Top Banner

of 44

respirometria (2)

Jun 02, 2018

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/10/2019 respirometria (2)

    1/44

    Bioreactores y BioreaccinAnlisis de reactores biolgicos de aplicacin

    novedosa

    6.1. Caractersticas y aplicaciones de reactores con

    microorganismos inmovilizados.

    6.2. Caractersticas y aplicaciones de los reactores biolgicos de

    membrana.6.3. Consideraciones generales de diseo para el uso de foto-

    bioreactores.

    6.4. Consideraciones de diseo para el uso de bioreactores

    para el cultivo de clulas de mamfero y de

    plantas.6.5 Tendencias en el desarrollo de bioreactores biolgicos.

  • 8/10/2019 respirometria (2)

    2/44

    Kinetic and Stoichiometric parametersTraditional methods for parameters estimation are based on substrate measurements during

    batch and continuous lab experiments.

    X -Difficult to measure low substrate concentrations

    X -Time consuming

    Relevancia: The development and optimization ofindustrial fermentation processes ask for a clear

    picture of the relevant microbial kinetics.

    Pulse respirometry for characterization

    of aerobic biodegradation process

  • 8/10/2019 respirometria (2)

    3/44

    Indirect measurement ofsubstrate

    Drawbacks of traditional methods may be overcome

    by other techniques such as:

    ! dissolved organic carbon

    ! chemical oxygen demand (COD)

    ! biological oxygen demand (BOD)

    !

    oxygen uptake rate (OUR

    )! CO2 production.

    Kovarova-Kovar and Egli, 1998

  • 8/10/2019 respirometria (2)

    4/44

    Allows the indirect measurement of substrate

    consumption rates by monitoring the biological

    Oxygen Uptake Rate (OUR), under well defined

    conditions

    RESPIROMETRY TECHNIQUE

    Respirometry

  • 8/10/2019 respirometria (2)

    5/44

    Oxygen uptake rate (OUR)

    OURmeasuring

    allows the retrieval of kineticparameters within a good confident interval

    Spanjers et al., 1995; Vanrolleghem et al., 1995; Ellis et al., 1996

    "YO2/S

    "YX/S

    " KS" Rmax

    "!max

  • 8/10/2019 respirometria (2)

    6/44

    Substrate vs. Oxygen measurements

    Substrate OxygenSophisticated

    techniques

    Probe

    normally expensive easily available at lowcost

    Specific No specificOff-line In situ

    Sensitivity ( mg L-1) Sensitivity ( 10 !g L-1)

  • 8/10/2019 respirometria (2)

    7/44

    Respirometry techniques

    Static

    IntermitentAir supply

    Dynamic

    ContinuousAir supply

  • 8/10/2019 respirometria (2)

    8/44

    Respirometry in Biofilm reactors

    Static

    IntermitentAir supply

    Lack ofhomogeneity

    Dynamic

    ContinuousAir supply

    KLaO2determination

  • 8/10/2019 respirometria (2)

    9/44

    Respirometry in Biofilm reactors

    Static Dynamic

    DO

    SP

    Time

    DO

    Time

    SP

  • 8/10/2019 respirometria (2)

    10/44

    Respirometry in Biofilm reactors

    Dynamic

    ContinuousAir supply

    KLaO2determination

  • 8/10/2019 respirometria (2)

    11/44

    DO ProbepH Probe

    Dissolved oxygen bench meter

    4.8

    5

    5.2

    5.4

    5.6

    5.8

    6

    6.2

    0 10 20 30 40 50 60 70

    t (d)

    O2

    (mg/l

    )

    t (min)

    4.8

    5

    5.2

    5.4

    5.6

    5.8

    6

    6.2

    0 10 20 30 40 50 60 70

    t (d)

    O2

    (mg/l

    )

    t (min)

    4.8

    5

    5.2

    5.4

    5.6

    5.8

    6

    6.2

    0 10 20 30 40 50 60 70

    t (d)

    O2

    (mg/l

    )

    t (min)

    4.8

    5

    5.2

    5.4

    5.6

    5.8

    6

    6.2

    0 10 20 30 40 50 60 70

    t (d)

    O2

    (mg/l

    )

    t (min)

    Respirogram

    Data acquisition system

    Air Supply

    Simple and low cost equipment

  • 8/10/2019 respirometria (2)

    12/44

    4.8

    5

    5.2

    5.4

    5.6

    5.8

    6

    6.2

    0 10 20 30 40 50 60 70

    t (d)

    O

    2

    (mg/l)

    t (min)

    4.8

    5

    5.2

    5.4

    5.6

    5.8

    6

    6.2

    0 10 20 30 40 50 60 70

    t (d)

    O

    2

    (mg/l)

    t (min)

    4.8

    5

    5.2

    5.4

    5.6

    5.8

    6

    6.2

    0 10 20 30 40 50 60 70

    t (d)

    O

    2

    (mg/l)

    t (min)

    4.8

    5

    5.2

    5.4

    5.6

    5.8

    6

    6.2

    0 10 20 30 40 50 60 70

    t (d)

    O

    2

    (mg/l)

    t (min)

    In siturespirometry involves:

    1. Feeding suspension .

    1

    Dynamic Respirometry protocol

  • 8/10/2019 respirometria (2)

    13/44

    4.8

    5

    5.2

    5.4

    5.6

    5.8

    6

    6.2

    0 10 20 30 40 50 60 70

    t (d)

    O

    2

    (mg/l)

    t (min)

    4.8

    5

    5.2

    5.4

    5.6

    5.8

    6

    6.2

    0 10 20 30 40 50 60 70

    t (d)

    O

    2

    (mg/l)

    t (min)

    4.8

    5

    5.2

    5.4

    5.6

    5.8

    6

    6.2

    0 10 20 30 40 50 60 70

    t (d)

    O

    2

    (mg/l)

    t (min)

    4.8

    5

    5.2

    5.4

    5.6

    5.8

    6

    6.2

    0 10 20 30 40 50 60 70

    t (d)

    O

    2

    (mg/l)

    t (min)

    In siturespirometry involves:

    1. Feeding suspension.

    2. A new pseudo steady-state (absence of soluble substrate).

    1

    2

    Dynamic Respirometry protocol

  • 8/10/2019 respirometria (2)

    14/44

    4.8

    5

    5.2

    5.4

    5.6

    5.8

    6

    6.2

    0 10 20 30 40 50 60 70

    t (d)

    O

    2

    (mg/l)

    t (min)

    4.8

    5

    5.2

    5.4

    5.6

    5.8

    6

    6.2

    0 10 20 30 40 50 60 70

    t (d)

    O

    2

    (mg/l)

    t (min)

    4.8

    5

    5.2

    5.4

    5.6

    5.8

    6

    6.2

    0 10 20 30 40 50 60 70

    t (d)

    O

    2

    (mg/l)

    t (min)

    4.8

    5

    5.2

    5.4

    5.6

    5.8

    6

    6.2

    0 10 20 30 40 50 60 70

    t (d)

    O

    2

    (mg/l)

    t (min)

    In siturespirometry involves:

    1. Feeding suspension .

    2. A new pseudo steady-state, (absence of soluble substrate).

    3. Injection of substrate pulses.

    1

    2 3

    Dynamic Respirometry protocol

  • 8/10/2019 respirometria (2)

    15/44

    Dynamic Respirometry protocol

    4.8

    5

    5.2

    5.4

    5.6

    5.8

    6

    6.2

    0 10 20 30 40 50 60 70

    t (d)

    O

    2

    (mg/l)

    t (min)

    4.8

    5

    5.2

    5.4

    5.6

    5.8

    6

    6.2

    0 10 20 30 40 50 60 70

    t (d)

    O

    2

    (mg/l)

    t (min)

    4.8

    5

    5.2

    5.4

    5.6

    5.8

    6

    6.2

    0 10 20 30 40 50 60 70

    t (d)

    O

    2

    (mg/l)

    t (min)

    4.8

    5

    5.2

    5.4

    5.6

    5.8

    6

    6.2

    0 10 20 30 40 50 60 70

    t (d)

    O

    2

    (mg/l)

    t (min)

    2 2

    0 0

    2/

    t t

    ex L bl

    O S

    P P

    OUR dt k a (O O )dt Y

    S S

    != =

    " "

  • 8/10/2019 respirometria (2)

    16/44

    Dynamic Respirometry protocol

    4.8

    5

    5.2

    5.4

    5.6

    5.8

    6

    6.2

    0 10 20 30 40 50 60 70

    t (d)

    O

    2

    (mg/l)

    t (min)

    4.8

    5

    5.2

    5.4

    5.6

    5.8

    6

    6.2

    0 10 20 30 40 50 60 70

    t (d)

    O

    2

    (mg/l)

    t (min)

    4.8

    5

    5.2

    5.4

    5.6

    5.8

    6

    6.2

    0 10 20 30 40 50 60 70

    t (d)

    O

    2

    (mg/l)

    t (min)

    4.8

    5

    5.2

    5.4

    5.6

    5.8

    6

    6.2

    0 10 20 30 40 50 60 70

    t (d)

    O

    2

    (mg/l)

    t (min)

    XOS !+!=!2

    COD/L Units

    S

    XO

    !

    !+!=

    21

    SXSO YY

    //21 +=

    / 2/1

    X S O SY Y= !

  • 8/10/2019 respirometria (2)

    17/44

    Dynamic Respirometry protocol

    Injection of pulse of

    increasing concentration

  • 8/10/2019 respirometria (2)

    18/44

    Dynamic Respirometry protocol

    max

    max

    2/

    ex

    O S

    OURR

    Y

    =

    max /

    max

    2/

    ex X S

    O S

    OUR Y

    Y X =

    !

    !

    Injection of pulse of

    increasing concentration

    i i d i hi i

  • 8/10/2019 respirometria (2)

    19/44

    Kinetic and stoichiometriccharacterization

    !

    A total of 6 parameters can be obtained by in situ pulserespirometry:

    ! YO2/S

    !

    YX/S

    ! OURexmax

    ! Rmax

    !

    KS! !max

  • 8/10/2019 respirometria (2)

    20/44

    Conclusions

    !

    Currently in situ pulse respirometry has been applied in:! Bubble colum reactors

    ! Airlift reactors

    ! Stirred tank reactors

    !

    Partitionary reactors! Biofilm reactors

    ! To charaterize,

    !

    Mixed cultures (activated sludge, nitrification)! Pure cultures (pseudomonas sp., comamonas sp., rhodococcus sp.)

  • 8/10/2019 respirometria (2)

    21/44

    Introduction

    in

    out

    YO2/S

    YX/S

    KSRmax

    !max

    In situ

    Respirometry

    Biofilm

    reactor

  • 8/10/2019 respirometria (2)

    22/44

    Introduction

    Stoichiometric and kinetic analyses are

    critical tools for developing efficient

    processes for the optimum cell growth,nutrient utilization and production of high-

    value cell culture-based products such as

    therapeutic proteins, vaccines orenvironmental applications.

  • 8/10/2019 respirometria (2)

    23/44

    Biofilm reactors

    ! In a Biofilm reactor, microorganisms are attached to asolid substratum which can be gravels, stones, plastic,sand, or activated carbon particles.

    ! Most of Biofilm reactor applications are in wastewatertreatment and bioremediation area (trickling filter,rotating disk, submerged filters or fluidized filter).

    ! Biofilm reactor applications to produce value-addedproducts are still remained in bench-scale or pilot scale

    Kuan-Chen et al., 2010

  • 8/10/2019 respirometria (2)

    24/44

    Biofilm reactors

    !

    Traditional biofilm reactors characterization is achievedfollowing two principal routes

    Off situ analysis

    Difficult to obtainrepresentative samplesSampling the

    filter media

    Analysis of several pseudosteady-states

    Time-consuming task

    Not take into account potentialbiofilm accumulation

    Inffluent andeffluent mass

    balance

  • 8/10/2019 respirometria (2)

    25/44

    Respirometry in Biofilm reactors

    Dynamic

    ContinuousAir supply

    KLaO2determination

  • 8/10/2019 respirometria (2)

    26/44

    Dynamic Respirometry pathway

    KLaO2

    YO2/S

    YX/SKS

    Rmax

    !max

  • 8/10/2019 respirometria (2)

    27/44

    Estimation of KLaO2!

    Dynamic gassing-out method! Sulfite method

    HomogeneousKLaO2

    Suspended Biomass

  • 8/10/2019 respirometria (2)

    28/44

    Estimation of KLaO2!

    Dynamic gassing-out method! Sulfite method

    HeterogeneousKLaO2

    Rashig

    Rings

    Fixed Biomass

  • 8/10/2019 respirometria (2)

    29/44

    Estimation of KLaO2!

    Dynamic gassing-out method! Sulfite method

    HeterogeneousKLaO2

    Rashig

    Rings

    #Higher UGin the packed section

    #KLaO2is correlated with UG

  • 8/10/2019 respirometria (2)

    30/44

    Estimation of KLaO2

    The internal volume of the reactor is composed of two sections:(i)the filter-bed and (ii)the top section with no filter-bed.

  • 8/10/2019 respirometria (2)

    31/44

    Estimation of KLaO2

    Julio Prez et al., (2006) reported that KLaO2

    in the filter-bed was 3 to 7 times higher than

    in the top section!!

    $ Dynamic gassing out method

    $Sulfite method

  • 8/10/2019 respirometria (2)

    32/44

    Effect of heterogeneous KLaO2 on kineticparameters (Ordaz et al., 2011)

    Maximum Error of 55%!!

  • 8/10/2019 respirometria (2)

    33/44

    Effect of mixing timeon kinetic parameters(Ordaz et al., 2011)

    Mixing time:

    Time require to achieve a predefined level

    of homogeneity

  • 8/10/2019 respirometria (2)

    34/44

    Effect of mixing timeon kinetic parameters(Ordaz et al., 2011)

    Maximum Error of 150 % !!

  • 8/10/2019 respirometria (2)

    35/44

    Erratic values of YO2/Sand YX/S

  • 8/10/2019 respirometria (2)

    36/44

    Basic approach to test respirometry inbiofilm reactors

    DO Probe pH Probe

    InfluentEffluent

    Air Supply

    $

    Avoid Heterogeneity in KLaO2$Reduce mixing time

    Model support

    media

  • 8/10/2019 respirometria (2)

    37/44

    Steady values of YO2/Sand YX/S

  • 8/10/2019 respirometria (2)

    38/44

    Apparent parameters vs. Real parametersin biofilm reactors

    ! Only apparent parameters has been estimated.

    ! Diffusion effects has not taken into consideration.

  • 8/10/2019 respirometria (2)

    39/44

    Apparent parameters vs. Real parametersin biofilm reactors

    Kinetic and stochiometric characterization before and after

    biofilm disruption

    l

  • 8/10/2019 respirometria (2)

    40/44

    Apparent parameters vs. Real parametersin biofilm reactors

    Kinetic and stochiometric characterization before and after

    biofilm disruption

    Biomass UGR(cm s-1)

    YX/S

    (mg COD mg-1

    COD)

    Fixed 0.13 0.496 0.004 (A)

    0.25 0.484 0.017 (A)

    0.50 0.489 0.016 (A)

    1.00 0.458 0.038 (A)Suspended 0.13 ND

    0.25 0.393 0.042 (B)

    0.50 0.502 0.007 (A)

    1.00 0.533 0.006 (A)

    l

  • 8/10/2019 respirometria (2)

    41/44

    Apparent parameters vs. Real parametersin biofilm reactors

    Kinetic and stochiometric characterization before and after

    biofilm disruption

    BiomassUGR

    (cm s-1)

    OURexmax(mg O2L

    -1h-1)

    Fixed 0.13 41.32 2.78 (G)

    0.25 43.23 3.90 (G)

    0.50 48.71 3.37 (G)

    1.00 53.85 3.40 (G)

    Suspended 0.13 ND

    0.25 113.21 9.47 (H)

    0.50 131.97 1.17 (H)

    1.00 139.07 23.76 (H)

    A R l

  • 8/10/2019 respirometria (2)

    42/44

    Apparent parameters vs. Real parametersin biofilm reactors

    Kinetic and stochiometric characterization before and after

    biofilm disruption

    Diffusion effects may hide someparameters

  • 8/10/2019 respirometria (2)

    43/44

  • 8/10/2019 respirometria (2)

    44/44

    Conclusions

    !

    Respirometry is a technique that allows a rapid kinetic andstoichiometric characterization of several kinetic andstoichiometric parameters with relative low experimentaleffort with low cost equipment.

    !

    It has been succesfully applied in suspended cultures, howeverin biofilm reactors respirometry technique has been poorlystudied.

    ! The group has focus in the evaluation of Dynamicrespirometry for biofilm characterization and it has beenfound that several factors such as Kla, mixing time and diffusion may influence drastically the results obtained.