metric  in Metric H in  Integrand function Constraints, boundary conditionsDiscretization method

* can be estimated using  , … , ,from Laplace‐Beltrami operator based method

Riemannian Manifold Learning

A classification scheme for existing manifold learning algorithms

A roadmap for finding new manifold learning methods and algorithms (for example, the harmonic mapping distortion)

Page 41: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

• Discretized objective function for  ∑ :

12 Tr

12 Tr 2

• Given  ,  for • If  is unspecified,  can be optimized with respect to other global distortion measures

Example: Harmonic Mapping Distortion Details

where     ∈ : embedding points in 

∈ : embedding of boundary points

00

,

Page 42: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

A Taxonomy of Manifold Learning Algorithms (1)

(inverse pseudo‐metric)Volume element Constraint

LLE(Locally Linear Embedding)

(Roweis et al. 2000)

Rank‐one matrixΔ Δ ⋅

LE(Laplacian Eigenmap)(Belkin et al. 2003)

Kernel‐weighted covariance matrix

, ⋅det

DM(Diffusion Map)

(Coifman et al. 2006)

Projected metric from  det ⋅ det

Manifold learning algorithms such as LLE, LE, DM share the similar objective to harmonic maps while having equality constraint to avoid trivial solution  . ∈

Δ in LLE is local reconstruction error obtained when running the algorithm 

in LE method represents the projected metric from 

Page 43: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

(inverse pseudo‐metric)Volume element Constraint

RR(Riemannian Relaxation)(McQueen et al. 2016)

Projected metric from the ambient manifold( is estimated from Laplace‐Beltrami operator based method)

max 1 det

LS(Least‐squares spectral distortion)

Same as above 1 det

PD(P(n) distance metric distortion)

Same as above log det

HM(Harmonic mapping distortion)

Same as above det f

LS and PD can be thought of as variants of RR with different  For HM, further optimization is possible when boundary  is not specified

A Taxonomy of Manifold Learning Algorithms (2)

Page 44: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

Flattened Swiss roll: data points

Swiss roll data (2‐dim manifold in 3‐dim space)

Diffusion map embedding

= ∑ 1

Riemannian distortion results

Isomap embedding

Harmonic mapping with boundary ( ) to minimize 

= ∑ 1

Minimum distortion results are closer to flattened swiss roll

Example: Swiss Roll

Page 45: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

• Face images for the corresponding two‐dim. embeddings

Diffusion map embedding

Riemannian distortion results

Isomapembedding

headingangle

mouthshape

= ∑ 1Harmonic mapping with 

boundary  ( ) to minimize = ∑ 1

Variations in the face heading angle and mouth shape can be observed along the horizontal and vertical axes respectively

Example: Faces

Page 46: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

Machine Learning for Non‐Euclidean Data

Page 47: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

Kendall’s shape spaceℙ

M‐Rep ( SO 3 SO 2 )

Lie Shape  ( SO 3 )

Examples of Non‐Euclidean Data

Rotations SO(3), rigid body motions SE(3), general linear transformations GL(n) and their various subgroups, etc: geometry and distance metrics are now well‐established (but still not widely known or used by the community).

Page 48: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

Inertial parameters of a rigid body:

, , , , , , , ∈( : mass,  ∈ : first moment,  ∈ : moments of inertia)

4x4 symmetric matrix representation of  :

↦⋅

∈ ,

should be positive definite, i.e.,  .

Examples of Non‐Euclidean Data

P(n): The space of  symmetric positive‐definite matrices

Page 49: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

Natural Distance on P(n) Affine‐invariantmetric on  ∈ :

,( 0)

Geodesic distance on P(n):, ,

∑ log

Well‐defined on positive definite matrix manifold  ∈ 4

Invariant to reference frames, physical units Dimensionless Better encodes natural distance between positive mass distributions

Geodesic path on P(4)

Geodesic Distances between Pairs of Inertial Parameters 

Page 50: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

Example: Human Dynamic Modeling

T. Lee, P. M. Wensing, F. C. Park, “Geometric Robot Dynamic Identification: A Convex Programming Approach,” submitted to TRO, 2018

T. Lee, F. C. Park, “A Geometric Algorithm for Robust Multibody Inertial Parameter Identification,” RA-Letters, 2018

High dimensional system Insufficient, noisy measurements Geometric MethodExisting Vector Space Methods

Page 51: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

Each voxel is a 3D multivariate normal distribution: the mean indicates the position, while the covariance indicates the direction of diffusion of water molecules. Segmentation of a DTI image requires a metric on the manifold of multivariate Gaussian distributions.

Examples of Non‐Euclidean Data

Diffusion tensor images (DTI)

Page 52: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

Using the standard approach of calculating distances on the means and covariances separately, and summing the two for the total distance, results in dist(a,b) = dist(b,c), which is unsatisfactory.

In this example, water molecules are able to move more easily in the x‐axis direction.  Therefore, diffusion tensors (b) and (c) are closer than (a) and (b)

Geometry of DTI Segmentation

Page 53: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

An n‐dimensional statistical manifold  is a set of probability distributions parametrized by some smooth, continuously‐varying parameter  . 

∈ ∈

|

|

,

Geometry of Statistical Manifolds

Page 54: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

The Fisher information defines a Riemannian metric on a statistical manifold 

~ .|log log

Connection to KL divergence:. || .

12

Geometry of Statistical Manifolds

Page 55: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

The manifold of Gaussian distributions  , Σ ∈ , Σ ∈ , 

where  ∈ , ≻ 0 Fisher information metric on 

Σ 12 Σ Σ

Euler‐Lagrange equations for geodesics on 

Σ 0

Σ 0

Geometry of Gaussian Distributions

Page 56: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

Geodesic Path on 00 , Σ 1 0

0 0.1 ,              11 , 

-0.2 0 0.2 0.4 0.6 0.8 1 1.2-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Geometry of Gaussian Distributions

Page 57: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

Fisher information metric on  with fixed mean 12 Σ Σ

Affine‐invariant metric on  Invariant under general linear group  action 

Σ → Σ ,  ∈which implies coordinate invariance. Closed‐form geodesic distance

Σ , Σ log Σ Σ/

Restriction to Covariances

Page 58: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

Using covarianceand Euclidean distance Using MND distance

Results of Segmentation for Brain DTI

Page 59: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

• Manifold learning for human mass-inertia data:

PC 1

PC 2

PC 1

PC 2

Principal geodesic analysis (PGA)Vector space 

principal component analysis (PCA)

Infeasible inertial parameters

standard deviation

standard deviation

standard deviation

standard deviation

Body thickness is captured along PC1

Height and upper body thickness are captured along PC2

Example: Human Mass‐Inertia Data

Page 60: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

Concluding Remarks

Page 61: Riemannian Geometry and Machine Learning for Non Dataaisociety.kr/KJMLW2019/slides/fcp.pdf · 2019-02-27 · Riemannian Geometry and Machine Learning for Non‐Euclidean Data Frank

ML for non‐Euclidean data is receiving greater attention from the ML research community: Application to autoencoders; CNNs for geometric data;

Many problems in engineering are analogous to trying to fit a square peg into a round hole. Often the things we work with are not vectors, but elements of a manifold.  The geometric methods and distortion measures described in this talk can be helpful in addressing such problems.

Concluding Remarks