Top Banner
Fluorescent Chemosensors for Biology: Visual Snapshots of Intramolecular Kinase Activity at the Onset of Mitosis Zhaohua Dai Department of Chemistry & Physical Sciences, NY
43

Research Interests

Mar 19, 2016

Download

Documents

morton

Fluorescent Chemosensors for Biology: Visual Snapshots of Intramolecular Kinase Activity at the Onset of Mitosis Zhaohua Dai Department of Chemistry & Physical Sciences, NY. Research Interests. Fluorescent probes for kinase activity in live cells. Fluorescent and chiroptical - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Research Interests

Fluorescent Chemosensors for Biology: Visual Snapshots of Intramolecular

Kinase Activity at the Onset of Mitosis

Zhaohua DaiDepartment of Chemistry & Physical Sciences, NY

Page 2: Research Interests

Fluorescent and chiropticalprobes for metal ions

Research InterestsFluorescent probes for kinaseactivity in live cells

Zn2+, Mn2+, Hg2+

Das, D.; Dai, Z.; Holmes, A. E.; Canary, J. W. Chirality, 2008, 20, 585-591. Dai, Z.; Canary, J. W. New J. Chem. 2007, 31, 1708-1718.Royzen, M.; Dai, Z.; Canary, J. W. J. Am. Chem. Soc. 2005, 127, 1612-1613.Dai, Z.; Xu, X.; Canary, J.W. Chirality 2005, 17, S227-233.Dai, Z.; Proni, G.; Mancheno, D.; Karimi, S.; Berova, N.; Canary, J.W. J. Am. Chem. Soc., 2004, 126, 11760Dai, Z.; Xu, X.; Canary, J. W. Chemical Communications 2002, 1414-5.

Dai, Z.; Dulyaninova, N. G.; Kumar, S.; Bresnick, A. R.; Lawrence, D. S. Chem. & Biol. 2007, 14, 1254-1260.Wang, Q.; Dai, Z.; Cahill, S. M.; Blumenstein, M.; Lawrence, D. S. J. Am. Chem. Soc. 2006, 128, 14016-14017.

Tyrosine Kinase, PKC

Page 3: Research Interests

Zinc in Brain• More Zn2+ in brain than in any other organ• Zn2+ and Cu2+ are implicated in Alzheimer’s, Parkinson’s, and

Amyotrophic Lateral Sclerosis (ALS)• Complicated roles• Tools needed to image Zn2+ distribution and kinetics

N

NHO2S

R1

OR2

R3

TSQ, Zinquin

High sensitivy

Poor Zn(II)/Cu(II) selectivity

Page 4: Research Interests

Tailoring Tripodal Ligands for Zinc Sensing

Zhaohua Dai and James W. Canary,  New J. Chem., 2007, 31, 1708-1718.

Page 5: Research Interests

Chiral Fluorescent Probes for Zn2+

1. Higher Zn2+/Cu2+ Selectivity Stereochemical Control 2. Better contrast Fertile Optical Information:

Differential Circularly Polarized Fluorescence Excitation (CPE)

Page 6: Research Interests

Zn2+ 11.0 7.1 8.95

Cu2+ 16.15 7.1 7.0

10-5 1 90*

Stereochemical Approach to Improved Zn(II)/Cu(II) Selectivity

15% acetonitrile/aqueous buffer pH 7.19* Z. Dai, et al. unpublished

Zn2+/Cu2+

Selectivity:

log

NN N

NN NH

N

H

H

N

NN N

N

H

H

Page 7: Research Interests

Fluorescence-detected Circular Dichroism (FDCD)

J-8100 Circular Dichroism System with FDCD Attachment

Nehira; Berova; Nakanishi; et al. J. Am. Chem. Soc. 1999, 121, 8681

F =

Two channels of data

Page 8: Research Interests

Differential Circularly Polarized Fluorescence Excitation (CPE)

Changes in F will be very large when changes in BOTH fluorescence AND circular dichroism are large.

A

IKF10

*0

a

b

A

A

b

a

b

a

b

a

FF

1010

CPE utilized only F part of FDCD raw data for analysis.

: CD ellipticity; : Fluorescence quantum yield.

Page 9: Research Interests

200 220 240 260 280 300 320 340-5

-4

-3

-2

-1

0

1

2

200 220 240 260 280 300 320 340

-5

0

5

10

15

320 360 400 440 480 5200

200

400

600

800

1000

CPE Reduces Background from Free Ligand

/nm

Rel

ativ

e In

tens

ity I f

Zn2+

/nm

Ellip

ticity

/

mde

g

Zn2+

/nm

CPE

F

Zn2+

Free ligand

[Zn(L)]2+

Dai, Z.; Proni, G.; Mancheno, D.; Karimi, S.; Berova, N.; Canary, J.W. J. Am. Chem. Soc., 2004, 126, 11760

NN N

N

H H

(S,S)-17

Page 10: Research Interests

200 220 240 260 280 300 320 340-30

-25

-20

-15

-10

-5

0

5

300 330 360 390 420 450 480 510 5400

200

400

600

800

1000

1200

CPE SELECTS AGAINST PROTEIN-BASED BACKGROUND FLUORESCENCE

/nm

Rel

ativ

e In

tens

ity I f

Lysozyme

Zn2+

CPE

F

/nm

Zn2+

Lysozyme

Lysozyme+

[Zn(L)]2+

Dai, Z.; Proni, G.; Mancheno, D.; Karimi, S.; Berova, N.; Canary, J.W. J. Am. Chem. Soc., 2004, 126, 11760

200 220 240 260 280 300 320 340-70

-60

-50

-40

-30

-20

-10

0

10

260 280 300 320 340-4

-2

0

2

4

6

Ellip

ticity

/

mde

g

Zn2+

/nm

NN N

N

H H

(R,R)-17

Page 11: Research Interests

Chiral Fluorescent Sensor for Hg2+

N

SO

HO

N NO

O

HO

O

O

OH

HOOC

N

SO

HO

N N

O

OH

O

COOH

1

2O

OH

O

COOH

COOH

We intend to use these ligands to further develop CPE.

Page 12: Research Interests

Colorimetric Mn(II) Sensor

N

N

N N

NaO

Br

SO3Na

5-Br-PAPS-Zn(II)-EGTADisplacement system

Page 13: Research Interests

Summary for Metal Sensors

• Achieved solid Zn(II)/Cu(II) selectivity through a stereochemical approach

• Developed a new approach for analysis: CPE• CPE may be used to improve contrast in detecting

metal ions by fluorescent, chiral ligands with low background

• CPE may be used to diminish interference from fluorescent non-analytes

• CPE needs further development

Page 14: Research Interests

Caged Sensors for Kinase Activity

Dai, Z.; Dulyaninova, N. G.; Kumar, S.; Bresnick, A. R.; Lawrence, D. S. Chem.

& Biol. 2007, 14, 1254-1260. Wang, Q.; Dai, Z.; Cahill, S. M.; Blumenstein, M.; Lawrence, D. S. J. Am. Chem. Soc. 2006, 128, 14016-14017.

Light-Regulated Sampling of Protein Tyrosine Kinase Activity

Phe Arg Arg Arg Arg Lys amide

NH

O

O

N

N

O2N

O

O2N OCH3

OCH3

Snapshots of PKC Activity at the Onset of Mitosis

Page 15: Research Interests

Protein Kinase C

• Cell proliferation, apoptosis, differentiation, migration• Cause cancer, etc.• Tools are needed for probing, therapeutics

Nakashima, S. J. Biochem. 2002, 132, 669-675.

Page 16: Research Interests

PKC in Early Mitosis (G2/M)

Review: Black, J. D. Front. Biosci. 2000, 5, 406-423P. Collas et al J. Cell Sci. 1999, 112, 977-987.

Page 17: Research Interests

PKC II in G2/M Transition

A. P. Fields et al. J. Biol. Chem. 1994, 269, 19074-19080.A. P. Fields et al. J. Biol. Chem. 1996, 271, 15045-15053.

Target: lamin B Ser405

85K

Km (M): 4.9 (soluble) and 3.9 (envelope). IC50: 16 M

nocodazoleChelerythrine

Chelerythrine (PKC inhibitor ????)

Page 18: Research Interests

NBD-based Fluorescent Sensor for PKC

Phe Arg Arg Arg Arg Lys amide

NH

O

HO

N

N

O2N

O NBD-peptide

Yeh, R.-H.; Yan, X.; Cammer, M.; Bresnick, A. R.; Lawrence, D. S. J. Biol. Chem. 2002, 277, 11527-11532

Assay PKC PKC PKC

Radioact. 9.0±1.0 9.2 ±0.4 5.0 ±1.0

Fluoresc. 29 ±3 27 ±4 30 ±5

Km(M)

VIP

Page 19: Research Interests

In vivo Studies in HeLa cells

Page 20: Research Interests

Caged PKC Sensor

Phe Arg Arg Arg Arg Lys amide

NH

O

O

N

N

O2N

O

O2N OCH3

OCH3

Veldhuyzen, W. F. et al J. Am. Chem. Soc. 2003, 125, 13358-13359

KVIP

Page 21: Research Interests

Why Caged Sensors

• In cuvette: investigator controls the start and stop of enzyme catalyzed rxns

• In live cell: the cell controls the timing and during

• Caged sensors can be delivered in inert forms and activated on demand

• Give precise temporal control over sensor activity

Page 22: Research Interests

Real-time temporal probing of PKC activity

Veldhuyzen, W. F. et al J. Am. Chem. Soc. 2003, 125, 13358-13359

Phe Arg Arg Arg Arg Lys amide

NH

O

O

N

N

O2N

O

O2N OCH3

OCH3

Page 23: Research Interests

Studying MitosisMicroinjection

Phe Arg Arg Arg Arg Lys amide

NH

O

O

N

N

O2N

O

O2N OCH3

OCH3

PtK2 Cells: flat

Kangroo rat didneyepithelial cells

KVIP

Page 24: Research Interests

PKC in PtK2

S. Kumar

Page 25: Research Interests

VIP PKC Activity

Other kinases: Akt-1, AurB, Cdc-2, Plk1 (do not work on VIP) Nek2 (weakly)

S. Kumar

Page 26: Research Interests

before 0 min injection 2 min uncaging 3 min

Green Fl NBD

Red Fl70K dextran-Texas red

Coinjection of 200 M KVIP and 5 M 70K dalton texas red-dextran

Page 27: Research Interests

4 min 5 min 6 min 7 min

Page 28: Research Interests

0 min injection 2 min uncaging 25 min

Coinjection of 200 M KVIP and 5 M 70K dalton texas red-dextran

Mmc1.mov Mmc2.mov

Page 29: Research Interests

Injection with 200 M KVIP before NEBD

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

-13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9

t (min) relative to NEB

Rel

ativ

e Fl

uore

scen

ce

Total cellsNEBD Large

enhancement (>40%)

Small enhancement(<40%)

No enhancement

18 Yes 15 6 9 0

No 3 3

1.PKC activityaccompaniesNEBD.Which one?

2. PKC activitylevels off afterNEBD:

PKC off? orSensor gone?

Page 30: Research Interests

0 min injection 2 min uncaging 11 min

Coinjection of 200 M KVIP and 5 mM 70K dalton texas red-dextran (uncaging after NEBD )

Page 31: Research Interests

Injection with 200 M KVIP (Uncaging after NEBD)

Total cells Large enhancement (>40%)

Small enhancement(<40%)

No enhancement(within 5%)

Very smallEnhancement(within 15%)

16 0 0 14 2

1. No PKC activityright after NEBD?

2. Both PKC and phosphatase are active?

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14

Time (after NEBD)

I f

Page 32: Research Interests

Incubation with 1.5 M okadaic acid

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10 12 14 16 18

No PKC activityright after NEBD.

Total cells NEBD Large enhancement (>40%) Small enhancement(<40%)

No enhancement Little enhancement(around 15%)

10 Yes 10 0

0 8 2

Phosphatase inhibited

Page 33: Research Interests

High PKC inhibitor concentration (12 M) induced or blocked cells at prophase

65% of the cells (20 out of 31) are stuck at prophase

IINek2

IC50 1.3 M 11 nM no obs. inhibition

Tanaka, M. et al. Bioorg. Med. Chem. Lett. 2004, 14, 5171-5174

S. Kumar

PKC , might be implicated in NEBD. Which one?

Page 34: Research Interests

Coinjection w/ 2 mM PKC inhibitor and 200 M KVIP, 5 M 70K Texas ted-dextran

PKCIC50 (M) Ki (M)

0.0019 0.00080

PKC 385-fold PKC 580-fold

PKC 2730-fol PKC 600-fol

PKC 1310-fold PKC 1210-fold

PKC 940-fold PKC 640-fold

Arg Arg Gly Ala Leu Arg Dap Ala NHCH2CH2SH

NH CO

N

ClCl

HN

O

Ala

6

Lee, Nandy, Lawrence. JACS, 2004

Page 35: Research Interests

0 min injection 2 min uncaging 30 min

Coinjection w/ 2 mM PKC inhibitor and 200 M KVIP, 5 M 70K rhodamine-dextran (No NEBD)

Page 36: Research Interests

Coinjection of 2 mM PKC inhibitor and 200 M KVIP

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35

t(injection)

If

Total cells NEBD Large enhancement (>30%)

Small enhancement(<30%)

No enhancement

10 Yes 0 0 0 0

No 10 0 0 10

When PKCs areshutdown, NEBD is blocked w/o FLenhancement.

Page 37: Research Interests

Co-injection of 1 M PKC inhibitor and 200 M KVIP

0 min injection

2 min

3 min

4 min

5 min

6 min

7 min

9 min

13 min

14 minTexas-redfluorescence

Page 38: Research Interests

Co-injection of 1 M PKC inhibitor and 200 M KVIP

11.11.21.31.41.51.61.71.81.9

2

-17

-16

-15

-14

-13

-12

-11

-10

-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5t (NEBD)

If

Total cells NEBD Large enhancement (>30%)

Small enhancement(<30%)

No ehancement(within 1%)

15 Yes 12 6 5 1

No 3 0 0 3

PKC is responsiblefor NEBD and FL

1 or 2?

PKC shutdown

Page 39: Research Interests

Redistribution of PKCI and PKCII

In Cell Cycle

N. G. Dulyaninova

1: associated w/ nucleusin interphase and prophase.

2: everywhere in interphase Partial relocation to nuclear boundary in prophase.Significant for NEBD?

Page 40: Research Interests

Conclusion for Caged PKC Sensor• Caged sensors can be used to probe PKC activity

at G2/M in live cells with temporal precision, providing a way to interrogate enzymatic activity at any point during the cell-division cycle.

• PKC is implicated in NEBD of PtK2 cells. It is active just prior to NEBD, not immediately

after.

Page 41: Research Interests

Acknowledgement• Mike Isaacman• Cho Tan• Amanda Mickley• Patrick Carney• Nikhil Khosla• Pace Colleagues• Prof JaimeLee I. Rizzo

• Prof. James W. Canary (NYU)• Prof. David S. Lawrence (Einstein, UNC) Dr. Williem Veldhuyzen, Dr. Sandip Nandy• Prof. Sanjai Kumar • Prof. Anne R. Bresnick (Einstein) Dr. Natalya G. Dulyaninova Dr. Zhonghua (Alice) Li

NSF (JWC) NIH (DSL, ARB, JWC)

Pace University (Startup Fund, Scholarly Research Fund, Kenan Award)

Page 42: Research Interests
Page 43: Research Interests

Mechanism of Uncaging