Top Banner
molecules Article On the Reversible and Irreversible Inhibition of Rhodesain by Curcumin Dietmar Steverding Bob Champion Research and Education Building, Norwich Medical School, University of East Anglia, Norwich Research Park, James Watson Road, Norwich NR4 7UQ, UK; [email protected]; Tel.: +44-1603-591291 Received: 12 November 2019; Accepted: 20 December 2019; Published: 30 December 2019 Abstract: Previously, it was suggested that the natural compound curcumin is an irreversible inhibitor of rhodesain, the major lysosomal cysteine protease of the protozoan parasite Trypanosoma brucei. The suggestion was based on a time-dependent inhibition of the enzyme by curcumin and a lack of recovery of activity of the enzyme after pre-incubation with curcumin. This study provides clear evidence that curcumin is a reversible, non-competitive inhibitor of rhodesain. In addition, the study also shows that the apparent irreversible inhibition of curcumin is only observed when no thiol-reducing reagent is included in the measuring buer and insucient solubilising agent is added to fully dissolve curcumin in the aqueous solution. Thus, the previous observation that curcumin acts as an irreversible inhibitor for rhodesain was based on a misinterpretation of experimental findings. Keywords: rhodesain; curcumin; non-competitive inhibition 1. Introduction Curcumin is a natural phenol and has been extensively investigated as potential drug candidate for various illnesses and medical conditions [1]. However, the compound has been classified as a pan-assay interference compound (PAINS) and an invalid metabolic panacea (IMPS) [1]. PAINS are compounds that show activity in dierent types of assay mainly through interfering with the assay itself while IMPS are reagents that display activity against virtually any biological target. Despite this and other drawbacks (chemical instability, low bioavailability, non-selectivity and toxicity), curcumin is still subject of intense research and about 50 papers are published each week on biological interactions of the compound [1]. Previously, it was shown that curcumin display anti-proliferative activity against the protozoan parasite Trypanosoma brucei, the causative agent of sleeping sickness in humans and nagana disease in livestock [2]. In search for the biological target involved in the trypanocidal activity of curcumin, the eect of the compound on rhodesain, the major lysosomal cathepsin L cysteine protease in T. brucei, has been recently investigated [3]. The enzyme is essential for the survival of the parasite and a valid drug target [4]. It was shown that curcumin was able to inhibit rhodesain and it was suggested that this inhibition was irreversible [3]. This conclusion was based on a weak non-linear relationship between substrate hydrolysis and incubation time (with increasing incubation time the hydrolysis of substrate decreased slightly) and the lack of recovery of enzyme activity after dilution of rhodesain pre-incubated with curcumin [3,5]. However, it was also recently shown that the inhibition of rhodesain by curcumin seemed to be reversible [6]. A 1:4 dilution of a reaction mixture containing rhodesain and 10 μM curcumin resulted in a 4.7-fold increase in activity [6]. In order to prove conclusively that curcumin is a reversible inhibitor, kinetic studies to determine the inhibitor type of the compound were carried out. In addition, further investigations were conducted to provide explanations for the apparent irreversible inactivation of rhodesain by curcumin recently observed [3,5]. The results of this study revealed that curcumin is a reversible non-competitive inhibitor of rhodesain, a new finding that Molecules 2020, 25, 143; doi:10.3390/molecules25010143 www.mdpi.com/journal/molecules
9

Rhodesain by Curcumin - University of East Anglia...phenylalanyl-arginyl-7-amido-4-methyl coumarin (Z-FR-AMC), a substrate that is cleaved by mammalian and trypanosome cathepsin L

Oct 26, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Rhodesain by Curcumin - University of East Anglia...phenylalanyl-arginyl-7-amido-4-methyl coumarin (Z-FR-AMC), a substrate that is cleaved by mammalian and trypanosome cathepsin L

molecules

Article

On the Reversible and Irreversible Inhibition ofRhodesain by Curcumin

Dietmar Steverding

Bob Champion Research and Education Building, Norwich Medical School, University of East Anglia, NorwichResearch Park, James Watson Road, Norwich NR4 7UQ, UK; [email protected]; Tel.: +44-1603-591291

Received: 12 November 2019; Accepted: 20 December 2019; Published: 30 December 2019 �����������������

Abstract: Previously, it was suggested that the natural compound curcumin is an irreversible inhibitorof rhodesain, the major lysosomal cysteine protease of the protozoan parasite Trypanosoma brucei.The suggestion was based on a time-dependent inhibition of the enzyme by curcumin and a lackof recovery of activity of the enzyme after pre-incubation with curcumin. This study providesclear evidence that curcumin is a reversible, non-competitive inhibitor of rhodesain. In addition,the study also shows that the apparent irreversible inhibition of curcumin is only observed when nothiol-reducing reagent is included in the measuring buffer and insufficient solubilising agent is addedto fully dissolve curcumin in the aqueous solution. Thus, the previous observation that curcumin actsas an irreversible inhibitor for rhodesain was based on a misinterpretation of experimental findings.

Keywords: rhodesain; curcumin; non-competitive inhibition

1. Introduction

Curcumin is a natural phenol and has been extensively investigated as potential drug candidatefor various illnesses and medical conditions [1]. However, the compound has been classified asa pan-assay interference compound (PAINS) and an invalid metabolic panacea (IMPS) [1]. PAINS arecompounds that show activity in different types of assay mainly through interfering with the assayitself while IMPS are reagents that display activity against virtually any biological target. Despite thisand other drawbacks (chemical instability, low bioavailability, non-selectivity and toxicity), curcumin isstill subject of intense research and about 50 papers are published each week on biological interactionsof the compound [1].

Previously, it was shown that curcumin display anti-proliferative activity against the protozoanparasite Trypanosoma brucei, the causative agent of sleeping sickness in humans and nagana diseasein livestock [2]. In search for the biological target involved in the trypanocidal activity of curcumin,the effect of the compound on rhodesain, the major lysosomal cathepsin L cysteine protease in T. brucei,has been recently investigated [3]. The enzyme is essential for the survival of the parasite and a validdrug target [4]. It was shown that curcumin was able to inhibit rhodesain and it was suggested thatthis inhibition was irreversible [3]. This conclusion was based on a weak non-linear relationshipbetween substrate hydrolysis and incubation time (with increasing incubation time the hydrolysis ofsubstrate decreased slightly) and the lack of recovery of enzyme activity after dilution of rhodesainpre-incubated with curcumin [3,5]. However, it was also recently shown that the inhibition of rhodesainby curcumin seemed to be reversible [6]. A 1:4 dilution of a reaction mixture containing rhodesainand 10 µM curcumin resulted in a 4.7-fold increase in activity [6]. In order to prove conclusively thatcurcumin is a reversible inhibitor, kinetic studies to determine the inhibitor type of the compoundwere carried out. In addition, further investigations were conducted to provide explanations for theapparent irreversible inactivation of rhodesain by curcumin recently observed [3,5]. The results of thisstudy revealed that curcumin is a reversible non-competitive inhibitor of rhodesain, a new finding that

Molecules 2020, 25, 143; doi:10.3390/molecules25010143 www.mdpi.com/journal/molecules

Page 2: Rhodesain by Curcumin - University of East Anglia...phenylalanyl-arginyl-7-amido-4-methyl coumarin (Z-FR-AMC), a substrate that is cleaved by mammalian and trypanosome cathepsin L

Molecules 2020, 25, 143 2 of 9

disproves unequivocally previous claims that curcumin is an irreversible inhibitor. This study alsoshowed that it is important to select the correct assay conditions to measure enzyme activity and toconsider the solubility properties of inhibitors otherwise incorrect data will be obtained leading toa misinterpretation of results.

2. Results and Discussion

The activity of rhodesain was determined with the fluorogenic substrate benzyloxycarbonyl-phenylalanyl-arginyl-7-amido-4-methyl coumarin (Z-FR-AMC), a substrate that is cleaved bymammalian and trypanosome cathepsin L cysteine proteases [7,8].

Time course experiment revealed that the inhibition of rhodesain by curcumin was timeindependent. In the presence of 6 µM curcumin (a concentration close to the IC50 value for theinhibition of rhodesain by curcumin, see below), the inhibition of the activity of rhodesain was linearwith respect to time (Figure 1). The correlation coefficient of the readings was 0.9997 confirminga strong linear association between substrate hydrolysis and incubation time. The same correlationcoefficient was also determined for the control reaction (Figure 1) indicating that there was no differencein the linearity of the readings for the substrate hydrolysis in the presence and absence of curcumin.In contrast, when rhodesain was incubated with the established irreversible cysteine protease inhibitorCAA0255 [9] at 0.1 µM (a concentration below the IC50 value for the inhibition of rhodesain [4]),the activity of the enzyme was quickly completely inhibited (Figure 1 insert). Within 5 min of incubation,the activity of rhodesain was inhibited by >90%.

Molecules 2019, 24, x FOR PEER REVIEW  2  of  9 

Molecules 2019, 24, x; doi: FOR PEER REVIEW  www.mdpi.com/journal/molecules 

explanations for the apparent irreversible inactivation of rhodesain by curcumin recently observed 

[3,5]. The results of  this study revealed  that curcumin  is a reversible non‐competitive  inhibitor of 

rhodesain,  a  new  finding  that  disproves  unequivocally  previous  claims  that  curcumin  is  an 

irreversible inhibitor. This study also showed that it is important to select the correct assay conditions 

to measure enzyme activity and to consider the solubility properties of inhibitors otherwise incorrect 

data will be obtained leading to a misinterpretation of results. 

2. Results and Discussion 

The activity of rhodesain was determined with  the  fluorogenic substrate benzyloxycarbonyl‐

phenylalanyl‐arginyl‐7‐amido‐4‐methyl  coumarin  (Z‐FR‐AMC),  a  substrate  that  is  cleaved  by 

mammalian and trypanosome cathepsin L cysteine proteases [7,8]. 

Time  course  experiment  revealed  that  the  inhibition  of  rhodesain  by  curcumin  was  time 

independent.  In  the  presence  of  6  μM  curcumin  (a  concentration  close  to  the  IC50  value  for  the 

inhibition of rhodesain by curcumin, see below), the inhibition of the activity of rhodesain was linear 

with respect to time (Figure 1). The correlation coefficient of the readings was 0.9997 confirming a 

strong  linear association between substrate hydrolysis and  incubation  time. The same correlation 

coefficient was  also  determined  for  the  control  reaction  (Figure  1)  indicating  that  there was  no 

difference in the linearity of the readings for the substrate hydrolysis in the presence and absence of 

curcumin.  In  contrast, when  rhodesain was  incubated with  the  established  irreversible  cysteine 

protease inhibitor CAA0255 [9] at 0.1 μM (a concentration below the IC50 value for the inhibition of 

rhodesain [4]), the activity of the enzyme was quickly completely inhibited (Figure 1 insert). Within 

5 min of incubation, the activity of rhodesain was inhibited by >90%. 

 

Figure 1. Effect of curcumin and CAA0255 on the substrate hydrolysis activity of rhodesain. Purified 

rhodesain  (7  ng/mL;  0.2  nM) was  incubated with  6  μM  curcumin  (squares),  0.1  μM  CAA0255 

(triangles), or with DMSO alone (circles) in 100 mM citrate, pH 5.0, 2 mM dithiothreitol, 2% DMSO in 

the presence of 5 μM of the fluorogenic substrate Z‐FR‐AMC. The release of free AMC was recorded 

every minute  for 30 min. r, correlation coefficient of  the  trend  line.  Insert, enlarged detail view of 

substrate hydrolysis activity of rhodesain in the presence of curcumin and CAA0255 for the first 10 

min. A representative experiment out of three is shown. 

After establishing that curcumin is a reversible inhibitor of rhodesain (see above and [6]), kinetic 

studies to determine the inhibitor type of the compound were carried out. Double reciprocal analysis 

(Lineweaver–Burk plot) gave a family of lines with increasing slopes as the curcumin concentration 

increased  (Figure  2a).  The  lines  converged  to  the  same  point  on  the  x‐axis  indicating  a  non‐

competitive  inhibition mechanism  (Figure  2a).  Plotting  the  reciprocal  velocity  (1/v)  against  the 

0

300

600

900

1200

1500

1800

0 5 10 15 20 25 30

RF

U

Time [min]

r = 0.9997

r = 0.99970

100

200

300

0 5 10

RF

U

Time [min]

Figure 1. Effect of curcumin and CAA0255 on the substrate hydrolysis activity of rhodesain. Purifiedrhodesain (7 ng/mL; 0.2 nM) was incubated with 6 µM curcumin (squares), 0.1 µM CAA0255 (triangles),or with DMSO alone (circles) in 100 mM citrate, pH 5.0, 2 mM dithiothreitol, 2% DMSO in the presenceof 5 µM of the fluorogenic substrate Z-FR-AMC. The release of free AMC was recorded every minutefor 30 min. r, correlation coefficient of the trend line. Insert, enlarged detail view of substrate hydrolysisactivity of rhodesain in the presence of curcumin and CAA0255 for the first 10 min. A representativeexperiment out of three is shown.

After establishing that curcumin is a reversible inhibitor of rhodesain (see above and [6]),kinetic studies to determine the inhibitor type of the compound were carried out. Double reciprocalanalysis (Lineweaver–Burk plot) gave a family of lines with increasing slopes as the curcuminconcentration increased (Figure 2a). The lines converged to the same point on the x-axis indicatinga non-competitive inhibition mechanism (Figure 2a). Plotting the reciprocal velocity (1/v) againstthe inhibitor concentration (Dixon plot) gave again a family of lines that met in a single point on

Page 3: Rhodesain by Curcumin - University of East Anglia...phenylalanyl-arginyl-7-amido-4-methyl coumarin (Z-FR-AMC), a substrate that is cleaved by mammalian and trypanosome cathepsin L

Molecules 2020, 25, 143 3 of 9

the x-axis confirming that curcumin is indeed a non-competitive inhibitor of rhodesain (Figure 2b).From the point of intersection, the apparent inhibitor constant Ki for curcumin was determined to be5.5 ± 1.4 µM (n = 3).

Molecules 2019, 24, x FOR PEER REVIEW  3  of  9 

Molecules 2019, 24, x; doi: FOR PEER REVIEW  www.mdpi.com/journal/molecules 

inhibitor concentration (Dixon plot) gave again a family of lines that met in a single point on the x‐

axis confirming that curcumin is indeed a non‐competitive inhibitor of rhodesain (Figure 2b). From 

the point of intersection, the apparent inhibitor constant Ki for curcumin was determined to be 5.5 ± 

1.4 μM (n = 3). 

 

Figure 2. Determination of inhibitor type and constant of curcumin for rhodesain. Purified rhodesain 

(14 ng/mL = 0.4 nM) was incubated with varying concentrations of Z‐FR‐AMC (0.125, 0.167, 0.25 and 

0.5 μM) and curcumin (0, 2, 4 and 6 μM) in 100 mM citrate, pH 5.0, 2 mM dithiothreitol, 2% DMSO. 

(a) Lineweaver‐Burk plot. The  concentrations of  curcumin were 0  μM  (open  circles), 2  μM  (open 

squares),  4  μM  (open  triangles)  and  6  μM  (open diamonds).  (b) Dixon plot  for determining  the 

inhibitor constant Ki. The concentrations of the substrate Z‐FA‐AMC were 0.5 μM (closed circles), 0.25 

μM (closed squares), 0.167 μM (closed triangles) and 0.125 μM (closed diamonds). A representative 

experiment out of three is shown. 

As for a non‐competitive inhibitor, the Ki value is equal to the IC50 value [10]; the IC50 value of 

curcumin for the inhibition of rhodesain was determined next. The compound inhibited the activity 

of rhodesain in a dose‐dependent manner with an IC50 value of 5.6 ± 0.5 μM (n = 3) (Figure 3). The 

IC50 value was not statistically significantly different from the Ki value (Student’s t test; p = 0.971). 

This finding confirmed that curcumin is indeed a non‐competitive inhibitor of rhodesain. 

 

Figure  3. Dose‐response  curve  of  the  inhibition  of  rhodesain  by  curcumin. Purified  rhodesain  (7 

ng/mL; 0.2 nM) was incubated with varying concentrations of curcumin (32, 16, 8, 4, 2 and 1 μM) in 

100 mM  citrate,  pH  5.0,  2 mM  dithiothreitol,  2%  DMSO,  5  μM  Z‐FR‐AMC.  After  10 min,  the 

fluorescence of liberated AMC was measured. The experiment was repeated three times and mean 

values ± SD are shown. 

0

0.03

0.06

0.09

0.12

-2 0 2 4 6 8 10

1/v

[R

FU

-1m

in]

1/S [μM-1]

0

0.03

0.06

0.09

0.12

-8 -6 -4 -2 0 2 4 6 81

/v [

RF

U-1

min

]I [μM]

a b

Ki = - [I]

0

20

40

60

80

100

0.5 5 50

RF

U [%

of

Co

ntr

ol]

Curcumin [μM]IC50

Figure 2. Determination of inhibitor type and constant of curcumin for rhodesain. Purified rhodesain(14 ng/mL = 0.4 nM) was incubated with varying concentrations of Z-FR-AMC (0.125, 0.167, 0.25 and0.5 µM) and curcumin (0, 2, 4 and 6 µM) in 100 mM citrate, pH 5.0, 2 mM dithiothreitol, 2% DMSO.(a) Lineweaver-Burk plot. The concentrations of curcumin were 0 µM (open circles), 2 µM (opensquares), 4 µM (open triangles) and 6 µM (open diamonds). (b) Dixon plot for determining the inhibitorconstant Ki. The concentrations of the substrate Z-FA-AMC were 0.5 µM (closed circles), 0.25 µM (closedsquares), 0.167 µM (closed triangles) and 0.125 µM (closed diamonds). A representative experimentout of three is shown.

As for a non-competitive inhibitor, the Ki value is equal to the IC50 value [10]; the IC50 value ofcurcumin for the inhibition of rhodesain was determined next. The compound inhibited the activity ofrhodesain in a dose-dependent manner with an IC50 value of 5.6 ± 0.5 µM (n = 3) (Figure 3). The IC50

value was not statistically significantly different from the Ki value (Student’s t test; p = 0.971). Thisfinding confirmed that curcumin is indeed a non-competitive inhibitor of rhodesain.

Molecules 2019, 24, x FOR PEER REVIEW  3  of  9 

Molecules 2019, 24, x; doi: FOR PEER REVIEW  www.mdpi.com/journal/molecules 

inhibitor concentration (Dixon plot) gave again a family of lines that met in a single point on the x‐

axis confirming that curcumin is indeed a non‐competitive inhibitor of rhodesain (Figure 2b). From 

the point of intersection, the apparent inhibitor constant Ki for curcumin was determined to be 5.5 ± 

1.4 μM (n = 3). 

 

Figure 2. Determination of inhibitor type and constant of curcumin for rhodesain. Purified rhodesain 

(14 ng/mL = 0.4 nM) was incubated with varying concentrations of Z‐FR‐AMC (0.125, 0.167, 0.25 and 

0.5 μM) and curcumin (0, 2, 4 and 6 μM) in 100 mM citrate, pH 5.0, 2 mM dithiothreitol, 2% DMSO. 

(a) Lineweaver‐Burk plot. The  concentrations of  curcumin were 0  μM  (open  circles), 2  μM  (open 

squares),  4  μM  (open  triangles)  and  6  μM  (open diamonds).  (b) Dixon plot  for determining  the 

inhibitor constant Ki. The concentrations of the substrate Z‐FA‐AMC were 0.5 μM (closed circles), 0.25 

μM (closed squares), 0.167 μM (closed triangles) and 0.125 μM (closed diamonds). A representative 

experiment out of three is shown. 

As for a non‐competitive inhibitor, the Ki value is equal to the IC50 value [10]; the IC50 value of 

curcumin for the inhibition of rhodesain was determined next. The compound inhibited the activity 

of rhodesain in a dose‐dependent manner with an IC50 value of 5.6 ± 0.5 μM (n = 3) (Figure 3). The 

IC50 value was not statistically significantly different from the Ki value (Student’s t test; p = 0.971). 

This finding confirmed that curcumin is indeed a non‐competitive inhibitor of rhodesain. 

 

Figure  3. Dose‐response  curve  of  the  inhibition  of  rhodesain  by  curcumin. Purified  rhodesain  (7 

ng/mL; 0.2 nM) was incubated with varying concentrations of curcumin (32, 16, 8, 4, 2 and 1 μM) in 

100 mM  citrate,  pH  5.0,  2 mM  dithiothreitol,  2%  DMSO,  5  μM  Z‐FR‐AMC.  After  10 min,  the 

fluorescence of liberated AMC was measured. The experiment was repeated three times and mean 

values ± SD are shown. 

0

0.03

0.06

0.09

0.12

-2 0 2 4 6 8 10

1/v

[R

FU

-1m

in]

1/S [μM-1]

0

0.03

0.06

0.09

0.12

-8 -6 -4 -2 0 2 4 6 81

/v [

RF

U-1

min

]I [μM]

a b

Ki = - [I]

0

20

40

60

80

100

0.5 5 50

RF

U [%

of

Co

ntr

ol]

Curcumin [μM]IC50

Figure 3. Dose-response curve of the inhibition of rhodesain by curcumin. Purified rhodesain (7 ng/mL;0.2 nM) was incubated with varying concentrations of curcumin (32, 16, 8, 4, 2 and 1 µM) in 100 mMcitrate, pH 5.0, 2 mM dithiothreitol, 2% DMSO, 5 µM Z-FR-AMC. After 10 min, the fluorescence ofliberated AMC was measured. The experiment was repeated three times and mean values ± SDare shown.

Page 4: Rhodesain by Curcumin - University of East Anglia...phenylalanyl-arginyl-7-amido-4-methyl coumarin (Z-FR-AMC), a substrate that is cleaved by mammalian and trypanosome cathepsin L

Molecules 2020, 25, 143 4 of 9

Having shown that curcumin is a reversible, non-competitive inhibitor of rhodesain, the questionremains why previously a lack of recovery of activity after pre-incubation of the resting enzymewith the compound was found [3,5]. As the incubation of the active enzyme (i.e., in the presence ofsubstrate) with curcumin is reversible [6], one could conclude that the compound binds with differentaffinities to the free enzyme and the enzyme-substrate complex. However, this explanation can beexcluded as a non-competitive inhibitor binds equally well to the enzyme whether or not it hasbound the substrate. A more likely reason for the observed apparent irreversible inhibitory activity ofcurcumin is the very low water solubility of the compound, which is just 0.6 µg/mL (1.63 µM) [11].In this context, it is important to note that in the recent studies rhodesain was pre-incubated with50–100 µM curcumin for 30 min before the recovery of the activity of the enzyme was determined bydilution of the reaction mixture into measuring buffer [3,5]. At concentrations of 50–100 µM, curcuminwill be rather dispersed than dissolved in aqueous solutions. This notion is supported by previousobservation that curcumin displays very low absorbance in aqueous solutions [12]. The dispersedcurcumin particles may absorb and/or non-specifically inactivate rhodesain present in the reactionmixture. However, the water solubility of curcumin can be increased in the presence of DMSO(Figure A1). In order to check whether undissolved curcumin can non-specifically inactivate rhodesain,the enzyme was pre-incubated with 100 µM of the compound in the presence of DMSO at a lowconcentration of 0.1% and at a high concentration of 10%, respectively. After 30 min incubation,the reaction mixture was diluted 100-fold into measuring buffer containing substrate to give a curcuminconcentration of 1 µM that was shown not to affect the activity of rhodesain (see Figure 3). The activityof rhodesain treated with curcumin in the presence of 0.1% DMSO was not fully restored after thedilution (Figure 4). It reached only 30% of the control enzyme activity. In contrast, the activity ofrhodesain incubated with curcumin in the presence of 10% DMSO was restored to 91% of the controlenzyme activity after the dilution (Figure 4). In this case, the activity of the treated enzyme wasnot statistically significantly different from that of the control enzyme (p = 0.337; Figure 4). Thisresult shows that curcumin, if it is dissolved with the help of an appropriate solubilising agent, doesnot irreversibly inactivate rhodesain. Thus, the lack of recovery of curcumin pre-treated rhodesainobserved recently [3,5] seemed to be most likely due to non-specific inactivation by undissolvedcurcumin particles present in the reaction mixture. Interestingly, a similar observation (lack of recoveryof enzyme activity after pre-incubation with curcumin) was previously reported for the inactivation ofCD13/aminopeptidase N [13]. While curcumin was identified as a reversible non-competitive inhibitorof CD13/aminopeptidase N, the activity of the enzyme pre-treated with curcumin could not be fullyrestored after three rounds of filtration using centrifugal filter devices to remove the compound.

Molecules 2019, 24, x FOR PEER REVIEW  4  of  9 

Molecules 2019, 24, x; doi: FOR PEER REVIEW  www.mdpi.com/journal/molecules 

Having  shown  that  curcumin  is  a  reversible,  non‐competitive  inhibitor  of  rhodesain,  the 

question remains why previously a  lack of recovery of activity after pre‐incubation of  the resting 

enzyme with  the compound was  found  [3,5]. As  the  incubation of  the active enzyme  (i.e.,  in  the 

presence of substrate) with curcumin is reversible [6], one could conclude that the compound binds 

with  different  affinities  to  the  free  enzyme  and  the  enzyme‐substrate  complex.  However,  this 

explanation can be excluded as a non‐competitive inhibitor binds equally well to the enzyme whether 

or  not  it  has  bound  the  substrate. A more  likely  reason  for  the  observed  apparent  irreversible 

inhibitory activity of curcumin is the very low water solubility of the compound, which is  just 0.6 

μg/mL (1.63 μM) [11]. In this context, it is important to note that in the recent studies rhodesain was 

pre‐incubated with 50–100 μM curcumin for 30 min before the recovery of the activity of the enzyme 

was determined by dilution of the reaction mixture into measuring buffer [3,5]. At concentrations of 

50–100 μM, curcumin will be rather dispersed than dissolved  in aqueous solutions. This notion  is 

supported by previous observation that curcumin displays very low absorbance in aqueous solutions 

[12].  The  dispersed  curcumin  particles may  absorb  and/or  non‐specifically  inactivate  rhodesain 

present in the reaction mixture. However, the water solubility of curcumin can be increased in the 

presence of DMSO (Figure A1). In order to check whether undissolved curcumin can non‐specifically 

inactivate rhodesain, the enzyme was pre‐incubated with 100 μM of the compound in the presence 

of DMSO at a low concentration of 0.1% and at a high concentration of 10%, respectively. After 30 

min incubation, the reaction mixture was diluted 100‐fold into measuring buffer containing substrate 

to give a curcumin concentration of 1 μM that was shown not to affect the activity of rhodesain (see 

Figure 3). The activity of rhodesain treated with curcumin in the presence of 0.1% DMSO was not 

fully  restored after  the dilution  (Figure 4).  It  reached only 30% of  the control enzyme activity.  In 

contrast,  the  activity  of  rhodesain  incubated with  curcumin  in  the  presence  of  10% DMSO was 

restored to 91% of the control enzyme activity after the dilution (Figure 4). In this case, the activity of 

the treated enzyme was not statistically significantly different from that of the control enzyme (p = 

0.337; Figure 4). This result shows that curcumin, if it is dissolved with the help of an appropriate 

solubilising agent, does not irreversibly inactivate rhodesain. Thus, the lack of recovery of curcumin 

pre‐treated  rhodesain  observed  recently  [3,5]  seemed  to  be  most  likely  due  to  non‐specific 

inactivation  by  undissolved  curcumin  particles  present  in  the  reaction mixture.  Interestingly,  a 

similar observation  (lack of  recovery of enzyme activity after pre‐incubation with curcumin) was 

previously  reported  for  the  inactivation  of  CD13/aminopeptidase N  [13]. While  curcumin  was 

identified as a reversible non‐competitive  inhibitor of CD13/aminopeptidase N,  the activity of  the 

enzyme pre‐treated with curcumin could not be fully restored after three rounds of filtration using 

centrifugal filter devices to remove the compound. 

 

Figure 4. Reversibility of inhibition of rhodesain by curcumin. Purified rhodesain (3.4 μg/mL; 100 nM) 

was pre‐incubated  in  100 mM  citrate, pH 5.0,  2 mM dithiothreitol with  100  μM  curcumin  in  the 

presence of 0.1% or 10% DMSO. For controls, the enzyme was incubated under the same conditions 

but in the absence of curcumin. After 30 min, the mixture was diluted 1:100 into 100 mM citrate, pH 

5.0, 2 mM dithiothreitol, 2% DMSO, 5 μM Z‐FR‐AMC. After 10 min, the release of liberated AMC was 

recorded. The specific activity (nmol AMC released/min/μg protein) was calculated using a standard 

curve constructed with uncoupled AMC. Data are mean values ± SD of three experiments. 

0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

Control Curcumin Control Curcumin

nm

ol/m

in/μ

g p

rote

in

0.1% DMSO 10% DMSO

p = 0.004 p = 0.337

Figure 4. Reversibility of inhibition of rhodesain by curcumin. Purified rhodesain (3.4 µg/mL; 100 nM)was pre-incubated in 100 mM citrate, pH 5.0, 2 mM dithiothreitol with 100 µM curcumin in the presenceof 0.1% or 10% DMSO. For controls, the enzyme was incubated under the same conditions but inthe absence of curcumin. After 30 min, the mixture was diluted 1:100 into 100 mM citrate, pH 5.0,2 mM dithiothreitol, 2% DMSO, 5 µM Z-FR-AMC. After 10 min, the release of liberated AMC wasrecorded. The specific activity (nmol AMC released/min/µg protein) was calculated using a standardcurve constructed with uncoupled AMC. Data are mean values ± SD of three experiments.

Page 5: Rhodesain by Curcumin - University of East Anglia...phenylalanyl-arginyl-7-amido-4-methyl coumarin (Z-FR-AMC), a substrate that is cleaved by mammalian and trypanosome cathepsin L

Molecules 2020, 25, 143 5 of 9

Finally, the question remains as to why a time-dependent inhibition of rhodesain activity bycurcumin was recently observed [3,5]. In this regard, it should be mentioned that the measuring buffer(assay buffer) used in the recent studies [3,5] did not contain any reducing thiol reagent. However,cathepsin L cysteine proteases are only fully catalytically active in the presence of thiol reagents(e.g., dithiothreitol, [14]). When determining the effect of curcumin on the activity of rhodesain inmeasuring buffer lacking dithiothreitol, a time-dependent inactivation of the enzyme activity by thecompound was observed (Figure 5). After 30 min of incubation, the enzyme was almost completelyinactivated. However, after addition of dithiothreitol to a final concentration of 2 mM, rhodesainregained its activity (Figure 5). Moreover, the activity of the enzyme was now linear with respect totime with a correlation coefficient of the readings of 0.9997 (Figure 5). This result clearly demonstratesthat it is essential to include a thiol reagent in the measuring buffer in order to keep rhodesain fullyactivated. It should also be pointed out that the activity of rhodesain decelerated when measured in theabsence of curcumin and dithiothreitol (Figure 5, insert). However, the time-dependent inactivation ofrhodesain in the absence of dithiothreitol for the curcumin-treated enzyme was more pronounced thanfor the non-treated enzyme. These findings indicate that rhodesain in the absence of a thiol reagent isoxidised, which leads to gradual inactivation of the enzyme. This oxidation of the rhodesain seems tobe accelerated in the presence of curcumin, which may be mistaken as an irreversible inhibition ofthe enzyme.

Molecules 2019, 24, x FOR PEER REVIEW  5  of  9 

Molecules 2019, 24, x; doi: FOR PEER REVIEW  www.mdpi.com/journal/molecules 

Finally,  the question remains as  to why a  time‐dependent  inhibition of rhodesain activity by 

curcumin was  recently observed  [3,5].  In  this  regard,  it  should be mentioned  that  the measuring 

buffer  (assay buffer) used  in  the  recent  studies  [3,5] did not  contain  any  reducing  thiol  reagent. 

However, cathepsin L cysteine proteases are only fully catalytically active  in the presence of thiol 

reagents  (e.g.,  dithiothreitol,  [14]). When  determining  the  effect  of  curcumin  on  the  activity  of 

rhodesain in measuring buffer lacking dithiothreitol, a time‐dependent inactivation of the enzyme 

activity by  the  compound was observed  (Figure 5). After  30 min of  incubation,  the  enzyme was 

almost completely inactivated. However, after addition of dithiothreitol to a final concentration of 2 

mM, rhodesain regained its activity (Figure 5). Moreover, the activity of the enzyme was now linear 

with respect  to  time with a correlation coefficient of  the readings of 0.9997  (Figure 5). This result 

clearly demonstrates that it is essential to include a thiol reagent in the measuring buffer in order to 

keep rhodesain fully activated. It should also be pointed out that the activity of rhodesain decelerated 

when measured in the absence of curcumin and dithiothreitol (Figure 5, insert). However, the time‐

dependent inactivation of rhodesain in the absence of dithiothreitol for the curcumin‐treated enzyme 

was more pronounced than for the non‐treated enzyme. These findings indicate that rhodesain in the 

absence  of  a  thiol  reagent  is  oxidised, which  leads  to  gradual  inactivation  of  the  enzyme.  This 

oxidation  of  the  rhodesain  seems  to  be  accelerated  in  the  presence  of  curcumin, which may  be 

mistaken as an irreversible inhibition of the enzyme. 

 

Figure  5.  Effect  of  curcumin  on  substrate  hydrolysis  of  rhodesain  in  the  absence  of  the  thiol 

dithiothreitol. Purified rhodesain (35 ng/mL; 1 nM) was incubated with 6 μM curcumin (circles) in 

100 mM citrate, pH 5.0, 2% DMSO, in the presence of 5 μM of the fluorogenic substrate Z‐FR‐AMC. 

After 30 min, dithiothreitol (DTT) was added to a final concentration of 2 mM (arrow). r, correlation 

coefficient of the trend line. Insert, substrate hydrolysis of rhodesain in the absence of curcumin and 

dithiothreitol  (squares). The  release of  free AMC was  recorded  every minute  for  30  and  60 min, 

respectively. A representative experiment out of three is shown. 

Other antioxidants (cysteine, glutathione, β‐mercaptoethanol and ascorbic acid) were also able 

to  reactivate  rhodesain  that  had  been  inhibited  by  curcumin,  although  at  different  effectiveness 

(Figure  6).  Cysteine  was  most  effective  in  the  reactivation  of  rhodesain  (even  better  than 

dithiothreitol) while ascorbic acid could not sustain the reactivation of the enzyme in the longer term. 

Glutathione was a slow acting reagent but over time reactivated the enzyme to a similar extent as β‐

mercaptoethanol.  In  general,  the  effectiveness  of  the  reactivation  process  of  curcumin‐inhibited 

rhodesain by the different antioxidants (cysteine > dithiothreitol > glutathione = β‐mercaptoethanol 

> ascorbic acid) was determined by their standard redox potential E0’: the more negative E0’, the better 

the reactivation (E0’(cysteine) = −348 mV; E0’(dithiothreitol) = −323 mV; E0’(β‐mercaptoethanol) = −207 

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60

RF

U

Time [min]

0

1000

2000

3000

0 10 20 30

RF

U

Time [min]

r = 0.9997

DTT

Figure 5. Effect of curcumin on substrate hydrolysis of rhodesain in the absence of the thiol dithiothreitol.Purified rhodesain (35 ng/mL; 1 nM) was incubated with 6 µM curcumin (circles) in 100 mM citrate,pH 5.0, 2% DMSO, in the presence of 5 µM of the fluorogenic substrate Z-FR-AMC. After 30 min,dithiothreitol (DTT) was added to a final concentration of 2 mM (arrow). r, correlation coefficient ofthe trend line. Insert, substrate hydrolysis of rhodesain in the absence of curcumin and dithiothreitol(squares). The release of free AMC was recorded every minute for 30 and 60 min, respectively.A representative experiment out of three is shown.

Other antioxidants (cysteine, glutathione, β-mercaptoethanol and ascorbic acid) were also able toreactivate rhodesain that had been inhibited by curcumin, although at different effectiveness (Figure 6).Cysteine was most effective in the reactivation of rhodesain (even better than dithiothreitol) whileascorbic acid could not sustain the reactivation of the enzyme in the longer term. Glutathione was a slowacting reagent but over time reactivated the enzyme to a similar extent asβ-mercaptoethanol. In general,the effectiveness of the reactivation process of curcumin-inhibited rhodesain by the different antioxidants(cysteine > dithiothreitol > glutathione = β-mercaptoethanol > ascorbic acid) was determined by theirstandard redox potential E0’: the more negative E0’, the better the reactivation (E0’(cysteine) = −348 mV;

Page 6: Rhodesain by Curcumin - University of East Anglia...phenylalanyl-arginyl-7-amido-4-methyl coumarin (Z-FR-AMC), a substrate that is cleaved by mammalian and trypanosome cathepsin L

Molecules 2020, 25, 143 6 of 9

E0’(dithiothreitol) = −323 mV; E0’(β-mercaptoethanol) = −207 mV; E0’(glutathione) = −205 mV;E0’(ascorbic acid) = +58 mV [15–17]). These findings are further proof that the observed inhibition ofrhodesain by curcumin is due to oxidation of thiol groups in the enzyme.

Molecules 2019, 24, x FOR PEER REVIEW  6  of  9 

Molecules 2019, 24, x; doi: FOR PEER REVIEW  www.mdpi.com/journal/molecules 

mV; E0’(glutathione) = −205 mV; E0’(ascorbic acid) = +58 mV [15–17]). These findings are further proof 

that  the observed  inhibition of  rhodesain by  curcumin  is due  to oxidation of  thiol groups  in  the 

enzyme. 

 

Figure  6. Effect of different  antioxidants on  the  reactivation of  rhodesain  inhibited by  curcumin. 

Purified rhodesain (35 ng/mL; 1 nM) was incubated with 6 μM curcumin in 100 mM citrate, pH 5.0, 

2% DMSO, in the presence of 5 μM of the fluorogenic substrate Z‐FR‐AMC. After 30 min, antioxidant 

thiols were added to a final concentration of 4 mM (note that 4 mM of cysteine, glutathione and β‐

mercaptoethanol (monothiols) equals to 2 mM dithiothreitol (dithiol) based on SH‐groups present in 

the reagents) while ascorbic acid was added to a final concentration of 20 mM (arrows). (a) cysteine; 

(b) glutathione (note that the trend line was calculated using the readings from t = 40 min to t = 60 

min);  (c)  β‐mercaptoethanol;  (d)  ascorbic  acid  (note  that  the  trend  line was  calculated  using  the 

readings from t = 31 min to t = 45 min). r, correlation coefficient of the trend line. The release of free 

AMC was  recorded every minute  for 60 min. A  representative experiment out of  two or  three  is 

shown. 

3. Materials and Methods 

3.1. Materials 

Recombinantly  expressed  and  purified  rhodesain  (T.  brucei  cathepsin  L‐like  protease) was 

provide by Professor Conor R. Caffrey, Center for Discovery and Innovation in Parasitic Diseases, 

Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San 

Diego,  CA,  USA.  Benzyloxycarbonyl‐phenylalanyl‐arginyl‐7‐amido‐4‐methyl  coumarin  (Z‐FR‐

AMC) was purchased from BIOMOL, Exeter, UK. Curcumin was bought from Sigma‐Aldrich, Dorset, 

UK. 

3.2. Enzyme Assays 

The activity of rhodesain was determined with the fluorogenic substrate Z‐FR‐AMC in 100 mM 

citrate, pH 5.0, 2 mM dithiothreitol (measuring buffer). Release of free 7‐amino‐4‐methylcoumarin 

(AMC) was measured at excitation and emission wavelengths of 360 nm and 460 nm in a BIORAD 

VersaFluor fluorometer, Watford, UK. 

0

200

400

600

800

1000

1200

1400

1600

0 10 20 30 40 50 60

RF

U

Time [min]

glutathione

r = 0.9981

0

200

400

600

800

1000

1200

1400

1600

0 10 20 30 40 50 60

RF

U

Time [min]

β-mercaptoethanol

r = 0.9984

0

200

400

600

800

1000

1200

1400

1600

0 10 20 30 40 50 60

RF

U

Time [min]

cysteine

r = 0.9994

0

200

400

600

800

1000

1200

1400

1600

0 10 20 30 40 50 60

RF

U

Time [min]

ascorbic acid

r = 0.9995

a b

c d

Figure 6. Effect of different antioxidants on the reactivation of rhodesain inhibited by curcumin.Purified rhodesain (35 ng/mL; 1 nM) was incubated with 6 µM curcumin in 100 mM citrate, pH 5.0,2% DMSO, in the presence of 5 µM of the fluorogenic substrate Z-FR-AMC. After 30 min, antioxidantthiols were added to a final concentration of 4 mM (note that 4 mM of cysteine, glutathione andβ-mercaptoethanol (monothiols) equals to 2 mM dithiothreitol (dithiol) based on SH-groups present inthe reagents) while ascorbic acid was added to a final concentration of 20 mM (arrows). (a) cysteine;(b) glutathione (note that the trend line was calculated using the readings from t = 40 min to t = 60 min);(c) β-mercaptoethanol; (d) ascorbic acid (note that the trend line was calculated using the readingsfrom t = 31 min to t = 45 min). r, correlation coefficient of the trend line. The release of free AMC wasrecorded every minute for 60 min. A representative experiment out of two or three is shown.

3. Materials and Methods

3.1. Materials

Recombinantly expressed and purified rhodesain (T. brucei cathepsin L-like protease) was provideby Professor Conor R. Caffrey, Center for Discovery and Innovation in Parasitic Diseases, Skaggs Schoolof Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA.Benzyloxycarbonyl-phenylalanyl-arginyl-7-amido-4-methyl coumarin (Z-FR-AMC) was purchasedfrom BIOMOL, Exeter, UK. Curcumin was bought from Sigma-Aldrich, Dorset, UK.

3.2. Enzyme Assays

The activity of rhodesain was determined with the fluorogenic substrate Z-FR-AMC in 100 mMcitrate, pH 5.0, 2 mM dithiothreitol (measuring buffer). Release of free 7-amino-4-methylcoumarin(AMC) was measured at excitation and emission wavelengths of 360 nm and 460 nm in a BIORADVersaFluor fluorometer, Watford, UK.

Page 7: Rhodesain by Curcumin - University of East Anglia...phenylalanyl-arginyl-7-amido-4-methyl coumarin (Z-FR-AMC), a substrate that is cleaved by mammalian and trypanosome cathepsin L

Molecules 2020, 25, 143 7 of 9

3.2.1. Time Course Assay

In order to determine whether the activity of rhodesain was inhibited in a time-dependent mannerby curcumin, the enzyme (7 ng/mL; 0.2 nM) was incubated in the presence of 6 µM curcumin dissolvedin DMSO in measuring buffer plus 5 µM Z-FR-AMC. For a negative control, rhodesain was incubatedwith the same amount of DMSO (2%). For a positive control, the enzyme was incubated with 0.1 µMof the established irreversible inhibitor CAA0255 [4,9].

To determine whether the absence of dithiothreitol had an effect on the inhibitory activity ofcurcumin, rhodesain (35 ng/mL; 1 nM) was incubated with 6 µM curcumin in measuring buffer plus5 µM Z-FR-AMC but lacking dithiothreitol. The release of free AMC was recorded every minute overa period of 30 min. Then, different antioxidants (dithiothreitol, cysteine, glutathione, β-mercaptoethanoland ascorbic acid) were added in order to determine whether curcumin-inhibited rhodesain could bereactivated. The release of free AMC was recorded every minute for another period of 30 min.

3.2.2. Determination of Inhibitor Type and Ki

The inhibitor type of curcumin for rhodesain was determined by kinetic analysis. Purifiedrhodesain was incubated with varying concentrations of Z-FR-AMC (0.125, 0.167, 0.25 and 0.5 µM)and curcumin (0, 2, 4 and 6 µM) in measuring buffer containing 2% DMSO. The final concentration ofrhodesain in the assay was 14 ng/mL (0.4 nM). The release of free AMC was recorded as describedabove every 30 s for 5 min. The velocity of the reaction (relative fluorescence units (RFU)/min) wascalculated by linear interpolation of the data. The inhibitor type and the Ki value were graphicallydetermined by Lineweaver–Burk plot and Dixon plot, respectively.

3.2.3. Determination of IC50

For determination of the half-maximal inhibitory concentration (IC50), purified rhodesain wasassayed with 5 µM Z-FR-AMC in measuring buffer containing different concentration of curcumin(twofold dilutions from 32 µM to 1 µM) and 2% DMSO. Controls contained 2% DMSO alone.The final enzyme concentrations in the assays were 7 ng/mL (0.2 nM). After 10 min incubation atroom temperature, the release of free AMC was recorded. IC50 values were determined by linearinterpolation according to the method by Huber and Koella [18].

3.2.4. Reversibility Assay

The effect of solvent on the reversibility of the inhibition of rhodesain by curcumin was testedby measuring the recovery of enzymatic activity after dilution of the incubation mixture. Rhodesain(3.5 µg/mL; 100 nM) was pre-incubated with 100 µM curcumin in the presence of 0.1% or 10% DMSOin measuring buffer for 30 min at room temperature. Then, the mixture was diluted 100-fold intomeasuring buffer containing 5 µM Z-FR-AMC. After 10 min incubation at room temperature, the releaseof free AMC was recorded. Controls were pre-incubated under the same conditions but in the absenceof curcumin.

4. Conclusions

Through enzyme kinetic measurements, it was unequivocally shown that curcumin is a reversible,non-competitive, inhibitor of rhodesain. Additional time course and dilution experiments providedconclusive explanations as to why previously it was mistakenly suggested that curcumin isan irreversible inhibitor of rhodesain. Taken together, this study has once more confirmed thatcurcumin is a promiscuous molecule that can interact non-specifically with any protein under certainincubation conditions leading to misinterpretation of results.

Funding: This research received no external funding.

Acknowledgments: I thank Linda Troeberg (Norwich Medical School, University of East Anglia) for criticalreading of the manuscript.

Page 8: Rhodesain by Curcumin - University of East Anglia...phenylalanyl-arginyl-7-amido-4-methyl coumarin (Z-FR-AMC), a substrate that is cleaved by mammalian and trypanosome cathepsin L

Molecules 2020, 25, 143 8 of 9

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

Molecules 2019, 24, x FOR PEER REVIEW  8  of  9 

Molecules 2019, 24, x; doi: FOR PEER REVIEW  www.mdpi.com/journal/molecules 

Funding: This research received no external funding. 

Acknowledgments:  I  thank Linda Troeberg  (Norwich Medical School, University of East Anglia)  for critical 

reading of the manuscript. 

Conflicts of Interest: The author declares no conflict of interest. 

Appendix A 

 

Figure A1. Curcumin (100 nmol) was mixed in 1 mL of 100 mM citrate, pH 5.0 containing 0.1%, 1% 

and 10% DMSO, respectively. Then, 200 μl of the solutions were pipetted into wells of a 96‐well plate 

and the absorbance read at 450 nm using a BioTek ELx808 microplate reader, Winooski, Vermont, 

USA. Note that curcumin has an absorption maximum at around 430 nm in different polar solvents 

[12]. A  blank  (0.035)  recorded with  200  μL  of  100 mM  citrate,  pH  5.0 was  subtracted  from  the 

absorbance  values.  With  increasing  DMSO  concentration,  the  absorbance  of  the  solution  also 

increased  indicating  that more  and more  curcumin was  being dissolved.  In  the presence  of  10% 

DMSO, four and five times more curcumin was dissolved than in the presence of 1% and 0.1% DMSO, 

respectively. 

References 

1. Nelson,  K.M.;  Dahlin,  J.L.;  Bisson,  J.;  Graham,  J.;  Pauli,  G.F.; Walters, M.A.  The  essential medicinal 

chemistry of curcumin. J. Med. Chem. 2017, 60, 1620–1637. 

2. Changtam, C.; de Koning, H.P.; Ibrahim, H.; Sajid, M.S.; Gould, M.K.; Suksamrarn, A. Curcuminoid analogs 

with potent activity against Trypanosoma and Leishmania species. Eur. J. Med. Chem. 2010, 45, 941–956. 

3. Ettari, R.; Previti, S.; Maiorana, S.; Allegra, A.; Schirmeister, T.; Grasso, S.; Zappalà, M. Drug combination 

studies of curcumin and genistein against rhodesain of Trypanosoma brucei rhodesiense. Nat. Prod. Res. 

2019, 33, 3577–3581. 

4. Steverding, D.; Sexton, D.W.; Wang, X.; Gehrke, S.S.; Wagner, G.K.; Caffrey, C.R. Trypanosoma brucei: 

Chemical evidence that cathepsin L is essential for survival and a relevant drug target. Int. J. Parasitol. 2012, 

42, 481–488. 

5. Ettari, R.; Previti,  S.; Maiorana,  S.; Allegra, A.;  Schirmeister, T.; Grasso,  S.; Zappalà, M. Evaluation  of 

curcumin irreversibility. Nat. Prod. Res. 2020, in press. 

6. Steverding, D. Comments on “Drug combination studies of curcumin and genistein against rhodesain of 

Trypanosoma brucei rhodesiense”. Nat. Prod. Res. 2020, in press. 

7. Barrett, A.J.; Kirschke, H. Cathepsin B, cathepsin H, and cathepsin L. Methods Enzymol. 1981, 80 Pt C, 535–

561. 

8. Caffrey, C.R.; Hansell, E.; Lucas, K.D.; Brinen, L.S.; Alvarez Hernandez, A.; Cheng, J.; Gwaltney, S.L., 2nd; 

Roush, W.R.; Stierhof, Y.‐D.; Bogyo, M.; et al. Active site mapping, biochemical properties and subcellular 

localization of rhodesain, the major cysteine protease of Trypanosoma brucei rhodesiense. Mol. Biochem. 

Parasitol. 2001, 118, 61–73. 

0

0.1

0.2

0.3

0.4

0.5

Ab

sorb

an

ce

(45

0 n

m)

0.1% 1% 10%

DMSO Concentration

Figure A1. Curcumin (100 nmol) was mixed in 1 mL of 100 mM citrate, pH 5.0 containing 0.1%, 1%and 10% DMSO, respectively. Then, 200 µl of the solutions were pipetted into wells of a 96-well plateand the absorbance read at 450 nm using a BioTek ELx808 microplate reader, Winooski, Vermont, USA.Note that curcumin has an absorption maximum at around 430 nm in different polar solvents [12].A blank (0.035) recorded with 200 µL of 100 mM citrate, pH 5.0 was subtracted from the absorbancevalues. With increasing DMSO concentration, the absorbance of the solution also increased indicatingthat more and more curcumin was being dissolved. In the presence of 10% DMSO, four and five timesmore curcumin was dissolved than in the presence of 1% and 0.1% DMSO, respectively.

References

1. Nelson, K.M.; Dahlin, J.L.; Bisson, J.; Graham, J.; Pauli, G.F.; Walters, M.A. The essential medicinal chemistryof curcumin. J. Med. Chem. 2017, 60, 1620–1637. [CrossRef] [PubMed]

2. Changtam, C.; de Koning, H.P.; Ibrahim, H.; Sajid, M.S.; Gould, M.K.; Suksamrarn, A. Curcuminoid analogswith potent activity against Trypanosoma and Leishmania species. Eur. J. Med. Chem. 2010, 45, 941–956.[CrossRef] [PubMed]

3. Ettari, R.; Previti, S.; Maiorana, S.; Allegra, A.; Schirmeister, T.; Grasso, S.; Zappalà, M. Drug combinationstudies of curcumin and genistein against rhodesain of Trypanosoma brucei rhodesiense. Nat. Prod. Res.2019, 33, 3577–3581. [CrossRef] [PubMed]

4. Steverding, D.; Sexton, D.W.; Wang, X.; Gehrke, S.S.; Wagner, G.K.; Caffrey, C.R. Trypanosoma brucei:Chemical evidence that cathepsin L is essential for survival and a relevant drug target. Int. J. Parasitol. 2012,42, 481–488. [CrossRef] [PubMed]

5. Ettari, R.; Previti, S.; Maiorana, S.; Allegra, A.; Schirmeister, T.; Grasso, S.; Zappalà, M. Evaluation of curcuminirreversibility. Nat. Prod. Res. 2020, in press. [CrossRef] [PubMed]

6. Steverding, D. Comments on “Drug combination studies of curcumin and genistein against rhodesain ofTrypanosoma brucei rhodesiense”. Nat. Prod. Res. 2020, in press. [CrossRef] [PubMed]

7. Barrett, A.J.; Kirschke, H. Cathepsin B, cathepsin H, and cathepsin L. Methods Enzymol. 1981, 80 Pt C, 535–561.8. Caffrey, C.R.; Hansell, E.; Lucas, K.D.; Brinen, L.S.; Alvarez Hernandez, A.; Cheng, J.; Gwaltney, S.L., 2nd;

Roush, W.R.; Stierhof, Y.-D.; Bogyo, M.; et al. Active site mapping, biochemical properties and subcellularlocalization of rhodesain, the major cysteine protease of Trypanosoma brucei rhodesiense. Mol. Biochem.Parasitol. 2001, 118, 61–73. [CrossRef]

9. Takahashi, K.; Ueno, T.; Tanida, I.; Minenatsu-Ikeguchi, N.; Murata, M.; Kominami, E. Characterisation ofCAA0225, a novel inhibitor specific to cathepsin L, as a probe for autophagic proteolysis. Biol. Pharm. Bull.2009, 32, 475–479. [CrossRef] [PubMed]

Page 9: Rhodesain by Curcumin - University of East Anglia...phenylalanyl-arginyl-7-amido-4-methyl coumarin (Z-FR-AMC), a substrate that is cleaved by mammalian and trypanosome cathepsin L

Molecules 2020, 25, 143 9 of 9

10. Brandt, R.B.; Laux, J.E.; Yates, S.W. Calculation of inhibitor Ki and inhibitor type from the concentration ofinhibitor for 50% inhibition for Michaelis-Menton enzymes. Biochem. Med. Metab. Biol. 1987, 37, 344–349.[CrossRef]

11. Kurien, B.T.; Singh, A.; Matsumoto, H.; Scofield, R.H. Improving the solubility and pharmacological efficacyof curcumin by heat treatment. Assay Drug Dev. Technol. 2007, 5, 567–576. [CrossRef] [PubMed]

12. Gosh, M.; Singh, A.T.K.; Xu, W.; Sulchek, T.; Gordon, L.I.; Ryan, R.O. Curcumin nanodisks: Formulation andcharacterization. Nanomedicine 2011, 7, 162–167. [CrossRef] [PubMed]

13. Shim, J.S.; Kim, J.H.; Cho, H.Y.; Yum, Y.N.; Kim, S.H.; Park, H.-J.; Shim, B.S.; Choi, S.H.; Kwon, H.J. Irreversibleinhibition of CD13/aminopeptidase N by the antiangiogenic agent curcumin. Chem. Biol. 2003, 10, 695–704.[CrossRef]

14. Kirschke, H. Cathepsin L. In Handbook of Proteolytic Enzymes, 3rd ed.; Rawlings, N.D., Salvesen, G., Eds.;Academic Press: London, UK, 2013; pp. 1808–1817.

15. Kaden, J.; Galuschko, A.S.; Schink, B. Cysteine-mediated electron transfer in syntrophic acetate oxidation bycocultures of Geobacter sulfurreducans and Wolinella succinogenes. Arch. Microbiol. 2002, 178, 53–58. [CrossRef][PubMed]

16. Szajewski, R.P.; Whitesides, G.M. Rate constants and equilibrium constants for thiol-disulfide interchangereactions involving oxidized glutathione. J. Am. Soc. Chem. 1980, 102, 2011–2026. [CrossRef]

17. Lide, D.R. (Ed.) Handbook of Chemistry and Physics, 75th ed.; CRC Press: Cleveland, OH, USA, 1994; p. 965.18. Huber, W.; Koella, J.C. A comparison of three methods of estimating EC50 in studies of drug resistance of

malaria parasites. Acta Trop. 1993, 55, 257–261. [CrossRef]

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open accessarticle distributed under the terms and conditions of the Creative Commons Attribution(CC BY) license (http://creativecommons.org/licenses/by/4.0/).