Top Banner
5/3/12 1 420 nm [ Notomi et al. (2005). ] Resonance an oscilla:ng mode trapped for a long :me in some volume (of light, sound, …) frequency ω 0 life:me τ >> 2π/ω 0 quality factor Q = ω 0 τ/2 energy ~ e ω0t/Q modal volume V [ Schliesser et al., PRL 97, 243905 (2006) ] [ Eichenfield et al. Nature Photonics 1, 416 (2007) ] [ C.‐W. Wong, APL 84, 1242 (2004). ] Why Resonance? an oscilla:ng mode trapped for a long :me in some volume • long :me = narrow bandwidth … filters (WDM, etc.) — 1/Q = frac:onal bandwidth • resonant processes allow one to “impedance match” hard‐to‐couple inputs/outputs • long :me, small V enhanced wave/ma^er interac:on — lasers, nonlinear op:cs, opto‐mechanical coupling, sensors, LEDs, thermal sources, … How Resonance? need mechanism to trap light for long :me [ llnl.gov ] metallic cavi:es: good for microwave, dissipa:ve for infrared ring/disc/sphere resonators: a waveguide bent in circle, bending loss ~ exp(–radius) [ Xu & Lipson (2005) ] 10µm [ Akahane, Nature 425, 944 (2003) ] photonic bandgaps (complete or par:al + index‐guiding) VCSEL [fotonik.dtu.dk] (planar Si slab) Understanding Resonant Systems [ Schliesser et al., PRL 97, 243905 (2006) ] • Op:on 1: Simulate the whole thing exactly — many powerful numerical tools — limited insight into a single system — can be difficult, especially for weak effects (nonlineari:es, etc.) • Op:on 2: Solve each component separately, couple with explicit perturba:ve method (one kind of “coupled‐mode” theory) • Op:on 3: abstract the geometry into its most generic form …write down the most general possible equa:ons constrain by fundamental laws (conserva:on of energy) …solve for universal behaviors of a whole class of devices … characterized via specific parameters from op:on 2 “Temporal coupled‐mode theory” Generic form developed by Haus, Louisell, & others in 1960s & early 1970s Haus, Waves & Fields in Optoelectronics (1984) Reviewed in our Photonic Crystals: Molding the Flow of Light, 2nd ed., ab‐ini:o.mit.edu/book Equa:ons are generic reappear in many forms in many systems, rederived in many ways (e.g. Breit–Wigner sca^ering theory) full generality is not always apparent (modern name coined by S. Fan @ Stanford) TCMT example: a linear filter 420 nm [ Notomi et al. (2005). ] [ C.‐W. Wong, APL 84, 1242 (2004). ] [ Takano et al. (2006) ] [ Ou & Kimble (1993) ] = abstractly: two single‐mode i/o ports + one resonance resonant cavity frequency ω 0 , life:me τ port 1 port 2
5

Resonance Why Resonance? - math.mit.edumath.mit.edu/~stevenj/18.369/spring16/TCMT.pdf · one resonance – full generality is not always ... witricity.com Resonant LED ... TCMT.ppt

Jul 06, 2018

Download

Documents

phamnhan
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Resonance Why Resonance? - math.mit.edumath.mit.edu/~stevenj/18.369/spring16/TCMT.pdf · one resonance – full generality is not always ... witricity.com Resonant LED ... TCMT.ppt

5/3/12

1

420nm

[Notomietal.(2005).]

Resonanceanoscilla:ngmodetrappedforalong:meinsomevolume

(oflight,sound,…)frequencyω0

life:meτ>>2π/ω0qualityfactorQ=ω0τ/2

energy~e–ω0t/Q

modalvolumeV

[Schliesseretal.,PRL97,243905(2006)]

[Eichenfieldetal.NaturePhotonics1,416(2007)]

[C.‐W.Wong,APL84,1242(2004).]

WhyResonance?anoscilla:ngmodetrappedforalong:meinsomevolume

•long:me=narrowbandwidth…filters(WDM,etc.)—1/Q=frac:onalbandwidth

•resonantprocessesallowoneto“impedancematch”hard‐to‐coupleinputs/outputs

•long:me,smallV…enhancedwave/ma^erinterac:on—lasers,nonlinearop:cs,opto‐mechanicalcoupling,sensors,LEDs,thermalsources,…

HowResonance?needmechanismtotraplightforlong:me

[llnl.gov]

metalliccavi:es:goodformicrowave,dissipa:veforinfrared

ring/disc/sphereresonators:awaveguidebentincircle,bendingloss~exp(–radius)

[Xu&Lipson(2005)]

10µm

[Akahane,Nature425,944(2003)]

photonicbandgaps(completeorpar:al+index‐guiding)

VCSEL[fotonik.dtu.dk]

(planarSislab)

UnderstandingResonantSystems

[Schliesseretal.,PRL97,243905(2006)]

•Op:on1:Simulatethewholethingexactly—manypowerfulnumericaltools—limitedinsightintoasinglesystem—canbedifficult,especiallyfor

weakeffects(nonlineari:es,etc.)

•Op:on2:Solveeachcomponentseparately,couplewithexplicitperturba:vemethod(onekindof“coupled‐mode”theory)

•Op:on3:abstractthegeometryintoitsmostgenericform …writedownthemostgeneralpossibleequa:ons…constrainbyfundamentallaws(conserva:onofenergy)…solveforuniversalbehaviorsofawholeclassofdevices

…characterizedviaspecificparametersfromop:on2

“Temporalcoupled‐modetheory”

•  GenericformdevelopedbyHaus,Louisell,&othersin1960s&early1970s–  Haus,Waves&FieldsinOptoelectronics(1984)–  ReviewedinourPhotonicCrystals:MoldingtheFlowofLight,2nd

ed.,ab‐ini:o.mit.edu/book

•  Equa:onsaregeneric⇒reappearinmanyformsinmanysystems,rederivedinmanyways(e.g.Breit–Wignersca^eringtheory)–  fullgeneralityisnotalwaysapparent

(modernnamecoinedbyS.Fan@Stanford)

TCMTexample:alinearfilter

420nm

[Notomietal.(2005).]

[C.‐W.Wong,APL84,1242(2004).]

[Takanoetal.(2006)]

[Ou&Kimble(1993)]

=abstractly:twosingle‐modei/oports+oneresonance

resonantcavityfrequencyω0,life:meτ

port1 port2

Page 2: Resonance Why Resonance? - math.mit.edumath.mit.edu/~stevenj/18.369/spring16/TCMT.pdf · one resonance – full generality is not always ... witricity.com Resonant LED ... TCMT.ppt

5/3/12

2

TemporalCoupled‐ModeTheoryforalinearfilter

ainput outputs1+s1– s2–

resonantcavityfrequencyω0,life:meτ |s|2=power

|a|2=energy

dadt

= −iω0a −2τa + 2

τs1+

s1− = −s1+ +2τa, s2− =

2τa

assumesonly:•exponen:aldecay(strongconfinement)•linearity•conserva:onofenergy•:me‐reversalsymmetry

canberelaxed

TemporalCoupled‐ModeTheoryforalinearfilter

ainput outputs1+s1– s2–

resonantcavityfrequencyω0,life:meτ |s|2=flux

|a|2=energy

transmissionT

=|s2–|2/|s1+|2

1

ω0

T=Lorentzianfilter

=

4τ 2

ω −ω0( )2 + 4τ 2

ω

ResonantFilterExample

Lorentzianpeak,aspredicted.

Anapparentmiracle:

~100%transmissionattheresonantfrequency

cavitydecaystoinput/outputwithequalrates⇒Atresonance,reflectedwave

destruc:velyinterfereswithbackwards‐decayfromcavity

&thetwoexactlycancel.

Someinteres:ngresonanttransmissionprocesses

Wirelessresonantpowertransfer[M.Soljacic,MIT(2007)]

witricity.com

ResonantLEDemissionluminus.com

(narrow‐band)resonantabsorp:oninathin‐filmphotovoltaic

[e.g.Ghebrebrhan(2009)]

inputpower

outputpower~40%eff.

Wide‐angleSpli^ers

[S.Fanetal.,J.Opt.Soc.Am.B18,162(2001)]

WaveguideCrossings

[S.G.Johnsonetal.,Opt.LeN.23,1855(1998)]

Page 3: Resonance Why Resonance? - math.mit.edumath.mit.edu/~stevenj/18.369/spring16/TCMT.pdf · one resonance – full generality is not always ... witricity.com Resonant LED ... TCMT.ppt

5/3/12

3

WaveguideCrossings

empty

5x5

3x3

1x1

Anotherinteres:ngexample:Channel‐DropFilters

[S.Fanetal.,Phys.Rev.LeN.80,960(1998)]

Perfectchannel‐droppingif:

Tworesonantmodeswith:•evenandoddsymmetry•equalfrequency(degenerate)•equaldecayrates

Coupler

waveguide1

waveguide2

(mirrorplane)

DimensionlessLosses:Q

1

ω0

T=Lorentzianfilter

=

4τ 2

ω −ω0( )2 + 4τ 2

ω

FWHM1Q=2ω0τ

…qualityfactorQ

qualityfactorQ=#op:calperiodsforenergytodecaybyexp(–2π)

energy~exp(–ω0t/Q)=exp(–2t/τ)

infrequencydomain:1/Q=bandwidth

fromtemporalcoupled‐modetheory:

Q=ω0τ/2

MorethanoneQ…

Qw

Asimplemodeldevice(filters,bends,…):

Qr

Q1

Qr1

Qw1= +

Q=life:me/period=frequency/bandwidth

Wewant:Qr>>Qw

1–transmission~2Q/Qr

worstcase:high‐Q(narrow‐band)cavi:es

losses(radia:on/absorp:on)

TCMT⇒

Nonlineari:es+Microcavi:es?weakeffects∆n<1%

veryintensefields&sensi:vetosmallchanges

Asimpleidea:forthesameinputpower,nonlineareffectsarestrongerinamicrocavity

That’snotall!nonlineari:es+microcavi:es =qualitaUvelynewphenomena

NonlinearOp:csKerrnonlineari:esχ(3):(polarizaUon~E3)

•Self‐PhaseModula:on(SPM)=changeinrefrac:veindex(ω)~|E(ω)|2

•Cross‐PhaseModula:on(XPM)=changeinrefrac:veindex(ω)~|E(ω 2)|2

•Third‐HarmonicGenera:on(THG)&down‐conversion(FWM)=ω→3ω,andback

•etc…ω

ω

ω

ω

ω

ω’s

Second‐ordernonlineari:esχ(2):(polarizaUon~E2)•Second‐HarmonicGenera:on(SHG)&down‐conversion

=ω→2ω,andback•Difference‐FrequencyGenera:on(DFG)=ω1, ω2→ω1-ω2

•etc…

Page 4: Resonance Why Resonance? - math.mit.edumath.mit.edu/~stevenj/18.369/spring16/TCMT.pdf · one resonance – full generality is not always ... witricity.com Resonant LED ... TCMT.ppt

5/3/12

4

Nonlineari:es+Microcavi:es?weakeffects∆n<1%

veryintensefields&sensi:vetosmallchanges

Asimpleidea:forthesameinputpower,nonlineareffectsarestrongerinamicrocavity

That’snotall!nonlineari:es+microcavi:es =qualitaUvelynewphenomena

let’sstartwithawell‐knownexamplefrom1970’s…

ASimpleLinearFilter

in out

Linearresponse:LorenzianTransmisson

Filter+KerrNonlinearity?

in out

Linearresponse:LorenzianTransmisson shi�edpeak?

+nonlinearindexshi�=ωshi�

Kerrnonlinearity:∆n~|E|2

stable

stableunstable

Op:calBistability

Bistable(hysteresis)response(&evenmul:stableformul:modecavity)

Logicgates,switching,recUfiers,amplifiers,

isolators,…

[FelberandMarburger.,Appl.Phys.LeN.28,731(1978).]

Powerthreshold~V/Q2(incavitywithV~(λ/2)3,

forSiandtelecombandwidthpower~mW)

[Soljacicetal.,PRERapid.Comm.66,055601(2002).]

TCMTforBistability[Soljacicetal.,PRERapid.Comm.66,055601(2002).]

ainput outputs1+ s2–

resonantcavityfrequencyω0,life:meτ,SPMcoefficientα ~χ(3)

(fromperturba:ontheory)

|s|2=power

|a|2=energy

dadt

= −i(ω0 −α a 2 )a − 2τa +

2τs1+

s1− = −s1+ +2τa, s2− =

2τa

givescubicequa:onfortransmission

…bistablecurve

TCMT+Perturba:onTheory

SPM=smallchangeinrefrac:veindex…evaluate∆ωby1st‐orderperturba:ontheory

⇒ allrelevantparameters(ω,τorQ,α)canbecomputedfromtheresonantmodeofthelinearsystem

Page 5: Resonance Why Resonance? - math.mit.edumath.mit.edu/~stevenj/18.369/spring16/TCMT.pdf · one resonance – full generality is not always ... witricity.com Resonant LED ... TCMT.ppt

5/3/12

5

AccuracyofCoupled‐ModeTheory

semi‐analy:cal

numerical

[Soljacicetal.,PRERapid.Comm.66,055601(2002).]

Op:calBistabilityinPrac:ce

420nm

[Notomietal.(2005).][Xu&Lipson,2005]

Q~30,000V~10op:mum

Powerthreshold~40µW

10µm

Q~10,000V~300op:mum

Powerthreshold~10mW

ExperimentalBistableSwitch

Silicon‐on‐insulator

420nm

Q~30,000Powerthreshold~40µWSwitchingenergy~4pJ

[Notomietal.,Opt.Express13(7),2678(2005).]