Top Banner
Richard Rotunno Richard Rotunno National Center for Atmospheric Research , USA Dynamical Mesoscale Mountain Meteorology
26

Richard Rotunno National Center for Atmospheric Research, USA Dynamical Mesoscale Mountain Meteorology.

Jan 18, 2016

Download

Documents

Sharlene Hoover
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Richard Rotunno National Center for Atmospheric Research, USA Dynamical Mesoscale Mountain Meteorology.

Richard RotunnoRichard Rotunno

National Center for Atmospheric Research , USA

Dynamical Mesoscale Mountain Meteorology

Page 2: Richard Rotunno National Center for Atmospheric Research, USA Dynamical Mesoscale Mountain Meteorology.

• Dynamic Of or pertaining to force producing motion

• Meso-(intermediate)scale Length ~ 1-100km Time ~1h – 1day

• Mountain Meteorology Science of atmospheric phenomena caused by mountains

Page 3: Richard Rotunno National Center for Atmospheric Research, USA Dynamical Mesoscale Mountain Meteorology.

Topics

Lecture 1 : Introduction, Concepts, Equations

Lecture 2: Thermally Driven Circulations

Lecture 3: Mountain Waves

Lecture 4: Mountain Lee Vortices

Lecture 5: Orographic Precipitation

Page 4: Richard Rotunno National Center for Atmospheric Research, USA Dynamical Mesoscale Mountain Meteorology.

Thermally Driven Circulations

Whiteman (2000)Whiteman (2000)

Page 5: Richard Rotunno National Center for Atmospheric Research, USA Dynamical Mesoscale Mountain Meteorology.

Jane

Eng

lish

Mt.

Sha

sta

Mountain Waves

Page 6: Richard Rotunno National Center for Atmospheric Research, USA Dynamical Mesoscale Mountain Meteorology.

Haw

aii

Mountain Lee Vortices East

Spa

ce S

hutt

le

Page 7: Richard Rotunno National Center for Atmospheric Research, USA Dynamical Mesoscale Mountain Meteorology.

Orographic Precipitation

Page 8: Richard Rotunno National Center for Atmospheric Research, USA Dynamical Mesoscale Mountain Meteorology.

What do all these phenomena have in common?

Buoyancy

par

parenvgBρ

ρρ −=

δenvρ

parρg

Displacement

= density“env” = environment“par” = parcel

ρ

Page 9: Richard Rotunno National Center for Atmospheric Research, USA Dynamical Mesoscale Mountain Meteorology.

Buoyancy is acceleration

gz

ppar

parpar ρδρ −

∂∂

−=&&

gz

p

z

penv

envpar ρ−=∂

∂≈

∂∂

Bgpar

parenv ≡−

ρρδ&&

forcesofsumonacceleratimass

To a goodapproximation...

= pressure = vertical coordinatezp

δenvρ

parρg

Page 10: Richard Rotunno National Center for Atmospheric Research, USA Dynamical Mesoscale Mountain Meteorology.

δρ

ρρ 2NgBpar

parenv −≡−

=

( ) ( ) δρρρδρρρpar

envparenv

envenv zz ∂

∂+≅

∂+≅ 0;0

⎟⎟⎠

⎞⎜⎜⎝

∂∂

−∂∂

−=parenv zz

gN

ρρ

ρ2

Stability

= “static stability” = “Brunt-Väisälä Frequency”NN 2

= 0 for incompressibledensity-stratifed fluid

(unstable)(stable) 0,0 22 <> NN

(unstable)(stable) 0,0 >×<× BB δδ

Page 11: Richard Rotunno National Center for Atmospheric Research, USA Dynamical Mesoscale Mountain Meteorology.

Air is a compressible fluid…

0≠∂∂

parzρ

RT

p=ρGas Law

⎟⎟⎠

⎞⎜⎜⎝

∂∂

−∂∂

=parenv z

T

z

T

T

gN 2

1st Law of Thermo (adiabatic)

18.91 −−≅

∂∂

⇒−≈∂

∂=

∂∂ kmC

zTg

zp

zTc

par

par

parparp

o

ρ

in terms of Temperature2,NB

= specific heat at constant pressure , R = gas constant for dry airpc

env

envpar

T

TTgB

−=

Page 12: Richard Rotunno National Center for Atmospheric Research, USA Dynamical Mesoscale Mountain Meteorology.

Air Parcel Behavior in a Stable Atmosphere

)(zTenv

)(δparT

00 2 <−==⇒> δδδ NB&&

δ

Temperature

z

02 >N

Page 13: Richard Rotunno National Center for Atmospheric Research, USA Dynamical Mesoscale Mountain Meteorology.

Air Parcel Behavior in an Unstable Atmosphere

)(zTenv

)(δparT

δ

Temperature

z

02 <N

00 2 >−==⇒> δδδ NB&&

Page 14: Richard Rotunno National Center for Atmospheric Research, USA Dynamical Mesoscale Mountain Meteorology.

env

envpargBθ

θθ −=

pcR

mb

pT⎟⎠⎞

⎜⎝⎛≡≡1000

; ππ

θ

in terms of potential temperature BN ,2 θ

⎟⎟⎠

⎞⎜⎜⎝

∂∂

−∂∂

=parenv zz

gN

θθ

θ2

Page 15: Richard Rotunno National Center for Atmospheric Research, USA Dynamical Mesoscale Mountain Meteorology.

Air Parcel Behavior in Stable or Unstable Atmosphere

δ

Potential Temperature

)()(

stablezenvθ

)()(

unstablezenvθ

.ctpar =θ

z

envz

gN

∂∂

θ2

Page 16: Richard Rotunno National Center for Atmospheric Research, USA Dynamical Mesoscale Mountain Meteorology.

Dynamic Mesoscale Mountain Meteorology

Governing Equations

Page 17: Richard Rotunno National Center for Atmospheric Research, USA Dynamical Mesoscale Mountain Meteorology.

In terms of and …..

1st Law of Thermodynamics

Dt

Dp

Dt

DQ

Dt

DTcp ρ

1+=

Dt

DQ

cDt

D

pπθ 1

Dt

DQ

Dt

cDT p =

)ln( θWith previous definitions

Common form…

θ

Page 18: Richard Rotunno National Center for Atmospheric Research, USA Dynamical Mesoscale Mountain Meteorology.

Newtons 2nd Law

FkgcDt

uDp

rr+−∇−= ˆπθ

xx

y

z

),,( wvuu =r

zyx kji ∂+∂+∂=∇ ˆˆˆ

zyxt wvuDt

D∂+∂+∂+∂=

pcp ∇=∇ρ

πθ 1

With previous definitions

= frictional force/unit massFr

Page 19: Richard Rotunno National Center for Atmospheric Research, USA Dynamical Mesoscale Mountain Meteorology.

01

=⋅∇+ uDtD rρ

ρ

),( θπρρ =

Mass Conservation

uDt

D r⋅∇=⎟⎟

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛ −+ π

κθ ln

11ln

With previous definitions

pcR≡κ

Page 20: Richard Rotunno National Center for Atmospheric Research, USA Dynamical Mesoscale Mountain Meteorology.

Summary of Governing Equations

FkgcDt

uDp

rr+−∇−= ˆπθ

Dt

DQ

cDt

D

pπθ 1

=

uDt

D r⋅∇=⎟⎟

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛ −+ π

κθ ln

11ln

Conservation of

momentum

energy

mass

Page 21: Richard Rotunno National Center for Atmospheric Research, USA Dynamical Mesoscale Mountain Meteorology.

Simplify Governing Equations I

kgcDt

uDp

ˆ−∇−= πθr

0=DtDθ

uDt

D r⋅∇=⎟

⎠⎞

⎜⎝⎛ −

πκ

ln11

Conservation of

momentum

energy

mass

Neglect molecular diffusion 0,0 == FQr

Page 22: Richard Rotunno National Center for Atmospheric Research, USA Dynamical Mesoscale Mountain Meteorology.

Simplify Governing Equations II

0000 1)( θππθ

pzp c

gzzgc −=⇒−=∂

Conservation of momentum

Boussinesq Approximation

1~

,1

~~,

~

0000 <<<<+=+= π

πθ

θπππθθθ

kBkg

cDt

uDp

ˆˆ~

)~(0

0 +−∇=+−∇≅ ϕθθπθ

r

Page 23: Richard Rotunno National Center for Atmospheric Research, USA Dynamical Mesoscale Mountain Meteorology.

Simplify Governing Equations III

0=DtDB

Conservation of energy

θθθ ~0 +=With

Page 24: Richard Rotunno National Center for Atmospheric Research, USA Dynamical Mesoscale Mountain Meteorology.

Simplify Governing Equations IVConservation of mass

uDt

D r⋅∇=⎟

⎠⎞

⎜⎝⎛ −

πκ

ln11

)1000/ln(ln mbpκπ =By definition

uDt

Dp

c

r⋅∇=− 2

0≅⋅∇ ur

1,1,122

22

2

2

<<<<<<cgL

cL

cU ω3 conditions for effective

incompressibility(Batchelor 1967 pp. 167-169)

= speed of soundc

= velocity, length, frequency scales

ω,,LU

Page 25: Richard Rotunno National Center for Atmospheric Research, USA Dynamical Mesoscale Mountain Meteorology.

Summary of Simplified Governing Equations

kBDt

uD ˆ+−∇= ϕr

0=DtDB

0=⋅∇ ur

Conservation of

momentum

energy

mass

Still nonlinear (advection)

Filtering equations for mean / turbulent fluxes ofB and u (see Sullivan lectures)

Page 26: Richard Rotunno National Center for Atmospheric Research, USA Dynamical Mesoscale Mountain Meteorology.

Summary

- Buoyancy is a fundamental concept for dynamical mountain meteorology

- Boussinesq approximation simplifies momentum equation

- For most mountain meteorological applications, velocity field approximately

solenoidal ( )0=⋅∇ ur