Top Banner
Constitutive Relationships of Softening Coefficients for Constitutive Relationships of Prestressed Steel Fiber Reinforced Concrete in Tension Softening Coefficients for Prestressed Steel Fiber Reinforced Concrete Justin Mickey _______________________________ Thomas Kelleher ______________________________ NSF REU Summer Scholars University of Houston August, 2008
44

REU Presentation - Justin Mickey Thomas Kelleher.pptstructurallab.egr.uh.edu/sites/structurallab.egr... · Microsoft PowerPoint - REU Presentation - Justin Mickey Thomas Kelleher.ppt

Jul 21, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: REU Presentation - Justin Mickey Thomas Kelleher.pptstructurallab.egr.uh.edu/sites/structurallab.egr... · Microsoft PowerPoint - REU Presentation - Justin Mickey Thomas Kelleher.ppt

Constitutive Relationships of Softening Coefficients forConstitutive Relationships of Prestressed Steel Fiber

Reinforced Concrete in Tension

Softening Coefficients for Prestressed Steel Fiber Reinforced Concrete

Justin Mickey

_______________________________

Thomas Kelleher

______________________________

NSF REU Summer Scholars

University of Houstony

August, 2008

Page 2: REU Presentation - Justin Mickey Thomas Kelleher.pptstructurallab.egr.uh.edu/sites/structurallab.egr... · Microsoft PowerPoint - REU Presentation - Justin Mickey Thomas Kelleher.ppt

Overview of Today’s PresentationOverview of Today s Presentation

IntroductionIntroductionFabricationTestingTestingResults

Tensile relationshipsTensile relationshipsSoftening coefficients

ConclusionsConclusions

Page 3: REU Presentation - Justin Mickey Thomas Kelleher.pptstructurallab.egr.uh.edu/sites/structurallab.egr... · Microsoft PowerPoint - REU Presentation - Justin Mickey Thomas Kelleher.ppt

RelevanceRelevance

Want to predict behavior of prestressed steelWant to predict behavior of prestressed steel fiber reinforced concrete (prestressed SFRC)Applications include: pp

Shear wallsBox bridgesgNuclear containment vesselsOff-shore structures

Page 4: REU Presentation - Justin Mickey Thomas Kelleher.pptstructurallab.egr.uh.edu/sites/structurallab.egr... · Microsoft PowerPoint - REU Presentation - Justin Mickey Thomas Kelleher.ppt

RelevanceRelevance

Why steel fiber?Why steel fiber?Reduce or eliminate need for traditional shear reinforcement (stirrups)( p )Less time and labor cost associated with stirrup placement and fabrication p p

Page 5: REU Presentation - Justin Mickey Thomas Kelleher.pptstructurallab.egr.uh.edu/sites/structurallab.egr... · Microsoft PowerPoint - REU Presentation - Justin Mickey Thomas Kelleher.ppt

Previous ResearchPrevious Research

Researchers at UH have studied:Researchers at UH have studied:Reinforced ConcreteSteel Fiber Reinforced ConcreteSteel Fiber Reinforced ConcretePrestressed Reinforced Concrete

Currently studying behavior of prestressedCurrently studying behavior of prestressed steel fiber reinforced concrete

Page 6: REU Presentation - Justin Mickey Thomas Kelleher.pptstructurallab.egr.uh.edu/sites/structurallab.egr... · Microsoft PowerPoint - REU Presentation - Justin Mickey Thomas Kelleher.ppt

ObjectivesObjectives

For Prestressed SFRC:For Prestressed SFRC:Constitutive relationship in tensionSoftening coefficientsSoftening coefficients

For both we want to:For both we want to:Calculate experimentalCompare w/ previous theoreticalCompare w/ previous theoreticalPropose model

Page 7: REU Presentation - Justin Mickey Thomas Kelleher.pptstructurallab.egr.uh.edu/sites/structurallab.egr... · Microsoft PowerPoint - REU Presentation - Justin Mickey Thomas Kelleher.ppt

Mix DesignMix Design

Type I/II CementType I/II Cement

Cement: Water ratio of 1:0 6Cement: Water ratio of 1:0.6

Target Compressive Strength of 6 ksiTarget Compressive Strength of 6 ksi

Page 8: REU Presentation - Justin Mickey Thomas Kelleher.pptstructurallab.egr.uh.edu/sites/structurallab.egr... · Microsoft PowerPoint - REU Presentation - Justin Mickey Thomas Kelleher.ppt

Steel Fiber ReinforcementSteel Fiber Reinforcement

TEF-1: 0.5% by weightDramix® ZP305 1 2”x0 022” diameter fibersDramix® ZP305 1.2 x0.022 diameter fibers

TEF 5: 1 5% by weightTEF-5: 1.5% by weightDramix® RC80/60 1.4”x0.03” diameter fibers

Page 9: REU Presentation - Justin Mickey Thomas Kelleher.pptstructurallab.egr.uh.edu/sites/structurallab.egr... · Microsoft PowerPoint - REU Presentation - Justin Mickey Thomas Kelleher.ppt

Steel ReinforcementSteel Reinforcement

Transverse Direction:Transverse Direction:10 grade 60 #4 steel rebar

t 2

Longitudinal Direction:TEF 1 : 10 TEF 5 : 5TEF-1 : 10 TEF-5 : 5

0.6 diameter grade 70 steel prestressing tendons

1prestressing tendons

Page 10: REU Presentation - Justin Mickey Thomas Kelleher.pptstructurallab.egr.uh.edu/sites/structurallab.egr... · Microsoft PowerPoint - REU Presentation - Justin Mickey Thomas Kelleher.ppt

Form LayoutForm Layout

ConduitConduitStirrupsTiesTies

Page 11: REU Presentation - Justin Mickey Thomas Kelleher.pptstructurallab.egr.uh.edu/sites/structurallab.egr... · Microsoft PowerPoint - REU Presentation - Justin Mickey Thomas Kelleher.ppt

Casting PanelsCasting Panels

MixingMixing Slump Test2 Batches2 BatchesCylinder and Beam castingBeam castingVibrating

Page 12: REU Presentation - Justin Mickey Thomas Kelleher.pptstructurallab.egr.uh.edu/sites/structurallab.egr... · Microsoft PowerPoint - REU Presentation - Justin Mickey Thomas Kelleher.ppt

Cylinder and Beam TestsCylinder and Beam Tests

Cylinder Test:Cylinder Test:Compressive Strength

Beam Test:Crack StrengthCrack Strength

Page 13: REU Presentation - Justin Mickey Thomas Kelleher.pptstructurallab.egr.uh.edu/sites/structurallab.egr... · Microsoft PowerPoint - REU Presentation - Justin Mickey Thomas Kelleher.ppt

What is Prestressing?What is Prestressing?

Improved tensileImproved tensile properties

Residual compressive stress crf

Tensile stress Not to scalecσ

Decompression

Stage T1

cεcεcrε

Stage T2

Compressivestrain

Tensile strain

cxεeco p ess o

)( ii εσ

Stage UC

cσCompressivestress

),( cici εσ

Page 14: REU Presentation - Justin Mickey Thomas Kelleher.pptstructurallab.egr.uh.edu/sites/structurallab.egr... · Microsoft PowerPoint - REU Presentation - Justin Mickey Thomas Kelleher.ppt

Prestressing ProcessPrestressing ProcessHydraulic Jack ε σ pif

piεSpecime Concrete

FForce per T d

y

Load Cell

ciε ciσ p pin Force Tendon

TEF-1 -0.000177 -0.8620 ksi

-330 kips 33 kips 152.1 ksi

0.005244

TEF-5 -0.000099 (-0.4317 ksi)

(-165.7 kips)

33.15 kips 152.7 ksi

0.005267Load Cell

TEF-5: LVDTs

ksi) kips) ksi

TEF 5: LVDTs

Page 15: REU Presentation - Justin Mickey Thomas Kelleher.pptstructurallab.egr.uh.edu/sites/structurallab.egr... · Microsoft PowerPoint - REU Presentation - Justin Mickey Thomas Kelleher.ppt

Plate AttachmentPlate Attachment

Half-inch steel platesHalf inch steel plates

Prevent cracking outside the measurablePrevent cracking outside the measurable area

Provide bracing for imbedded steel rebar

Page 16: REU Presentation - Justin Mickey Thomas Kelleher.pptstructurallab.egr.uh.edu/sites/structurallab.egr... · Microsoft PowerPoint - REU Presentation - Justin Mickey Thomas Kelleher.ppt

The Universal Element TesterThe Universal Element Tester

37 hydraulic in-yplane jacks

100 tons capacity per jack

Manual control

Computerized controlcontrol

Page 17: REU Presentation - Justin Mickey Thomas Kelleher.pptstructurallab.egr.uh.edu/sites/structurallab.egr... · Microsoft PowerPoint - REU Presentation - Justin Mickey Thomas Kelleher.ppt

Computerized Control SystemComputerized Control System

Custom controlCustom control boxes by Gardner systems

Capable of Load and Strain control

Page 18: REU Presentation - Justin Mickey Thomas Kelleher.pptstructurallab.egr.uh.edu/sites/structurallab.egr... · Microsoft PowerPoint - REU Presentation - Justin Mickey Thomas Kelleher.ppt

Load ControlLoad Control

Load CellsLoad Cells

Real time load readingsReal time load readings

Computer automaticallyComputer automatically adjusts hydraulic pressurep essu e

Useful pre-yieldingUseful pre yielding

Page 19: REU Presentation - Justin Mickey Thomas Kelleher.pptstructurallab.egr.uh.edu/sites/structurallab.egr... · Microsoft PowerPoint - REU Presentation - Justin Mickey Thomas Kelleher.ppt

Strain ControlStrain Control

LVDTs(Linear Variable Differential Transformer)

Si l lifiSignal amplifier

Pressure adjustmentsPressure adjustments based on strain readingsg

Allows for postyeilding y gdata acquisition

Page 20: REU Presentation - Justin Mickey Thomas Kelleher.pptstructurallab.egr.uh.edu/sites/structurallab.egr... · Microsoft PowerPoint - REU Presentation - Justin Mickey Thomas Kelleher.ppt

InstallationInstallation

Yoke AttachmentYoke Attachment

Pin InsertionPin Insertion

Jack AlignmentJack Alignment

LVDT MountingLVDT Mounting

Page 21: REU Presentation - Justin Mickey Thomas Kelleher.pptstructurallab.egr.uh.edu/sites/structurallab.egr... · Microsoft PowerPoint - REU Presentation - Justin Mickey Thomas Kelleher.ppt

TestingTesting

Sequential loadingSequential loadingTension in longitudinal directionCompression in transverse directionCompression in transverse direction

Purely axial loadingPurely axial loadingApplied stresses = principle stresses

Page 22: REU Presentation - Justin Mickey Thomas Kelleher.pptstructurallab.egr.uh.edu/sites/structurallab.egr... · Microsoft PowerPoint - REU Presentation - Justin Mickey Thomas Kelleher.ppt

TestingTesting

Loading SequenceLoading Sequence

Test Segment

Description Duration Tensile End Goal

Compressive End GoalSegment

1 Elastic Tensile 15 min. 15 kips 0

2 Release 5 min. 0 0

3 Elastic Compressive 15 min. 0 15 kips

4 Release 5 min. 0 0

5 Tensile 60 min. 45 kips 05 Tensile 60 min. 45 kips 0

6 Tensile mode switch from load-control to strain-control

7 Tensile 60 min. 1.0% strain 0

8 Compressive 90 min. 1.0% strain 85 kips

9 Compressive ~60 min 1.0% strain Failure

Page 23: REU Presentation - Justin Mickey Thomas Kelleher.pptstructurallab.egr.uh.edu/sites/structurallab.egr... · Microsoft PowerPoint - REU Presentation - Justin Mickey Thomas Kelleher.ppt

TestingTesting

Monitor:Monitor:Real time stress-strain curvesCrackingCracking

Record crack width manuallyHold tension when ≥ 3/8 inHold tension when ≥ 3/8 in.

Page 24: REU Presentation - Justin Mickey Thomas Kelleher.pptstructurallab.egr.uh.edu/sites/structurallab.egr... · Microsoft PowerPoint - REU Presentation - Justin Mickey Thomas Kelleher.ppt

Results: Cylinder/Flexural DataResults: Cylinder/Flexural Data

Obtain properties of concreteObtain properties of concrete6 cylinders & 2 flexural specimens tested for each panelp

Panel E0ε'f fTEF-1 50.6 MPa (7.34 ksi) 0.00239 33.67 GPa (4883 ksi) 824 psi

cE0εcf rf

TEF-5 40.1 MPa (5.82 ksi) 0.00214 29.98 GPa (4348 ksi) 1668 psi

Page 25: REU Presentation - Justin Mickey Thomas Kelleher.pptstructurallab.egr.uh.edu/sites/structurallab.egr... · Microsoft PowerPoint - REU Presentation - Justin Mickey Thomas Kelleher.ppt

Results: Tensile BehaviorResults: Tensile Behavior

TEF-1TEF 1

TEF-1 Tension

1.2

1.4

1.6

0.6

0.8

1

Stre

ss (k

si)

0 2

0

0.2

0.4

-0.002 0 0.002 0.004 0.006 0.008 0.01 0.012

-0.2

Strain

Page 26: REU Presentation - Justin Mickey Thomas Kelleher.pptstructurallab.egr.uh.edu/sites/structurallab.egr... · Microsoft PowerPoint - REU Presentation - Justin Mickey Thomas Kelleher.ppt

Results: Tensile BehaviorResults: Tensile Behavior

TEF-5TEF 5

TEF-5 Tensile

1.2

1.4

1.6

0.6

0.8

1

Stre

ss (k

si)

0 2

0

0.2

0.4

-0.002 0 0.002 0.004 0.006 0.008 0.01 0.012

-0.2

Strain

Page 27: REU Presentation - Justin Mickey Thomas Kelleher.pptstructurallab.egr.uh.edu/sites/structurallab.egr... · Microsoft PowerPoint - REU Presentation - Justin Mickey Thomas Kelleher.ppt

Results: Tensile BehaviorResults: Tensile Behavior

Embedded Steel Tendon ContributionEmbedded Steel Tendon Contribution

Ef ε= spsps Ef ε=

51

5

⎥⎤

⎢⎡

⎟⎞

⎜⎛ ′′

′′= sps

ps

E

Ef

ε

ε

1⎥⎥

⎦⎢⎢

⎣⎟⎟⎠

⎞⎜⎜⎝

′+

pu

sps

fE ε

Page 28: REU Presentation - Justin Mickey Thomas Kelleher.pptstructurallab.egr.uh.edu/sites/structurallab.egr... · Microsoft PowerPoint - REU Presentation - Justin Mickey Thomas Kelleher.ppt

Results: Tensile BehaviorResults: Tensile Behavior

Prestressed Concrete Steel Fiber Concrete

ciciccc E σεεσ +−′= )(

)( cxccc E εεσ −′′= )(E εσ ′=

5.0

⎟⎞

⎜⎛ ε )3.04.0( Wf−

⎟⎞

⎜⎛ ε

)( ccc E εσ

⎟⎟⎠

⎞⎜⎜⎝

⎛=

c

crcrc f

εε

σc

crcrc f ⎟⎟

⎞⎜⎜⎝

⎛=

εε

σ

Page 29: REU Presentation - Justin Mickey Thomas Kelleher.pptstructurallab.egr.uh.edu/sites/structurallab.egr... · Microsoft PowerPoint - REU Presentation - Justin Mickey Thomas Kelleher.ppt

Results: Tensile BehaviorResults: Tensile Behavior

Proposed Equations:Proposed Equations:

E σεεσ +−′= )(

)(E εεσ ′′=

ciciccc E σεεσ +−= )(

)*02.063.0( Wf−⎞⎛

)( cxccc E εεσ −=

)( f

c

crcrc f ⎟⎟

⎞⎜⎜⎝

⎛=

εε

σ

Page 30: REU Presentation - Justin Mickey Thomas Kelleher.pptstructurallab.egr.uh.edu/sites/structurallab.egr... · Microsoft PowerPoint - REU Presentation - Justin Mickey Thomas Kelleher.ppt

Results: Tensile BehaviorResults: Tensile Behavior

Graphical Comparison of Steel TendonsGraphical Comparison of Steel Tendons

TEF-1 TEF-5TEF-1 TEF-5TEF-1 Steel Tension

300

TEF-5 Steel Tension300

150

200

250

s (k

si)

Experimental 150

200

250

ss (k

si)

Experimental

50

100

150

Stre

ss ExperimentalTheoretical

50

100

Stre

s ExperimentalTheoretical

0-0.001 0.001 0.003 0.005 0.007 0.009 0.011 0.013 0.015

Strain

0-0.001 0.001 0.003 0.005 0.007 0.009 0.011 0.013 0.015

Strain

Page 31: REU Presentation - Justin Mickey Thomas Kelleher.pptstructurallab.egr.uh.edu/sites/structurallab.egr... · Microsoft PowerPoint - REU Presentation - Justin Mickey Thomas Kelleher.ppt

Results: Tensile BehaviorResults: Tensile Behavior

Graphical Comparison of ConcreteGraphical Comparison of Concrete

TEF-1 TEF-5TEF-1 TEF-5TEF-1 Concrete Tension

0.9

TEF-5 Concrete Tension

0.9

0 3

0.5

0.7

ksi)

Th i l0.3

0.5

0.7

(ksi

)Theoretical

-0.1

0.1

0.3

-0.0010 0.0000 0.0010 0.0020 0.0030 0.0040 0.0050 0.0060

Stre

ss (k Theoretical

Experimental

-0.1

0.1

-0.0010 0.0000 0.0010 0.0020 0.0030 0.0040 0.0050 0.0060 0.0070 0.0080

Stre

ss

Experimental

-0.5

-0.3

Strain-0.5

-0.3

Strain

Page 32: REU Presentation - Justin Mickey Thomas Kelleher.pptstructurallab.egr.uh.edu/sites/structurallab.egr... · Microsoft PowerPoint - REU Presentation - Justin Mickey Thomas Kelleher.ppt

Softening CoefficientsSoftening Coefficients

Tensile loadingTensile loadingStrains and cracksConcrete weaker in compressionConcrete weaker in compression

Softening coefficients measure this effect atSoftening coefficients measure this effect at given tensile strain

Page 33: REU Presentation - Justin Mickey Thomas Kelleher.pptstructurallab.egr.uh.edu/sites/structurallab.egr... · Microsoft PowerPoint - REU Presentation - Justin Mickey Thomas Kelleher.ppt

Softening CoefficientsSoftening Coefficients

Peak stress-softening coefficientg

'p

ζσ =

Peak strain-softening coefficientcf

ζσ

εζ p=

Previous research predicts0ε

ζ ε

1=εζ

Page 34: REU Presentation - Justin Mickey Thomas Kelleher.pptstructurallab.egr.uh.edu/sites/structurallab.egr... · Microsoft PowerPoint - REU Presentation - Justin Mickey Thomas Kelleher.ppt

Factors Affecting Softening Coefficients

Positive effects:Positive effects:% Volume of steel fibers,Aspect ratio, ff DL

fVAspect ratio,

Negative effects:

ff DL

Negative effects:Tensile strainPrestressing steel ratio, plρg , plρ

Page 35: REU Presentation - Justin Mickey Thomas Kelleher.pptstructurallab.egr.uh.edu/sites/structurallab.egr... · Microsoft PowerPoint - REU Presentation - Justin Mickey Thomas Kelleher.ppt

Factors Affecting Softening Coefficients

Specimen

TEF-1 0.5% 1.2 in. 0.022 in. 54.5 0.59% 1.0%

plρfV fL fD ff DL lε

Expect TEF 5 to have larger coefficient

TEF-5 1.5% 1.4 in. 0.03 in. 46.7 0.295% 0.9%

Expect TEF-5 to have larger coefficient

Page 36: REU Presentation - Justin Mickey Thomas Kelleher.pptstructurallab.egr.uh.edu/sites/structurallab.egr... · Microsoft PowerPoint - REU Presentation - Justin Mickey Thomas Kelleher.ppt

Calculating Softening CoefficientsCalculating Softening Coefficients

Compressive Stress-Strain CurvesCompressive Stress Strain CurvesTEF-1:TEF-5:

2.25=pσ 001712.0=pε

2.23=pσ 001594.0=pεTEF-5:

30

TEF-1 TEF-5

2.23pσ pε

15

20

25

ss (M

Pa)

5

10Stre

s

0-0.002 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014

Strain

Page 37: REU Presentation - Justin Mickey Thomas Kelleher.pptstructurallab.egr.uh.edu/sites/structurallab.egr... · Microsoft PowerPoint - REU Presentation - Justin Mickey Thomas Kelleher.ppt

Results: Softening CoefficientsResults: Softening Coefficients

TEF-1TEF 1

497.0=σζ 782.0=εζ

TEF-5

7460ζ579.0=σζ 746.0=εζ

Page 38: REU Presentation - Justin Mickey Thomas Kelleher.pptstructurallab.egr.uh.edu/sites/structurallab.egr... · Microsoft PowerPoint - REU Presentation - Justin Mickey Thomas Kelleher.ppt

Comparison to TheoreticalComparison to TheoreticalComparison of Stress-Softening Coefficients, σζ

Specimen Tensile Strain

Predicted RC

Predicted Prestressed RC

Predicted SFRC

Experimental Prestressed SFRC

TEF-1 1.0% 0.257 0.365 0.537 0.497

TEF-5 0.9% 0.277 0.420 0.649 0.579

Experimental values seem consistent

Page 39: REU Presentation - Justin Mickey Thomas Kelleher.pptstructurallab.egr.uh.edu/sites/structurallab.egr... · Microsoft PowerPoint - REU Presentation - Justin Mickey Thomas Kelleher.ppt

Theoretical for Prestressed RCTheoretical for Prestressed RC

Wang (2006)Wang (2006)

( ) ( ) ( ) 9.01 ≤′= βεζ σ ffff c

Where:

( ) 908.5≤′ff d

'f 'f MP

( )11ε =f

( ) 9.0'≤=

c

cf

ff and cf cf MPa

( )1

1 4001 εε

+f

( ) −= 1β

βf ( )°24

βf

Page 40: REU Presentation - Justin Mickey Thomas Kelleher.pptstructurallab.egr.uh.edu/sites/structurallab.egr... · Microsoft PowerPoint - REU Presentation - Justin Mickey Thomas Kelleher.ppt

Theoretical for SFRCTheoretical for SFRC

Mansour (2004):Mansour (2004):Incorporated steel fiber index

M lti li d ti f RC b f t fffff DLVW =

Multiplied equation for RC by factor of

to get:)43.01( fW+

ζ)43.01(9.0 +

= fW

lεζ σ 2501+

=

Page 41: REU Presentation - Justin Mickey Thomas Kelleher.pptstructurallab.egr.uh.edu/sites/structurallab.egr... · Microsoft PowerPoint - REU Presentation - Justin Mickey Thomas Kelleher.ppt

Theoretical for Prestressed SFRCTheoretical for Prestressed SFRC

Propose adding a factor to prestressed RCPropose adding a factor to prestressed RC based on steel fiber index:

( ) bmWWf ff +=

Giving:

( ) bmWWf ff +

Giving:

( ) ( ) ( ) ( ) 9.01 ≤′= fc Wfffff βεζ σ

Page 42: REU Presentation - Justin Mickey Thomas Kelleher.pptstructurallab.egr.uh.edu/sites/structurallab.egr... · Microsoft PowerPoint - REU Presentation - Justin Mickey Thomas Kelleher.ppt

Theoretical for Prestressed SFRCTheoretical for Prestressed SFRC

Calculating experimental ( )fWfCalculating experimental

Specimen Experimental

TEF-1 0 2727 0 4973 0 8153 0 5345 1 0 4358 1 141

fW σζ ( )cff ′ ( )1εf ( )βf ( ) ( ) ( )βε ffff c 1′ ( )fWf

( )ff

Linear regression:

TEF-1 0.2727 0.4973 0.8153 0.5345 1 0.4358 1.141

TEF-2 0.7000 0.5793 0.9 0.5547 1 0.4992 1.160

Linear regression:

( ) 129.10452.0 += ff WWf ff

Page 43: REU Presentation - Justin Mickey Thomas Kelleher.pptstructurallab.egr.uh.edu/sites/structurallab.egr... · Microsoft PowerPoint - REU Presentation - Justin Mickey Thomas Kelleher.ppt

ConclusionsConclusions

CalculatedCalculatedTensile stress-strain relationshipsValues of softening coefficientsValues of softening coefficients

Results appear consistentProposed models for prestressed SFRCProposed models for prestressed SFRC

Based on previous researchMore data neededMore data needed

Page 44: REU Presentation - Justin Mickey Thomas Kelleher.pptstructurallab.egr.uh.edu/sites/structurallab.egr... · Microsoft PowerPoint - REU Presentation - Justin Mickey Thomas Kelleher.ppt

AcknowledgementsAcknowledgements

Thanks to Norm Hoffman, Dr. Mo, Dr. Hsu, Gerald McTigret, and everyone out at South g , yPark