Top Banner
National Aeronautics and Space Administration www.nasa.gov 1 The Effects of Thermal Cycling on Gallium Nitride and Silicon Carbide Semiconductor Devices for Aerospace Use Richard L. Patterson, NASA GRC Ahmad Hammoud, VPL/NASA GRC ABSTRACT: Electronics designed for use in NASA space missions are required to work efficiently and reliably under harsh environment conditions. These Include radiation, extreme temperatures, thermal cycling, to name a few. Preliminary data obtained on new Gallium Nitride and Silicon Carbide power devices under exposure to radiation followed by long term thermal cycling are presented. This work was done in collaboration with GSFC and JPL in support of the NASA Electronic Parts and Packaging (NEPP) Program. NEPP Third Electronics Technology Workshop NASA Goddard Space Flight Center June 11 – 13, 2012 https://ntrs.nasa.gov/search.jsp?R=20120012937 2020-03-22T08:13:27+00:00Z
23

Richard L. Patterson, NASA GRC Ahmad Hammoud, VPL/NASA GRC · 2013-04-10 · National Aeronautics and Space Administration! 1 The Effects of Thermal Cycling on Gallium Nitride and

Mar 17, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Richard L. Patterson, NASA GRC Ahmad Hammoud, VPL/NASA GRC · 2013-04-10 · National Aeronautics and Space Administration! 1 The Effects of Thermal Cycling on Gallium Nitride and

National Aeronautics and Space Administration!

www.nasa.gov 1

The Effects of Thermal Cycling on Gallium Nitride and Silicon Carbide Semiconductor Devices for Aerospace Use

Richard L. Patterson, NASA GRC Ahmad Hammoud, VPL/NASA GRC

ABSTRACT: Electronics designed for use in NASA space missions are required to work efficiently and reliably under harsh environment conditions. These Include radiation, extreme temperatures, thermal cycling, to name a few. Preliminary data obtained on new Gallium Nitride and Silicon Carbide power devices under exposure to radiation followed by long term thermal cycling are presented. This work was done in collaboration with GSFC and JPL in support of the NASA Electronic Parts and Packaging (NEPP) Program.

NEPP Third Electronics Technology Workshop NASA Goddard Space Flight Center

June 11 – 13, 2012

https://ntrs.nasa.gov/search.jsp?R=20120012937 2020-03-22T08:13:27+00:00Z

Page 2: Richard L. Patterson, NASA GRC Ahmad Hammoud, VPL/NASA GRC · 2013-04-10 · National Aeronautics and Space Administration! 1 The Effects of Thermal Cycling on Gallium Nitride and

National Aeronautics and Space Administration

www.nasa.gov

The Effects of Thermal Cycling on Gallium Nitride

and Silicon Carbide Semiconductor Devices for

Aerospace Use

Richard L. Patterson

Ahmad Hammoud

NASA Glenn Research Center

NEPP Third Electronics Technology Workshop

NASA Goddard Space Flight Center

June 11 – 13, 2012

Page 3: Richard L. Patterson, NASA GRC Ahmad Hammoud, VPL/NASA GRC · 2013-04-10 · National Aeronautics and Space Administration! 1 The Effects of Thermal Cycling on Gallium Nitride and

National Aeronautics and Space Administration

www.nasa.gov 2

The Effects of Thermal Cycling on Gallium Nitride and Silicon

Carbide Semiconductor Devices for Aerospace Use

NASA Working Group on Wide-Band Gap Semiconductors:

A NEPP collaborative effort between GSFC, GRC, and JPL

to address reliability of GaN & SiC Devices under radiation &

thermal cycling

GRC NEPP-Task #:12-0281

Title : Reliability of Gallium Nitride (GaN), Silicon Carbide

(SiC), Silicon Germanium (SiGe), Silicon-On-Insulator (SOI),

and Advanced Mixed Signal Devices for Extreme

Temperature Space Missions

GRC Manager: Richard L. Patterson

Page 4: Richard L. Patterson, NASA GRC Ahmad Hammoud, VPL/NASA GRC · 2013-04-10 · National Aeronautics and Space Administration! 1 The Effects of Thermal Cycling on Gallium Nitride and

National Aeronautics and Space Administration

www.nasa.gov 3

Temp Min/Dwell Time Temp Max/Dwell Time Standard

-65 ºC/30 min 125 ºC/30 min MIL-STD-202 DM 107C

-65 ºC/30 min 150 ºC/30 min MIL-STD-202 DM 107C

-25 ºC/10 min 125 ºC/10 min EIAJ ED-4701-3

-40 ºC/10 min 85 ºC/10 min IEC60749

-55 ºC/30 min 100 ºC/10 min IPC0701A

-55 ºC/10 min 85 ºC/10 min MIL-STD-883, Method 1010

-65 ºC/10 min 150 ºC/10 min MIL-STD-883, Method 1010

-55 ºC/10 min 85 ºC/10 min JEDEC JESD22-A104

-65 ºC/10 min 150 ºC/10 min JEDEC JESD22-A104

Thermal Cycling & Reliability of Electronics:

• Various methods exist for performing thermal cycling tests to

address reliability of electronics for long-term use.

• Existing Standards suggest various temperature rates & dwell

times. Number of cycles are inconsistent, & synergistic effects

are not covered.

• Standards generally address thermally-induced fatigue in solder

joints, interconnects, and material interfaces, etc.

Page 5: Richard L. Patterson, NASA GRC Ahmad Hammoud, VPL/NASA GRC · 2013-04-10 · National Aeronautics and Space Administration! 1 The Effects of Thermal Cycling on Gallium Nitride and

National Aeronautics and Space Administration

www.nasa.gov

Test Plan:

• Perform long-term thermal cycling on devices per profile

below:

Total # of Cycles 1000

Temperature rate of change: 10 ºC/min

Temperature range: -55 ºC to +125 ºC

Soak time at extreme temperatures: 10 min

• Repeat measurements on devices during cycling

• Perform measurements after conclusion of cycling activity

4

10 ºC/min

10 min

10 min

10 min

10 min

+125 ºC

-55 ºC

Page 6: Richard L. Patterson, NASA GRC Ahmad Hammoud, VPL/NASA GRC · 2013-04-10 · National Aeronautics and Space Administration! 1 The Effects of Thermal Cycling on Gallium Nitride and

National Aeronautics and Space Administration

www.nasa.gov 5

Parameters Investigated:

• I-V Output Characteristics

• Gate Threshold Voltage, VTH

• Drain-Source On-Resistance, RDS(on)

• Transconductance, gm

• Tests performed at room temperature

Equipment Used:

• SONY/Tektronix 370A Curve Tracer

• Keithley 238 Source-Measure-Units

Test Setup

Page 7: Richard L. Patterson, NASA GRC Ahmad Hammoud, VPL/NASA GRC · 2013-04-10 · National Aeronautics and Space Administration! 1 The Effects of Thermal Cycling on Gallium Nitride and

National Aeronautics and Space Administration

www.nasa.gov

GRC Work Completed

Devices subjected to long-term (1000 cycles) thermal cycling

6

CREE 120 W, RF Power GaN HEMT

Vds = 28 V, Depletion Mode

Part # CGH40120F

# of

Samples Condition Ion

Energy

(MeV) LET

Range

(μm)

Dose

(rad)

2 Irradiated Kr 1250 25.4 150 406400

7 Control (un-irradiated)

CREE 150 W, SiC Power MOSFET

Vds= 1200 V, Id (max) = 33 A

N-Channel Enhancement Mode, Part # CMF20120D

3 Samples Not-irradiated

Page 8: Richard L. Patterson, NASA GRC Ahmad Hammoud, VPL/NASA GRC · 2013-04-10 · National Aeronautics and Space Administration! 1 The Effects of Thermal Cycling on Gallium Nitride and

National Aeronautics and Space Administration

www.nasa.gov

GRC On-Going Work

Devices subjected to long-term thermal cycling

7

EPC Enhancement-Mode GaN Power Transistors

Type Specs # of

Samples Condition

EPC1001 100 V, 25 A 4 Irradiated

4 Control (un-irradiated)

EPC1010 200 V, 12 A 2 Irradiated

4 Control (un-irradiated)

EPC1012 200 V, 3A 2 Irradiated

3 Control (un-irradiated)

EPC1014 40 V, 10 A 3 Irradiated

4 Control (un-irradiated)

Page 9: Richard L. Patterson, NASA GRC Ahmad Hammoud, VPL/NASA GRC · 2013-04-10 · National Aeronautics and Space Administration! 1 The Effects of Thermal Cycling on Gallium Nitride and

National Aeronautics and Space Administration

www.nasa.gov 8

Pre-Cycling

After 600 Cycles After 1000 Cycles

VGS = 12 V

VGS = 10 V

VGS = 6 V

VGS = 8 V

VDS (V)

5 10 15 20

I D (

A)

0

2

4

6

8

10

CMF20120DDevice 2

VDS (V)

5 10 15 20

I D (

A)

0

2

4

6

8

10

CMF20120DDevice 2

VGS = 12 V

VGS = 6 V

VGS = 8 V

VGS = 10 V

After 250 Cycles

RESULTS (Un-irradiated SiC MOSFETs)

VDS (V)

5 10 15 20

I D (

A)

0

2

4

6

8

10

CMF20120DDevice 2

VGS = 12 V

VGS = 10 V

VGS = 6 V

VGS = 8 V

VDS (V)

5 10 15 20

I D (

A)

0

2

4

6

8

10

CMF20120DDevice 2

VGS = 12 V

VGS = 6 V

VGS = 8 V

VGS = 10 V

Page 10: Richard L. Patterson, NASA GRC Ahmad Hammoud, VPL/NASA GRC · 2013-04-10 · National Aeronautics and Space Administration! 1 The Effects of Thermal Cycling on Gallium Nitride and

National Aeronautics and Space Administration

www.nasa.gov 9

RESULTS (Un-irradiated SiC MOSFETs)

Vds = 5 V,

Vgs = 10 V

Vds = 15 V,

Vgs = 6 V

CREE SiC N-Channel Enhancement Mode MOSFETs CMF20120D

Thermal Cycles

0 100 200 300 400 500 600 700 800 900 1000

Dra

in C

urr

en

t (A

)

0

1

2

3

4

5

6

7

8

Legend

Device 1

Device 2

Device 3

Page 11: Richard L. Patterson, NASA GRC Ahmad Hammoud, VPL/NASA GRC · 2013-04-10 · National Aeronautics and Space Administration! 1 The Effects of Thermal Cycling on Gallium Nitride and

National Aeronautics and Space Administration

www.nasa.gov 10

Devic

e

Pre-Cycle After 78 Cycles After 250 Cycles After 600 Cycles After 1000 Cycles

VTH (V) RDS (mΩ) VTH (V) RDS (mΩ) VTH (V) RDS (mΩ) VTH (V) RDS (mΩ) VTH (V) RDS (mΩ)

1 2.85 640 2.88 631 2.85 480 2.77 380 2.79 360

2 2.61 550 2.56 520 2.49 480 2.54 370 2.50 354

3 2.51 480 2.51 568 2.47 460 2.48 310 2.42 337

RESULTS (Un-irradiated SiC MOSFETS)

CREE CMF20120D

OBSERVATIONS

• All devices maintained functionality after 1000 cycles

• The three MOSFETs experienced a slight decrease in

VTH and a modest decrease in RDS(ON) upon cycling

• No alteration in device packaging

Page 12: Richard L. Patterson, NASA GRC Ahmad Hammoud, VPL/NASA GRC · 2013-04-10 · National Aeronautics and Space Administration! 1 The Effects of Thermal Cycling on Gallium Nitride and

National Aeronautics and Space Administration

www.nasa.gov 11

Pre-Cycling

After 78 Cycles After 250 Cycles

VDS (V)

0 2 4 6 8 10

I DS

(A

)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35Device A8352.pdw

VGS = -3.0 V

-3.05 V

-3.1 V

-3.2 V

-3.15 V

-3.3 V

-3.25 V

VDS (V)

0 2 4 6 8 10

I DS

(A

)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35Device A8352.pdw

VGS = -3.0 V-3.05 V

-3.1 V

-3.2 V

-3.15 V

-3.3 V

-3.25 V

VDS (V)

0 2 4 6 8 10

I DS

(A

)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35Device A8352.pdw

VGS = -3.0 V

-3.05 V

-3.1 V

-3.2 V

-3.15 V

-3.3 V

-3.25 V

RESULTS (Irradiated CREE GaN HEMT)

Page 13: Richard L. Patterson, NASA GRC Ahmad Hammoud, VPL/NASA GRC · 2013-04-10 · National Aeronautics and Space Administration! 1 The Effects of Thermal Cycling on Gallium Nitride and

National Aeronautics and Space Administration

www.nasa.gov 12

After 600 Cycles

Devic

e

(Irrad

iate

d)

Pre-Cycle After 78 Cycles After 250 Cycles After 600 Cycles After 1000 Cycles

VTH (V) gm (mS) VTH (V) gm (mS) VTH (V) gm (mS) VTH (V) gm (mS) VTH (V) gm (mS)

A8352 -3.375 790 -3.335 1840 -3.345 1840 -3.390 2260 -3.350 1920

After 1000 Cycles

VDS (V)

0 2 4 6 8 10

I DS

(A

)

0.0

0.1

0.2

0.3

0.4

0.5

0.6Device A8352.pdw

VGS = -3.0 V

-3.05 V

-3.1 V

-3.2 V

-3.15 V

-3.3 V

-3.25 V

VDS (V)

0 2 4 6 8 10

I DS

(A

)

0.0

0.1

0.2

0.3

0.4

0.5

0.6Device A8352.pdw

VGS = -3.05 V

-3.1 V

-3.2 V

-3.15 V

-3.3 V

-3.25 V

RESULTS (Irradiated CREE GaN HEMT)

Page 14: Richard L. Patterson, NASA GRC Ahmad Hammoud, VPL/NASA GRC · 2013-04-10 · National Aeronautics and Space Administration! 1 The Effects of Thermal Cycling on Gallium Nitride and

National Aeronautics and Space Administration

www.nasa.gov 13

Pre-Cycling

After 78 Cycles After 250 Cycles

VDS (V)

0 2 4 6 8 10

I DS

(A

)

0.0

0.1

0.2

0.3

0.4

0.5Device A8345.pdw

VGS = -3.0 V

-3.05 V

-3.1 V

-3.2 V

-3.35 V

-3.15 V

VDS (V)

0 2 4 6 8 10

I DS

(A

)

0.0

0.1

0.2

0.3

0.4

0.5Device A8345.pdw

VGS = -3.0 V

-3.05 V

-3.1 V

-3.2 V

-3.15 V

-3.3 V

-3.25 V

VDS (V)

0 2 4 6 8 10

I DS

(A

)

0.0

0.1

0.2

0.3

0.4

0.5Device A8345.pdw

VGS = -3.0 V

-3.05 V

-3.1 V

-3.2 V

-3.15 V

-3.25 V

RESULTS (Un-irradiated CREE GaN HEMT)

Page 15: Richard L. Patterson, NASA GRC Ahmad Hammoud, VPL/NASA GRC · 2013-04-10 · National Aeronautics and Space Administration! 1 The Effects of Thermal Cycling on Gallium Nitride and

National Aeronautics and Space Administration

www.nasa.gov 14

After 600 Cycles

Devic

e

(Co

ntro

l)

Pre-Cycle After 78 Cycles After 250 Cycles After 600 Cycles After 1000 Cycles

VTH (V) gm (mS) VTH (V) gm (mS) VTH (V) gm (mS) VTH (V) gm (mS) VTH (V) gm (mS)

A8345 -3.375 890 -3.380 1740 -3.325 1440 -3.40 2060 -3.35 2040

After 1000 Cycles

VDS (V)

0 2 4 6 8 10

I DS

(A

)

0.0

0.1

0.2

0.3

0.4

0.5

0.6Device A8345.pdw

VGS = -3.0 V

-3.05 V

-3.1 V

-3.2 V

-3.15 V

-3.25 V

-3.3 V

-3.35 V

VDS (V)

0 2 4 6 8 10

I DS

(A

)

0.0

0.1

0.2

0.3

0.4

0.5

0.6Device A8345.pdw

VGS = -3.05 V

-3.1 V

-3.2 V

-3.15 V

-3.25 V

-3.3 V

RESULTS (Un-irradiated CREE GaN HEMT)

Page 16: Richard L. Patterson, NASA GRC Ahmad Hammoud, VPL/NASA GRC · 2013-04-10 · National Aeronautics and Space Administration! 1 The Effects of Thermal Cycling on Gallium Nitride and

National Aeronautics and Space Administration

www.nasa.gov 15

Thermal Cycles

0 200 400 600 800 1000

Dra

in C

urr

en

t (A

)

0.0

0.5

1.0

1.5

Cree GaN HEMT CGH40120F Mixed SamplesTwo Samples Post Irradiation by Kr Ions, 1250 MeV, 406.4 krad

Seven Samples Not Irradiated

Legend

A8352 Kr 406 krad

A8346 Kr 406 krad

A8345

A8351

A8348

A8349

A8347

A8350

A8343

Vds = 6 V, Vgs = -3.1 V

Page 17: Richard L. Patterson, NASA GRC Ahmad Hammoud, VPL/NASA GRC · 2013-04-10 · National Aeronautics and Space Administration! 1 The Effects of Thermal Cycling on Gallium Nitride and

National Aeronautics and Space Administration

www.nasa.gov

OBSERVATIONS

• All nine CREE GaN HEMTs remained functional after

1000 cycles between -55 ⁰C & +125 ⁰C

• Effects of thermal cycling was the same for both

control & irradiated samples. The induced changes

due to cycling included slight variation in VTH, modest

increase in trans-conductance, and slightly higher ID

values for given base conditions

• No changes observed in device packaging or

terminations

16

Page 18: Richard L. Patterson, NASA GRC Ahmad Hammoud, VPL/NASA GRC · 2013-04-10 · National Aeronautics and Space Administration! 1 The Effects of Thermal Cycling on Gallium Nitride and

National Aeronautics and Space Administration

www.nasa.gov

GRC On-going Work

Devices presently undergoing thermal cycling

17

EPC1001 E- Mode GaN Power Transistor (100V, 25A), passivated die form

# of

Samples Condition Ion

Energy

(MeV) LET

Range

(μm)

Dose

(rads)

1 Irradiated Au 2342 84.7 122.9 22718

1 Irradiated Xe 1569 98.8 124.5 8301.5

1 Irradiated Xe 1569 50.9 124.5 7886.8

1 Irradiated Xe 1569 98.8 124.5 15838

4 Control

EPC1010 E- Mode GaN Power Transistor (200V, 12A), passivated die form

# of

Samples Condition Ion

Energy

(MeV) LET

Range

(μm)

Dose

(rads)

1 Irradiated Xe 1569 50.9 124.5 8719.6

1 Irradiated Au 2342 84.7 122.9 6634

4 Control

Page 19: Richard L. Patterson, NASA GRC Ahmad Hammoud, VPL/NASA GRC · 2013-04-10 · National Aeronautics and Space Administration! 1 The Effects of Thermal Cycling on Gallium Nitride and

National Aeronautics and Space Administration

www.nasa.gov

GRC On-Going Work

Devices presently undergoing thermal cycling

18

EPC1012 E- Mode GaN Power Transistor (200V, 3A), passivated die form

# of

Samples Condition Ion

Energy

(MeV) LET

Range

(μm)

Dose

(rads)

1 Irradiated Xe 1569 50.9 124.5 6328.1

1 Irradiated Xe 1569 98.8 124.5 6340

3 Control

EPC1014 E- Mode GaN Power Transistor (40V, 10A), passivated die form

# of

Samples Condition Ion

Energy

(MeV) LET

Range

(μm)

Dose

(rads)

1 Irradiated Xe 1569 98.8 124.5 6325

1 Irradiated Xe 1569 50.9 124.5 3154.8

1 Irradiated Au 2342 84.7 122.9 5337

4 Control

Page 20: Richard L. Patterson, NASA GRC Ahmad Hammoud, VPL/NASA GRC · 2013-04-10 · National Aeronautics and Space Administration! 1 The Effects of Thermal Cycling on Gallium Nitride and

National Aeronautics and Space Administration

www.nasa.gov 19

Thermal Cycles

0 200 400 600 800 1000

Dra

in C

urr

en

t (A

)

0

1

2

3

4

5EPC1001 GaN FET, Enhancement Mode (Specs; Vds = 100 V, I d = 25 A)

Legend

K7063 Au 22.7 krad

K7044 Xe 7.9 krad

K7064 Xe 8.3 krad

K7065 Xe 15.8 krad

K7068 not irradiated

K7069 "

K7071 "

K7070 "

Vg = 1.3 V

Vd = 0.2 V

Page 21: Richard L. Patterson, NASA GRC Ahmad Hammoud, VPL/NASA GRC · 2013-04-10 · National Aeronautics and Space Administration! 1 The Effects of Thermal Cycling on Gallium Nitride and

National Aeronautics and Space Administration

www.nasa.gov 20

Thermal Cycles

0 200 400 600 800 1000

Dra

in C

urr

en

t (A

)

0.0

0.5

1.0

1.5

2.0

EPC1010 GaN FET (Specs: Vds = 200 V, Id = 12 A)

Legend

D7045 Xe 8.7 krad

D7058 Au 6.6 krad

D7078

D7079

D7080

D7081

Vg = 1.4 V

Vd = 0.5 V

Page 22: Richard L. Patterson, NASA GRC Ahmad Hammoud, VPL/NASA GRC · 2013-04-10 · National Aeronautics and Space Administration! 1 The Effects of Thermal Cycling on Gallium Nitride and

National Aeronautics and Space Administration

www.nasa.gov 21

Waveforms of HI(1), HO(2), LI(3), and LO(4) signals @ -194°C

Waveforms of HI(1), HO(2), LI(3), and LO(4) signals @ +23°C

Waveforms of HI(1), HO(2), LI(3), and LO(4) signals @ +150°C

Supporting Electronics for GaN

New Half-Bridge Gate Driver for Enhancement-Mode GaN

FETs, Type LM5113

Page 23: Richard L. Patterson, NASA GRC Ahmad Hammoud, VPL/NASA GRC · 2013-04-10 · National Aeronautics and Space Administration! 1 The Effects of Thermal Cycling on Gallium Nitride and

National Aeronautics and Space Administration

www.nasa.gov

Planned Work:

• Finish thermal cycling of the EPC GaN FETs.

• Perform long-term thermal cycling on second

generation of EPC GaN FETs.

• Investigate effects of thermal cycling on new (control

and irradiated) SiC and GaN power devices as parts

become available from GSFC and JPL.

22