Top Banner
Hindawi Publishing Corporation Journal of Function Spaces and Applications Volume 2013, Article ID 954098, 12 pages http://dx.doi.org/10.1155/2013/954098 Research Article Generalized Analytic Fourier-Feynman Transform of Functionals in a Banach Algebra F , 1 , 2 Jae Gil Choi, 1 David Skoug, 2 and Seung Jun Chang 1 1 Department of Mathematics, Dankook University, Cheonan 330-714, Republic of Korea 2 Department of Mathematics, University of Nebraska-Lincoln, Lincoln, NE 68588-0130, USA Correspondence should be addressed to Seung Jun Chang; [email protected] Received 18 July 2013; Accepted 26 September 2013 Academic Editor: Kari Ylinen Copyright © 2013 Jae Gil Choi et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We introduce the Fresnel type class F , 1 , 2 . We also establish the existence of the generalized analytic Fourier-Feynman transform for functionals in the Banach algebra F , 1 , 2 . 1. Introduction Let be a separable Hilbert space and let M() be the space of all complex-valued Borel measures on . e Fourier transform of in M() is defined by () (ℎ )≡ (ℎ )=∫ exp { ⟨ℎ, ℎ ⟩} (ℎ) , ∈ . (1) e set of all functions of the form (1) is denoted by F() and is called the Fresnel class of . Let (, , ]) be an abstract Wiener space. It is known [1, 2] that each functional of the form (1) can be extended to uniquely by () = ∫ exp {(ℎ, ) } (ℎ) , ∈ , (2) where (⋅, ⋅) is a stochastic inner product between and . e Fresnel class F() of is the space of (equivalence classes of) all functionals of the form (2). ere has been a tremendous amount of papers and books in the literature on the Fresnel integral theory and Fresnel classes F() and F() on abstract Wiener and Hilbert spaces. For an elementary introduction see [3, Chapter 20]. Furthermore, in [1], Kallianpur and Bromley introduced a larger class F 1 , 2 than the Fresnel class F() and showed the existence of the analytic Feynman integral of functionals in F 1 , 2 for a successful treatment of certain physical problems by means of a Feynman integral. e Fresnel class F 1 , 2 of 2 is the space of (equivalence classes of) all functionals on 2 of the following form: ( 1 , 2 )=∫ exp { { { 2 =1 ( 1/2 ℎ, ) } } } (ℎ) , (3) where 1 and 2 are bounded, nonnegative, and self-adjoint operators on and M(). In this paper we study the functionals of the form (3) with ( 1 , 2 ) in a very general function space 2 , [0, ] ≡ , [0, ] × , [0, ]. e function space , [0, ], induced by generalized Brownian motion process, was introduced by Yeh [4, 5] and was used extensively in [613]. In this paper, we also construct a concrete theory of the generalized analytic Fourier-Feynman transform (GFFT) of functionals in a generalized Fresnel type class defined on 2 , [0, ]. Other work involving GFFT theories on , [0, ] include [6, 7, 9, 12, 13]. e Wiener process used in [1, 2, 1417] is stationary in time and is free of driſt while the stochastic process used in this paper, as well as in [4, 613, 18], is nonstationary in time and is subject to a driſt (). It turns out, as noted in Remark 7 below, that including a driſt term () makes establishing the existence of the GFFT
13

Research Article Generalized Analytic Fourier-Feynman ...downloads.hindawi.com/journals/jfs/2013/954098.pdf · Journal of Function Spaces and Applications Volume , Article ID , pages

Jul 22, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Research Article Generalized Analytic Fourier-Feynman ...downloads.hindawi.com/journals/jfs/2013/954098.pdf · Journal of Function Spaces and Applications Volume , Article ID , pages

Hindawi Publishing CorporationJournal of Function Spaces and ApplicationsVolume 2013 Article ID 954098 12 pageshttpdxdoiorg1011552013954098

Research ArticleGeneralized Analytic Fourier-Feynman Transform ofFunctionals in a Banach Algebra F119886119887

11986011198602

Jae Gil Choi1 David Skoug2 and Seung Jun Chang1

1 Department of Mathematics Dankook University Cheonan 330-714 Republic of Korea2Department of Mathematics University of Nebraska-Lincoln Lincoln NE 68588-0130 USA

Correspondence should be addressed to Seung Jun Chang sejchangdankookackr

Received 18 July 2013 Accepted 26 September 2013

Academic Editor Kari Ylinen

Copyright copy 2013 Jae Gil Choi et al This is an open access article distributed under the Creative Commons Attribution Licensewhich permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited

We introduce the Fresnel type classF1198861198871198601 1198602

We also establish the existence of the generalized analytic Fourier-Feynman transformfor functionals in the Banach algebraF119886119887

1198601 1198602

1 Introduction

Let119867 be a separable Hilbert space and letM(119867) be the spaceof all complex-valued Borel measures on 119867 The Fouriertransform of 120590 inM(119867) is defined by

119891 (120590) (ℎ1015840

) equiv (ℎ1015840

) = int

119867

exp 119894 ⟨ℎ ℎ1015840⟩ 119889120590 (ℎ) ℎ1015840 isin 119867

(1)

The set of all functions of the form (1) is denoted byF(119867) andis called the Fresnel class of 119867 Let (119867 119861 ]) be an abstractWiener space It is known [1 2] that each functional of theform (1) can be extended to 119861 uniquely by

(119909) = int

119867

exp 119894(ℎ 119909)sim 119889120590 (ℎ) 119909 isin 119861 (2)

where (sdot sdot)sim is a stochastic inner product between 119867 and119861 The Fresnel class F(119861) of 119861 is the space of (equivalenceclasses of) all functionals of the form (2) There has beena tremendous amount of papers and books in the literatureon the Fresnel integral theory and Fresnel classes F(119861)and F(119867) on abstract Wiener and Hilbert spaces For anelementary introduction see [3 Chapter 20]

Furthermore in [1] Kallianpur and Bromley introduceda larger classF

11986011198602

than the Fresnel classF(119861) and showedthe existence of the analytic Feynman integral of functionals

in F11986011198602

for a successful treatment of certain physicalproblems by means of a Feynman integral The Fresnel classF11986011198602

of 1198612 is the space of (equivalence classes of) allfunctionals on 1198612 of the following form

119865 (1199091 1199092) = int

119867

exp

2

sum

119895=1

119894(11986012

119895ℎ 119909119895)

sim

119889120590 (ℎ) (3)

where1198601and119860

2are bounded nonnegative and self-adjoint

operators on119867 and 120590 isinM(119867)In this paper we study the functionals 119865 of the form (3)

with (1199091 1199092) in a very general function space 1198622

119886119887[0 119879] equiv

119862119886119887[0 119879] times119862

119886119887[0 119879] The function space 119862

119886119887[0 119879] induced

by generalized Brownian motion process was introducedby Yeh [4 5] and was used extensively in [6ndash13] In thispaper we also construct a concrete theory of the generalizedanalytic Fourier-Feynman transform (GFFT) of functionalsin a generalized Fresnel type class defined on1198622

119886119887[0 119879] Other

work involving GFFT theories on 119862119886119887[0 119879] include [6 7 9

12 13]The Wiener process used in [1 2 14ndash17] is stationary in

time and is free of drift while the stochastic process used inthis paper as well as in [4 6ndash13 18] is nonstationary in timeand is subject to a drift 119886(119905)

It turns out as noted in Remark 7 below that including adrift term 119886(119905) makes establishing the existence of the GFFT

2 Journal of Function Spaces and Applications

of functionals on 1198622119886119887[0 119879] very difficult However when

119886(119905) equiv 0 and 119887(119905) = 119905 on [0 119879] the general function space119862119886119887[0 119879] reduces to the Wiener space 119862

0[0 119879]

2 Definitions and Preliminaries

Let 119886(119905) be an absolutely continuous real-valued function on[0 119879] with 119886(0) = 0 1198861015840(119905) isin 1198712[0 119879] and let 119887(119905) be a strictlyincreasing continuously differentiable real-valued functionwith 119887(0) = 0 and 1198871015840(119905) gt 0 for each 119905 isin [0 119879]The generalizedBrownian motion process 119884 determined by 119886(119905) and 119887(119905) isa Gaussian process with mean function 119886(119905) and covariancefunction 119903(119904 119905) = min119887(119904) 119887(119905) For more details see[6 10 12] By Theorem 142 in [5] the probability measure120583 induced by 119884 taking a separable version is supportedby 119862119886119887[0 119879] (which is equivalent to the Banach space of

continuous functions 119909 on [0 119879]with 119909(0) = 0 under the supnorm) Hence (119862

119886119887[0 119879] B(119862

119886119887[0 119879]) 120583) is the function

space induced by119884whereB(119862119886119887[0 119879]) is the Borel120590-algebra

of 119862119886119887[0 119879] We then complete this function space to obtain

(119862119886119887[0 119879] W(119862

119886119887[0 119879]) 120583) whereW(119862

119886119887[0 119879]) is the set

of all Wiener measurable subsets of 119862119886119887[0 119879]

A subset 119861 of 119862119886119887[0 119879] is said to be scale-invariant

measurable provided 120588119861 is W(119862119886119887[0 119879])-measurable for all

120588 gt 0 and a scale-invariant measurable set 119873 is said to be ascale-invariant null set provided 120583(120588119873) = 0 for all 120588 gt 0A property that holds except on a scale-invariant null setis said to hold scale-invariant almost everywhere (s-ae) Afunctional119865 is said to be scale-invariantmeasurable provided119865 is defined on a scale-invariant measurable set and 119865(120588sdot) isW(119862119886119887[0 119879])-measurable for every 120588 gt 0 If two functionals

119865 and119866 defined on119862119886119887[0 119879] are equal s-ae we write 119865 asymp 119866

Let 11987112119886119887[0 119879] be the space of Lebesgue measurable func-

tions on [0 119879] given by

11987112

119886119887[0 119879] = V int

119879

0

|V (119904)|2119889119887 (119904) lt infin

int

119879

0

|V (119904)| 119889 |119886| (119904) lt infin

(4)

where |119886|(sdot) is the total variation function of 119886(sdot) Then11987112

119886119887[0 119879] is a separable Hilbert space with inner product

defined by

(119906 V)11987112

119886119887

= int

119879

0

119906 (119905) V (119905) 119889119887 (119905)

+ (int

119879

0

119906 (119905) 119889119886 (119905)) (int

119879

0

V (119905) 119889119886 (119905))

(5)

In particular note that 11990611987112

119886119887

equiv [(119906 119906)11987112

119886119887

]12

= 0 if and onlyif 119906(119905) = 0 ae on [0 119879]

Let 120601119895infin

119895=1be a complete orthonormal set in 11987112

119886119887[0 119879]

each of whose elements is of bounded variation on [0 119879] suchthat

int

119879

0

120601119895(119905) 120601119896(119905) 119889119887 (119905) =

0 119895 = 119896

1 119895 = 119896

(6)

Then for each V isin 11987112119886119887[0 119879] the Paley-Wiener-Zygmund

(PWZ) stochastic integral ⟨V 119909⟩ is defined by the followingformula

⟨V 119909⟩ = lim119899rarrinfin

int

119879

0

119899

sum

119895=1

(V 120601119895)119886119887

120601119895(119905) 119889119909 (119905) (7)

for all 119909 isin 119862119886119887[0 119879] for which the limit exists one can show

that for each V isin 11987112119886119887[0 119879] the PWZ stochastic integral

⟨V 119909⟩ exists for 120583-ae 119909 isin 119862119886119887[0 119879] and if V is of bounded

variation on [0 119879] then the PWZ stochastic integral ⟨V 119909⟩equals the Riemann-Stieltjes integral int119879

0

V(119905)119889119909(119905) for s-ae119909 isin 119862

119886119887[0 119879]

Remark 1 (1) For each V isin 11987112119886119887[0 119879] the PWZ stochastic

integral ⟨V 119909⟩ is a Gaussian random variable on 119862119886119887[0 119879]

with mean int1198790

V(119904)119889119886(119904) and variance int1198790

V2(119904)119889119887(119904)(2) For all 119906 V isin 11987112

119886119887[0 119879]

int

119862119886119887[0119879]

⟨119906 119909⟩⟨V 119909⟩ 119889120583 (119909)

= int

119879

0

119906 (119904) V (119904) 119889119887 (119904)

+ (int

119879

0

119906 (119904) 119889119886 (119904)) (int

119879

0

V (119904) 119889119886 (119904))

(8)

Hence we see that for all 119906 V isin 11987112119886119887[0 119879] int119879

0

119906(119904)V(119904)119889119887(119904) =0 if and only if ⟨119906 119909⟩ and ⟨V 119909⟩ are independent randomvariables

The following Cameron-Martin subspace of 119862119886119887[0 119879]

plays an important role throughout this paperLet

1198621015840

119886119887[0 119879] = 119908 isin 119862

119886119887[0 119879] 119908 (119905) = int

119905

0

119911 (119904) 119889119887 (119904)

for some 119911 isin 11987112119886119887[0 119879]

(9)

For 119908 isin 1198621015840119886119887[0 119879] let119863 1198621015840

119886119887[0 119879] rarr 119871

12

119886119887[0 119879] be defined

by the following formula

119863119908 (119905) =

119889120582119908

119889120582119887

(119905) (10)

where 119889120582119908119889120582119887denotes the Radon-Nikodym derivative of

the signed measure 120582119908

induced by 119908 with respect tothe Borel-Stieltjes measure 120582

119887induced by 119887 Then 1198621015840

119886119887equiv

1198621015840

119886119887[0 119879] with inner product

(1199081 1199082)1198621015840

119886119887

= int

119862119886119887[0119879]

⟨1198631199081 119909⟩⟨119863119908

2 119909⟩ 119889120583 (119909) (11)

is a separable Hilbert space

Journal of Function Spaces and Applications 3

Using (8) we observe that the linear operator given by(10) is an isometry In fact the inverse operator 119863minus1 11987112

119886119887[0 119879] rarr 119862

1015840

119886119887[0 119879] is given by

(119863minus1

119911) (119905) = int

119905

0

119911 (119904) 119889119887 (119904) (12)

Moreover the triple (1198621015840119886119887[0 119879] 119862

119886119887[0 119879] 120583) becomes an

abstract Wiener spaceThroughout this paper for 119908 isin 1198621015840

119886119887[0 119879] we will use the

notation (119908 119909)sim instead of ⟨119863119908 119909⟩We also use the followingnotations for 119908

1 1199082 119908 isin 1198621015840

119886119887[0 119879]

(1199081 1199082)119887= int

119879

0

1198631199081(119905) 119863119908

2(119905) 119889119887 (119905)

119908119887= radic(119908119908)

119887

(13)

Then 1198621015840119886119887[0 119879] with the inner product given by (13) is also a

separable Hilbert space It is easy to see that the two norms sdot 1198621015840

119886119887

and sdot 119887are equivalent Furthermore we have the

following assertions

(i) 119886(sdot) is an element of 1198621015840119886119887[0 119879]

(ii) For each 119908 isin 1198621015840119886119887[0 119879] the random variable 119909 997891rarr

(119908 119909)sim is Gaussian with mean (119908 119886)

119887and variance

1199082

119887

(iii) (119908 120572119909)sim = (120572119908 119909)sim = 120572(119908 119909)sim for any real number120572 119908 isin 1198621015840

119886119887[0 119879] and 119909 isin 119862

119886119887[0 119879]

(iv) Let 1199081 119908

119899 be a subset of 1198621015840

119886119887[0 119879] such that

int

119879

0

119863119908119894(119905)119863119908

119895(119905)119889119887(119905) = 120575

119894119895 where 120575

119894119895is the Kro-

necker delta Then the random variables (119908119894 119909)simrsquos are

independent

In this paper we adopt asmuch as possible the definitionsand notations used in [7 9 12 13] for the definitions ofthe generalized analytic Feynman integral and the GFFT offunctionals on 119862

119886119887[0 119879]

The following integration formula is used several times inthis paper

int

R

exp minus1205721199062 + 120573119906 119889119906 = radic120587120572

exp1205732

4120572

(14)

for complex numbers 120572 and 120573 with Re(120572) gt 0

3 The GFFT of Functionals in a BanachAlgebra F119886119887

11986011198602

LetM(1198621015840119886119887[0 119879]) be the space of complex-valued countably

additive (and hence finite) Borel measures on 1198621015840119886119887[0 119879]

M(1198621015840119886119887[0 119879]) is a Banach algebra under the total variation

norm and with convolution as multiplicationWe define the Fresnel type class F(119862

119886119887[0 119879]) of

functionals on 119862119886119887[0 119879] as the space of all stochastic

Fourier transforms of elements of M(1198621015840119886119887[0 119879]) that is

119865 isin F(119862119886119887[0 119879]) if and only if there exists a measure 119891 in

M(1198621015840119886119887[0 119879]) such that

119865 (119909) = int

1198621015840

119886119887[0119879]

exp 119894(119908 119909)sim 119889119891 (119908) (15)

for s-ae 119909 isin 119862119886119887[0 119879] More precisely since we will identify

functionals which coincide s-ae on 119862119886119887[0 119879]F(119862

119886119887[0 119879])

can be regarded as the space of all 119904-equivalence classes offunctionals of the form (15)

The Fresnel type class F(119862119886119887[0 119879]) is a Banach algebra

with norm

119865 =10038171003817100381710038171198911003817100381710038171003817= int

1198621015840

119886119887[0119879]

11988910038161003816100381610038161198911003816100381610038161003816(119908) (16)

In fact the correspondence 119891 997891rarr 119865 is injective carriesconvolution into pointwise multiplication and is a Banachalgebra isomorphism where 119891 and 119865 are related by (15)

Remark 2 The Banach algebra F(119862119886119887[0 119879]) contains sev-

eral interesting functions which arise naturally in quantummechanics Let M(R) be the class of C-valued countablyadditive measures on B(R) the Borel class of R For ] isinM(R) the Fourier transform ] of ] is a complex-valuedfunction defined on R by the following formula

] (119906) = intR

exp 119894119906V 119889] (V) (17)

Let G be the set of all complex-valued functions on[0 119879]timesR of the form 120579(119904 119906) =

119904(119906) where 120590

119904 0 le 119904 le 119879 is

a family fromM(R) satisfying the following two conditions

(i) for every 119864 isinB(R) 120590119904(119864) is Borel measurable in 119904

(ii) int1198790

120590119904119889119887(119904) lt +infin

Let 120579 isin G and let119867 be given by

119867(119909) = expint119879

0

120579 (119905 119909 (119905)) 119889119905 (18)

for s-ae 119909 isin 119862119886119887[0 119879] Then using the methods similar

to those used in [18] we can show that the function 120579(119905 119906)is Borel-measurable and that 120579(119905 119909(119905)) int119879

0

120579(119905 119909(119905))119889119905 and119867(119909) are elements of F(119862

119886119887[0 119879]) These facts are relevant

to quantum mechanics where exponential functions play aprominent role

Let119860 be a nonnegative self-adjoint operator on1198621015840119886119887[0 119879]

and 119891 any complex measure on 1198621015840119886119887[0 119879] Then the func-

tional

119865 (119909) = int

1198621015840

119886119887[0119879]

exp 119894(11986012119908 119909)sim

119889119891 (119908) (19)

belongs to F(119862119886119887[0 119879]) because it can be rewritten as

int1198621015840

119886119887[0119879]

exp119894(119908 119909)sim119889119891119860(119908) for 119891

119860= 119891 ∘ (119860

12

)minus1 Let 119860 be

self-adjoint but not nonnegative Then 119860 has the form

119860 = 119860+

minus 119860minus

(20)

4 Journal of Function Spaces and Applications

where both 119860+ and 119860minus are bounded nonnegative and self-adjoint operators

In this section we will extend the ideas of [1] to obtainexpressions of the generalized analytic Feynman integral andthe GFFT of functionals of the form (19) when119860 is no longerrequired to be nonnegative To do this we will introducedefinitions and notations analogous to those in [7 12 13]

Let W(1198622119886119887[0 119879]) denote the class of all Wiener mea-

surable subsets of the product function space 1198622119886119887[0 119879] A

subset 119861 of 1198622119886119887[0 119879] is said to be scale-invariant measurable

provided (12058811199091 12058821199092) (119909

1 1199092) isin 119861 is W(1198622

119886119887[0 119879])-

measurable for every 1205881gt 0 and 120588

2gt 0 and a scale-

invariantmeasurable subset119873 of1198622119886119887[0 119879] is said to be scale-

invariant null provided (120583 times 120583)((12058811199091 12058821199092) (119909

1 1199092) isin

119873) = 0 for every 1205881gt 0 and 120588

2gt 0 A property that

holds except on a scale-invariant null set is said to hold s-ae on 1198622

119886119887[0 119879] A functional 119865 on 1198622

119886119887[0 119879] is said to be

scale-invariant measurable provided 119865 is defined on a scale-invariant measurable set and 119865(120588

1sdot 1205882sdot) is W(1198622

119886119887[0 119879])-

measurable for every 1205881gt 0 and 120588

2gt 0 If two functionals

119865 and 119866 defined on 1198622119886119887[0 119879] are equal s-ae then we write

119865 asymp 119866We denote the product function space integral of a

W(1198622119886119887[0 119879])-measurable functional 119865 by

119864 [119865] equiv 119864119909[119865 (1199091 1199092)]

= int

1198622

119886119887[0119879]

119865 (1199091 1199092) 119889 (120583 times 120583) (119909

1 1199092)

(21)

whenever the integral existsThroughout this paper letCC

+and C

+denote the set of

complex numbers complex numbers with positive real partand nonzero complex numbers with nonnegative real partrespectively Furthermore for all 120582 isin C

+ 120582minus12 (or 12058212) is

always chosen to have positive real part We also assume thatevery functional 119865 on 1198622

119886119887[0 119879] we consider is s-ae defined

and is scale-invariant measurable

Definition 3 Let C2+equiv C+times C+and let C2

+equivC+timesC+ Let

119865 1198622

119886119887[0 119879] rarr C be such that for each 120582

1gt 0 and 120582

2gt 0

the function space integral

119869 (1205821 1205822)

= int

1198622

119886119887[0119879]

119865 (120582minus12

11199091 120582minus12

21199092) 119889 (120583 times 120583) (119909

1 1199092)

(22)

exists If there exists a function 119869lowast(1205821 1205822) analytic inC2

+such

that 119869lowast(1205821 1205822) = 119869(120582

1 1205822) for all 120582

1gt 0 and 120582

2gt 0 then

119869lowast

(1205821 1205822) is defined to be the analytic function space integral

of 119865 over 1198622119886119887[0 119879] with parameter 120582 = (120582

1 1205822) and for 120582 isin

C2+we write

119864an[119865] equiv 119864

an

119909[119865 (1199091 1199092)]

equiv 119864

an(12058211205822)

11990911199092[119865 (1199091 1199092)] = 119869

lowast

(1205821 1205822)

(23)

Let 1199021and 1199022be nonzero real numbers Let 119865 be a functional

such that 119864an[119865] exists for all 120582 isin C2+ If the following limit

exists we call it the generalized analytic Feynman integral of119865 with parameter 119902 = (119902

1 1199022) and we write

119864anf 119902[119865] equiv 119864

anf 119902119909[119865 (1199091 1199092)]

equiv 119864

anf(11990211199022)

11990911199092[119865 (1199091 1199092)] = lim

120582rarrminus119894 119902

119864an[119865]

(24)

where 120582 = (1205821 1205822) rarr minus119894 119902 = (minus119894119902

1 minus1198941199022) through values in

C2+

Definition 4 Let 1199021and 1199022be nonzero real numbers For 120582 =

(1205821 1205822) isin C2+and (119910

1 1199102) isin 1198622

119886119887[0 119879] let

119879 120582(119865) (119910

1 1199102) equiv 119879(12058211205822)(119865) (119910

1 1199102)

= 119864

an

119909[119865 (1199101+ 1199091 1199102+ 1199092)]

(25)

For 119901 isin (1 2] we define the 119871119901analytic GFFT 119879(119901)

119902(119865) of 119865

by the formula ( 120582 isin C2+)

119879(119901)

119902(119865) (119910

1 1199102) equiv 119879(119901)

(1199021 1199022)(119865) (119910

1 1199102)

= lim120582rarrminus119894 119902

119879 120582(119865) (119910

1 1199102)

(26)

if it exists that is for each 1205881gt 0 and 120588

2gt 0

lim120582rarrminus119894 119902

int

1198622

119886119887[0119879]

100381610038161003816100381610038161003816

119879 120582(119865) (120588

11199101 12058821199102)

minus119879(119901)

119902(119865) (120588

11199101 12058821199102)

100381610038161003816100381610038161003816

1199011015840

119889 (120583 times 120583) (1199101 1199102)

= 0

(27)

where 1119901+11199011015840 = 1We define the 1198711analytic GFFT119879(1)

119902(119865)

of 119865 by the formula ( 120582 isin C2+)

119879(1)

119902(119865) (119910

1 1199102) = lim120582rarrminus119894 119902

119879 120582(119865) (119910

1 1199102) (28)

if it exists

We note that for 1 le 119901 le 2 119879(119901)119902(119865) is defined only s-ae

We also note that if 119879(119901)119902(119865) exists and if 119865 asymp 119866 then 119879(119901)

119902(119866)

exists and 119879(119901)119902(119866) asymp 119879

(119901)

119902(119865) Moreover from Definition 4

we see that for 1199021 1199022isin R minus 0

119864

anf 119902119909[119865 (1199091 1199092)] = 119879

(1)

119902(119865) (0 0) (29)

Next we give the definition of the generalized Fresnel typeclassF119886119887

11986011198602

Journal of Function Spaces and Applications 5

Definition 5 Let 1198601and 119860

2be bounded nonnegative and

self-adjoint operators on 1198621015840119886119887[0 119879] The generalized Fresnel

type classF11988611988711986011198602

of functionals on1198622119886119887[0 119879] is defined as the

space of all functionals 119865 on 1198622119886119887[0 119879] of the following form

119865 (1199091 1199092) = int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119909119895)

sim

119889119891 (119908) (30)

for some119891 isinM(1198621015840119886119887[0 119879]) More precisely since we identify

functionals which coincide s-ae on 1198622119886119887[0 119879] F119886119887

11986011198602

canbe regarded as the space of all 119904-equivalence classes offunctionals of the form (30)

Remark 6 (1) In Definition 5 let 1198601be the identity operator

on 1198621015840119886119887[0 119879] and 119860

2equiv 0 Then F 119886119887

11986011198602

is essentially theFresnel type class F(119862

119886119887[0 119879]) and for 119901 isin [1 2] and

nonzero real numbers 1199021and 1199022

119879(119901)

(1199021 1199022)(119865) (119910

1 1199102) = 119879(119901)

1199021

(1198650) (1199101) (31)

if it exists where 1198650(1199091) = 119865(119909

1 1199092) for all (119909

1 1199092) isin

1198622

119886119887[0 119879] and 119879(119901)

1199021

(1198650) means the 119871

119901analytic GFFT on

119862119886119887[0 119879] see [6 12](2) The map 119891 997891rarr 119865 defined by (30) sets up an algebra

isomorphism betweenM(1198621015840119886119887[0 119879]) andF119886119887

11986011198602

if Ran(1198601+

1198602) is dense in1198621015840

119886119887[0 119879] where Ran indicates the range of an

operator In this caseF 11988611988711986011198602

becomes a Banach algebra underthe norm 119865 = 119891 For more details see [1]

Remark 7 Let 119865 be given by (30) In evaluating119864119909[119865(120582minus12

11199091 120582minus12

21199092)] and 119879

(12058211205822)(119865)(1199101 1199102) = 119864

119909[119865(1199101+

120582minus12

11199091 1199102+ 120582minus12

21199092)] for 120582

1gt 0 and 120582

2gt 0 the expression

120595 (120582 119908)

equiv 120595 (1205821 1205822 1198601 1198602 119908)

= exp

2

sum

119895=1

[

[

minus

(119860119895119908119908)

119887

2120582119895

+ 119894120582minus12

119895(11986012

119895119908 119886)119887

]

]

(32)

occurs Clearly for 120582119895gt 0 119895 isin 1 2 |120595( 120582 119908)| le 1 for all

119908 isin 1198621015840

119886119887[0 119879] But for 120582 isin C2

+ |120595( 120582 119908)| is not necessarily

bounded by 1Note that for each 120582

119895isinC+with 120582

119895= 120572119895+ 119894120573119895 119895 isin 1 2

12058212

119895=

radicradic1205722

119895+ 1205732

119895+ 120572119895

2

+ 119894

120573119895

10038161003816100381610038161003816120573119895

10038161003816100381610038161003816

radicradic1205722

119895+ 1205732

119895minus 120572119895

2

120582minus12

119895=radic

radic1205722

119895+ 1205732

119895+ 120572119895

2 (1205722

119895+ 1205732

119895)

minus 119894

120573119895

10038161003816100381610038161003816120573119895

10038161003816100381610038161003816

radic

radic1205722

119895+ 1205732

119895minus 120572119895

2 (1205722

119895+ 1205732

119895)

(33)

Hence for 120582119895isinC+with 120582

119895= 120572119895+ 119894120573119895 119895 isin 1 2

10038161003816100381610038161003816120595 (120582 119908)

10038161003816100381610038161003816

= exp

2

sum

119895=1

[

[

[

[

minus

120572119895

2 (1205722

119895+ 1205732

119895)

(119860119895119908119908)

119887

+

120573119895

10038161003816100381610038161003816120573119895

10038161003816100381610038161003816

radic

radic1205722

119895+ 1205732

119895minus 120572119895

2 (1205722

119895+ 1205732

119895)

(11986012

119895119908 119886)119887

]

]

]

]

(34)

The right hand side of (34) is an unbounded functionof 119908 for 119908 isin 1198621015840

119886119887[0 119879] Thus 119864an[119865] 119864anf 119902[119865] 119879

120582(119865) and

119879(119901)

119902(119865) might not exist Thus throughout this paper we will

need to put additional restrictions on the complex measure119891 corresponding to 119865 in order to obtain our results for theGFFT and the generalized analytic Feynman integral of 119865

In view of Remark 7 we clearly need to impose additionalrestrictions on the functionals 119865 inF119886119887

11986011198602

For a positive real number 119902

0 let

Γ1199020

=

120582 = (120582

1 1205822) isinC2

+| 120582119895= 120572119895+ 119894120573119895

10038161003816100381610038161003816Im (120582minus12

119895)

10038161003816100381610038161003816=radic

radic1205722

119895+ 1205732

119895minus 120572119895

2 (1205722

119895+ 1205732

119895)

lt

1

radic21199020

119895 = 1 2

(35)

and let119896 (1199020 119908) equiv 119896 (119902

0 1198601 1198602 119908)

= exp

2

sum

119895=1

(21199020)minus121003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817119887119886119887

(36)

Then for all 120582 = (1205821 1205822) isin Γ1199020

10038161003816100381610038161003816120595 (120582 119908)

10038161003816100381610038161003816le exp

2

sum

119895=1

radic

radic1205722

119895+ 1205732

119895minus 120572119895

2 (1205722

119895+ 1205732

119895)

100381610038161003816100381610038161003816

(11986012

119895119908 119886)119887

100381610038161003816100381610038161003816

le exp

2

sum

119895=1

radic

radic1205722

119895+ 1205732

119895minus 120572119895

2 (1205722

119895+ 1205732

119895)

1003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817119887119886119887

lt 119896 (1199020 119908)

(37)

6 Journal of Function Spaces and Applications

We note that for all real 119902119895with |119902

119895| gt 1199020 119895 isin 1 2

(minus119894119902119895)

minus12

=

1

radic

100381610038161003816100381610038162119902119895

10038161003816100381610038161003816

+ sign (119902119895)

119894

radic

100381610038161003816100381610038162119902119895

10038161003816100381610038161003816

(38)

and (minus1198941199021 minus1198941199022) isin Γ1199020

For the existence of the GFFT of 119865 we define a subclass

F1199020

11986011198602

ofF 11988611988711986011198602

by 119865 isin F 119902011986011198602

if and only if

int

1198621015840

119886119887[0119879]

119896 (1199020 119908) 119889

10038161003816100381610038161198911003816100381610038161003816(119908) lt +infin (39)

where 119891 and 119865 are related by (30) and 119896 is given by (36)

Remark 8 Note that in case 119886(119905) equiv 0 and 119887(119905) = 119905 on [0 119879]the function space 119862

119886119887[0 119879] reduces to the classical Wiener

space 1198620[0 119879] and (119908 119886)

119887= 0 for all 119908 isin 1198621015840

119886119887[0 119879] =

1198621015840

0[0 119879] Hence for all 120582 isin C2

+ |120595( 120582 119908)| le 1 and for any

positive real number 1199020F 119902011986011198602

= F11986011198602

theKallianpur andBromleyrsquos class introduced in Section 1

Theorem 9 Let 1199020be a positive real number and let 119865 be an

element ofF 119902011986011198602

Then for any nonzero real numbers 1199021and

1199022with |119902

119895| gt 1199020 119895 isin 1 2 the 119871

1analytic GFFT of 119865 119879(1)

119902(119865)

exists and is given by the following formula

119879(1)

119902(119865) (119910

1 1199102)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119910119895)

sim

120595(minus119894 119902 119908) 119889119891 (119908)

(40)

for s-ae (1199101 1199102) isin 1198622

119886119887[0 119879] where 120595 is given by (32)

Proof We first note that for 119895 isin 1 2 the PWZ stochasticintegral (11986012

119895119908 119909)sim is a Gaussian random variable withmean

(11986012

119895119908 119886)119887and variance 11986012

119895119908

2

119887

= (119860119895119908119908)119887

Hence using(30) the Fubini theorem the change of variables theorem and(14) we have that for all 120582

1gt 0 and 120582

2gt 0

119869 (1199101 1199102 1205821 1205822)

equiv 119864119909[119865 (1199101+ 120582minus12

11199091 1199102+ 120582minus12

21199092)]

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119910119895)

sim

times(

2

prod

119895=1

119864119909119895

[exp 119894120582minus12119895(11986012

119895119908 119909119895)

sim

])119889119891 (119908)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119910119895)

sim

times[

[

[

2

prod

119895=1

(2120587(119860119895119908119908)

119887

)

minus12

times int

R

exp

119894120582minus12

119895119906119895

minus

[119906119895minus (11986012

119895119908 119886)119887

]

2

2(119860119895119908119908)

119887

119889119906119895

]

]

]

119889119891(119908)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119910119895)

sim

120595(120582 119908) 119889119891 (119908)

(41)

Let

119879 120582(119865) (119910

1 1199102)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119910119895)

sim

120595(120582 119908) 119889119891 (119908)

(42)

for each 120582 isin C2+ Clearly

119879 120582(119865) (119910

1 1199102) = 119869 (119910

1 1199102 1205821 1205822) (43)

for all 1205821gt 0 and 120582

2gt 0 Let Γ

1199020

be given by (35)Then for all120582 isin Int(Γ

1199020

)

1003816100381610038161003816119879 120582(119865) (119910

1 1199102)1003816100381610038161003816lt int

1198621015840

119886119887[0119879]

119896 (1199020 119908) 119889

10038161003816100381610038161198911003816100381610038161003816(119908) lt +infin

(44)

Using this fact and the dominated convergence theoremwe see that 119879

120582(119865)(1199101 1199102) is a continuous function of 120582 =

(1205821 1205822) on Int(Γ

1199020

) For each 119908 isin 1198621015840119886119887[0 119879] 120595( 120582 119908) is an

analytic function of 120582 throughout the domain Int(Γ1199020

) so thatintΔ

120595(120582 119908)119889

120582 = 0 for every rectifiable simple closed curve

Δ in Int(Γ1199020

) By (42) the Fubini theorem and the Moreratheorem we see that 119879

120582(119865)(1199101 1199102) is an analytic function of

120582 throughout the domain Int(Γ

1199020

) Finally using (28) withthe dominated convergence theorem we obtain the desiredresult

Theorem 10 Let 1199020and 119865 be as inTheorem 9Then for all 119901 isin

(1 2] and all nonzero real numbers 1199021and 119902

2with |119902

119895| gt 1199020

119895 isin 1 2 the119871119901analytic GFFT of119865119879(119901)

119902(119865) exists and is given

by the right hand side of (40) for s-ae (1199101 1199102) isin 1198622

119886119887[0 119879]

Journal of Function Spaces and Applications 7

Proof Let Γ1199020

be given by (35) It was shown in the proofof Theorem 9 that 119879

120582(119865)(1199101 1199102) is an analytic function of 120582

throughout the domain Int(Γ1199020

) In viewofDefinition 4 it willsuffice to show that for each 120588

1gt 0 and 120588

2gt 0

lim120582rarrminus119894 119902

int

1198622

119886119887[0119879]

100381610038161003816100381610038161003816

119879 120582(119865) (120588

11199101 12058821199102)

minus119879(119901)

119902(119865) (120588

11199101 12058821199102)

100381610038161003816100381610038161003816

1199011015840

times 119889 (120583 times 120583) (1199101 1199102) = 0

(45)

Fixing 119901 isin (1 2] and using the inequalities (37) and (39)we obtain that for all 120588

119895gt 0 119895 isin 1 2 and all 120582 isin Γ

1199020

100381610038161003816100381610038161003816

119879 120582(119865) (120588

11199101 12058821199102) minus 119879(119901)

119902(119865) (120588

11199101 12058821199102)

100381610038161003816100381610038161003816

1199011015840

le

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894120588119895(11986012

119895119908 119910119895)

sim

times[120595 (120582 119908) minus 120595 (minus119894 119902 119908)] 119889119891 (119908)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1199011015840

le (int

1198621015840

119886119887[0119879]

[

10038161003816100381610038161003816120595 (120582 119908)

10038161003816100381610038161003816+

10038161003816100381610038161003816120595 (minus119894 119902 119908)

10038161003816100381610038161003816] 11988910038161003816100381610038161198911003816100381610038161003816(119908))

1199011015840

le (2int

1198621015840

119886119887[0119879]

119896 (1199020 119908) 119889

10038161003816100381610038161198911003816100381610038161003816(119908))

1199011015840

lt +infin

(46)

Hence by the dominated convergence theorem we see thatfor each 119901 isin (1 2] and each 120588

1gt 0 and 120588

2gt 0

lim120582rarrminus119894 119902

int

1198622

119886119887[0119879]

100381610038161003816100381610038161003816

119879 120582(119865) (120588

11199101 12058821199102)

minus119879(119901)

119902(119865) (120588

11199101 12058821199102)

100381610038161003816100381610038161003816

1199011015840

119889 (120583 times 120583) (1199101 1199102)

= lim120582rarrminus119894 119902

int

1198622

119886119887[0119879]

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 120588119895119910119895)

sim

times 120595(120582 119908) 119889119891 (119908)

minus int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 120588119895119910119895)

sim

times120595(minus119894 119902 119908) 119889119891 (119908)

10038161003816100381610038161003816100381610038161003816100381610038161003816

1199011015840

times 119889 (120583 times 120583) (1199101 1199102)

= int

1198622

119886119887[0119879]

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 120588119895119910119895)

sim

times lim120582rarrminus119894 119902

[120595 (120582 119908)

minus120595 (minus119894 119902 119908)] 119889119891 (119908)

10038161003816100381610038161003816100381610038161003816100381610038161003816

1199011015840

times 119889 (120583 times 120583) (1199101 1199102)

= 0

(47)

which concludes the proof of Theorem 10

Remark 11 (1) In view of Theorems 9 and 10 we see thatfor each 119901 isin [1 2] the 119871

119901analytic GFFT of 119865 119879(119901)

119902(119865) is

given by the right hand side of (40) for 1199020 1199021 1199022 and 119865 as

in Theorem 9 and for s-ae (1199101 1199102) isin 1198622

119886119887[0 119879]

119879(119901)

119902(119865) (119910

1 1199102) = 119864

anf 119902119909[119865 (1199101+ 1199091 1199102+ 1199092)] 119901 isin [1 2]

(48)

In particular using this fact and (29) we have that for all 119901 isin[1 2]

119879(119901)

119902(119865) (0 0) = 119864

anf 119902119909[119865 (1199091 1199092)] (49)

(2) For nonzero real numbers 1199021and 119902

2with |119902

119895| gt 119902

0

119895 isin 1 2 define a set function 119891 119860119902B(1198621015840

119886119887[0 119879]) rarr C by

119891

119860

119902(119861) = int

119861

120595 (minus119894 119902 119908) 119889119891 (119908) 119861 isinB (1198621015840

119886119887[0 119879])

(50)

where 119891 and 119865 are related by (30) and B(1198621015840119886119887[0 119879]) is the

Borel 120590-algebra of 1198621015840119886119887[0 119879] Then it is obvious that 119891 119860

119902

belongs to M(1198621015840119886119887[0 119879]) and for all 119901 isin [1 2] 119879(119901)

119902(119865) can

be expressed as

119879(119901)

119902(119865) (119910

1 1199102) = int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119910119895)

sim

119889119891

119860

119902(119908)

(51)

for s-ae (1199101 1199102) isin 119862

2

119886119887[0 119879] Hence 119879(119901)

119902(119865) belongs to

F 11988611988711986011198602

for all 119901 isin [1 2]

4 Relationships between the GFFT and theFunction Space Integral of Functionals inF11988611988711986011198602

In this section we establish a relationship between the GFFTand the function space integral of functionals in the Fresneltype classF119886119887

11986011198602

8 Journal of Function Spaces and Applications

Throughout this section for convenience we use thefollowing notation for given 120582 isin C

+and 119899 = 1 2 let

119866119899(120582 119909)

= exp[1 minus 1205822

]

119899

sum

119896=1

[(119890119896 119909)sim

]

2

+ (12058212

minus 1)

119899

sum

119896=1

(119890119896 119886)1198621015840

119886119887

(119890119896 119909)sim

(52)

where 119890119899infin

119899=1is a complete orthonormal set in (1198621015840

119886119887[0 119879]

sdot 119887)To obtain our main results Theorems 14 and 17 below

we state a fundamental integration formula for the functionspace 119862

119886119887[0 119879]

Let 1198901 119890

119899 be an orthonormal set in (1198621015840

119886119887[0 119879] sdot

119887)

let 119896 R119899 rarr C be a Lebesgue measurable function and let119870 119862119886119887[0 119879] rarr C be given by

119870 (119909) = 119896 ((1198901 119909)sim

(119890119899 119909)sim

) (53)

Then

119864 [119870] = int

119862119886119887[0119879]

119896 ((1198901 119909)sim

(119890119899 119909)sim

) 119889120583 (119909)

= (2120587)minus1198992

int

R119899119896 (1199061 119906

119899)

times exp

minus

119899

sum

119895=1

[119906119895minus (119890119895 119886)119887

]

2

2

1198891199061 119889119906

119899

(54)

in the sense that if either side of (54) exists both sides existand equality holds

We also need the following lemma to obtain our maintheorem in this section

Lemma 12 Let 1198901 119890

119899 be an orthonormal subset of

(1198621015840

119886119887[0 119879] sdot

119887) and let 119908 be an element of 1198621015840

119886119887[0 119879] Then

for each 120582 isin C+ the function space integral

119864119909[119866119899(120582 119909) exp 119894(119908 119909)sim] (55)

exists and is given by the formula

119864119909[119866119899(120582 119909) exp 119894(119908 119909)sim]

= 120582minus1198992 exp

[

120582 minus 1

2120582

]

119899

sum

119896=1

(119890119896 119908)2

119887minus

1

2

1199082

119887

+ 119894120582minus12

119899

sum

119896=1

(119890119896 119886)119887(119890119896 119908)119887

+ 119894(119890119899+1 119886)119887[1199082

119887minus

119899

sum

119896=1

(119890119896 119908)2

119887]

12

(56)

where 119866119899is given by (52) above and

119890119899+1=[

[

1199082

119887minus

119899

sum

119895=1

(119890119895 119908)

2

119887

]

]

minus12

119908 minus

119899

sum

119895=1

(119890119895 119908)119887

119890119895

(57)

Proof (Outline) Using the Gram-Schmidt process for any119908 isin 119862

1015840

119886119887[0 119879] we can write 119908 = sum

119899+1

119896=1119888119896119890119896 where

1198901 119890

119899 119890119899+1 is an orthonormal set in (1198621015840

119886119887[0 119879] sdot

119887)

and

119888119896=

(119890119896 119908)119887 119896 = 1 119899

[1199082

119887minus

119899

sum

119895=1

(119890119895 119908)

2

119887

]

12

119896 = 119899 + 1

(58)

Then using (52) (54) the Fubini theorem and (14) it followsthat (56) holds for all 120582 isin C

+

The following remark will be very useful in the proof ofour main theorem in this section

Remark 13 Let 1199020be a positive real number and let Γ

1199020

begiven by (35) For real numbers 119902

1and 1199022with |119902

119895| gt 1199020 119895 isin

1 2 let 120582119899infin

119899=1= (1205821119899 1205822119899)infin

119899=1be a sequence in C2

+such

that

120582119899= (1205821119899 1205822119899) 997888rarr minus119894 119902 = (minus119894119902

1 minus1198941199022) (59)

Let 120582119895119899= 120572119895119899+ 119894120573119895119899

for 119895 isin 1 2 and 119899 isin N Then for119895 isin 1 2 Re(120582

119895119899) = 120572119895119899gt 0 and

120582minus1

119895119899= (120572119895119899+ 119894120573119895119899)

minus1

=

120572119895119899minus 119894120573119895119899

1205722

119895119899+ 1205732

119895119899

(60)

for each 119899 isin N Since |Im ((minus119894119902119895)minus12

)| = 1radic2|119902119895| lt 1radic2119902

0

for 119895 isin 1 2 there exists a sufficiently large 119871 isin N such thatfor any 119899 ge 119871 120582

1119899and 120582

2119899are in Int(Γ

1199020

) and

120575 (1199021 1199022) equiv sup ( 1003816100381610038161003816

1003816Im (120582minus12

1119899)

10038161003816100381610038161003816 119899 ge 119871

cup

10038161003816100381610038161003816Im (120582minus12

2119899)

10038161003816100381610038161003816 119899 ge 119871

cup

100381610038161003816100381610038161003816

Im ((minus1198941199021)minus12

)

100381610038161003816100381610038161003816

100381610038161003816100381610038161003816

Im ((minus1198941199022)minus12

)

100381610038161003816100381610038161003816

)

lt

1

radic21199020

(61)

Thus there exists a positive real number 120576 gt 1 such that120575(1199021 1199022) lt 1(120576radic2119902

0)

Let 119890119899infin

119899=1be a complete orthonormal set in (1198621015840

119886119887[0 119879]

sdot 119887) Using Parsevalrsquos identity it follows that

(1198921 1198922)119887=

infin

sum

119899=1

(119890119899 1198921)119887(119890119899 1198922)119887

(62)

Journal of Function Spaces and Applications 9

for all 1198921 1198922isin 1198621015840

119886119887[0 119879] In addition for each 119892 isin 1198621015840

119886119887[0 119879]

10038171003817100381710038171198921003817100381710038171003817

2

119887minus

119899

sum

119896=1

(119890119896 119892)2

119887=

infin

sum

119896=119899+1

(119890119896 119892)2

119887ge 0 (63)

for every 119899 isin NSince

(119892 119886)119887=

infin

sum

119899=1

(119890119899 119892)119887(119890119899 119886)119887

(64)

and for 120576 gt 1

minus12057610038171003817100381710038171198921003817100381710038171003817119887119886119887lt minus10038171003817100381710038171198921003817100381710038171003817119887119886119887le (119892 119886)

119887

le10038171003817100381710038171198921003817100381710038171003817119887119886119887lt 12057610038171003817100381710038171198921003817100381710038171003817119887119886119887

(65)

there exists a sufficiently large119870119895isin N such that for any 119899 ge 119870

119895

1003816100381610038161003816100381610038161003816100381610038161003816

119899

sum

119896=1

(119890119896 11986012

119895119908)119887

(119890119896 119886)119887

1003816100381610038161003816100381610038161003816100381610038161003816

lt 120576

1003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817119887119886119887

(66)

for 119895 isin 1 2Using these and a long and tedious calculation we can

show that for every 119899 ge max119871 1198701 1198702

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

exp

2

sum

119895=1

([

120582119895119899minus 1

2120582119895119899

]

119899

sum

119896=1

(119890119896 11986012

119895119908)

2

119887

minus

1

2

1003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817

2

119887

+ 119894120582minus12

119895119899

119899

sum

119896=1

(119890119896 11986012

119895119908)119887

(119890119896 119886)119887+ 119894(119890119899+1 119886)119887

times [

1003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817

2

119887

minus

119899

sum

119896=1

(119890119896 11986012

119895119908)

2

119887

]

12

)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

lt 119896 (1199020 119908)

(67)

where 119896(1199020 119908) is given by (36)

In our next theorem for119865 isin F11988611988711986011198602

we express theGFFTof 119865 as the limit of a sequence of function space integrals on1198622

119886119887[0 119879]

Theorem 14 Let 1199020and 119865 be as in Theorem 10 Let 119890

119899infin

119899=1

be a complete orthonormal set in (1198621015840119886119887[0 119879] sdot

119887) and let

(1205821119899 1205822119899)infin

119899=1be a sequence in C2

+such that 120582

119895119899rarr minus119894119902

119895

where 119902119895is a real number with |119902

119895| gt 1199020 119895 isin 1 2 Then for

119901 isin [1 2] and for s-ae (1199101 1199102) isin 1198622

119886119887[0 119879]

119879(119901)

119902(119865) (119910

1 1199102)

= lim119899rarrinfin

1205821198992

11198991205821198992

2119899

times119864119909[119866119899(1205821119899 1199091) 119866119899(1205822119899 1199092) 119865 (119910

1+ 1199091 1199102+ 1199092)]

(68)

where 119866119899is given by (52)

Proof ByTheorems9 and 10we know that for each119901 isin [1 2]the 119871119901analytic GFFT of 119865 119879(119901)

119902(119865) exists and is given by the

right hand side of (40) Thus it suffices to show that

119879(1)

119902(119865) (119910

1 1199102) = 119864

anf 119902119909[119865 (1199101+ 1199091 1199102+ 1199092)]

= lim119899rarrinfin

1205821198992

11198991205821198992

2119899

times 119864119909[119866119899(1205821119899 1199091) 119866119899(1205822119899 1199092)

times 119865 (1199101+ 1199091 1199102+ 1199092)] sdot

(69)

Using (30) the Fubini theorem and (56) with 120582 and 119908replaced with 120582

119895119899and 11986012

119895119908 119895 isin 1 2 respectively we see

that

1205821198992

11198991205821198992

2119899119864119909[119866119899(1205821119899 1199091) 119866119899(1205822119899 1199092) 119865 (119910

1+ 1199091 1199102+ 1199092)]

= 1205821198992

11198991205821198992

2119899int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119910119895)

sim

times(

2

prod

119895=1

119864119909119895

[119866119899(120582minus12

119895119899 119909119895)

times exp 119894(11986012119895119908 119909119895)

sim

])119889119891 (119908)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

(119894(11986012

119895119908 119910119895)

sim

+ [

120582119895119899minus 1

2120582119895119899

]

119899

sum

119896=1

(119890119896 11986012

119895119908)

2

119887

minus

1

2

1003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817

2

119887

+ 119894120582minus12

119895119899

119899

sum

119896=1

(119890119896 119886)119887(119890119896 11986012

119895119908)119887

+ 119894(119890119899+1 119886)119887[

1003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817

2

119887

minus

119899

sum

119896=1

(119890119896 11986012

119895119908)

2

119887

]

12

)

119889119891 (119908)

(70)

But by Remark 13 we see that the last expression of (70) isdominated by (39) on the region Γ

1199020

given by (35) for allbut a finite number of values of 119899 Next using the dominatedconvergence theorem Parsevalrsquos relation and (40) we obtainthe desired result

Corollary 15 Let 1199020 119865 119890

119899infin

119899=1 (1205821119899 1205822119899)infin

119899=1and (119902

1 1199022)

be as in Theorem 14 Then

119864

anf119902

119909[119865 (1199091 1199092)]

= lim119899rarrinfin

1205821198992

11198991205821198992

2119899

times 119864119909[119866119899(1205821119899 1199091) 119866119899(1205822119899 1199092) 119865 (119909

1 1199092)]

(71)

where 119866119899is given by (52)

10 Journal of Function Spaces and Applications

Corollary 16 Let 1199020 119865 and 119890

119899infin

119899=1be as in Theorem 14 and

let Γ1199020

be given by (35) Let 120582 = (1205821 1205822) isin Int (Γ

1199020

) and(1205821119899 1205822119899)infin

119899=1be a sequence in C2

+such that 120582

119895119899rarr 120582

119895

119895 isin 1 2 Then

119864

an

119909[119865 (1199091 1199092)] = lim119899rarrinfin

1205821198992

11198991205821198992

2119899

times119864119909[119866119899(1205821119899 1199091) 119866119899(1205822119899 1199092) 119865(1199091 1199092)]

(72)

where 119866119899is given by (52)

Our another result namely a change of scale formula forfunction space integrals now follows fromCorollary 16 above

Theorem 17 Let 119865 isin F11988611988711986011198602

and let 119890119899infin

119899=1be a complete

orthonormal set in (1198621015840119886119887[0 119879] sdot

119887) Then for any 120588

1gt 0 and

1205882gt 0

119864119909[119865 (12058811199091 12058821199092)]

= lim119899rarrinfin

120588minus119899

1120588minus119899

2

times 119864119909[119866119899(120588minus2

1 1199091)119866119899(120588minus2

2 1199092) 119865 (119909

1 1199092)]

(73)

where 119866119899is given by (52)

Proof Simply choose 120582119895= 120588minus2

119895for 119895 isin 1 2 and 120582

119895119899= 120588minus2

119895

for 119895 isin 1 2 and 119899 isin N in (72)

Remark 18 Of course if we choose 119886(119905) equiv 0 119887(119905) = 1199051198601= 119868 (identity operator) and 119860

2= 0 (zero operator) then

the function space 119862119886119887[0 119879] reduces to the classical Wiener

space 1198620[0 119879] and the generalized Fresnel type class F 119886119887

11986011198602

reduces to the Fresnel class F(1198620[0 119879]) It is known that

F(1198620[0 119879]) forms a Banach algebra over the complex field

In this case we have the relationships between the analyticFeynman integral and theWiener integral on classicalWienerspace as discussed in [14 15]

In recent paper [19] Yoo et al have studied a change ofscale formula for function space integral of the functionalsin the Banach algebra S(1198712

119886119887[0 119879]) the Banach algebra

S(1198712119886119887[0 119879]) is introduced in [12]

5 Functionals in F11988611988711986011198602

In this section we prove a theorem ensuring that variousfunctionals are inF119886119887

11986011198602

Theorem 19 Let 1198601and 119860

2be bounded nonnegative and

self-adjoint operators on 1198621015840119886119887[0 119879] Let (119884Y 120574) be a 120590-finite

measure space and let 120593119897 119884 rarr 119862

1015840

119886119887[0 119879] beYndashB(1198621015840

119886119887[0 119879])

measurable for 119897 isin 1 119889 Let 120579 119884 times R119889 rarr C be given by120579(120578 sdot) = ]

120578(sdot) where ]

120578isin M(R119889) for every 120578 isin 119884 and where

the family ]120578 120578 isin 119884 satisfies

(i) ]120578(119864) is a Y-measurable function of 120578 for every 119864 isin

B(R119889)(ii) ]

120578 isin 1198711

(119884Y 120574)

Under these hypothesis the functional 119865 1198622119886119887[0 119879] rarr C

given by

119865 (1199091 1199092) = int

119884

120579(120578

2

sum

119895=1

(11986012

1198951205931(120578) 119909

119895)

sim

2

sum

119895=1

(11986012

119895120593119889(120578) 119909

119895)

sim

)119889120574 (120578)

(74)

belongs toF11988611988711986011198602

and satisfies the inequality

119865 le int

119884

10038171003817100381710038171003817]120578

10038171003817100381710038171003817119889120574 (120578) (75)

Proof Using the techniques similar to those used in [20] wecan show that ]

120578 is measurable as a function of 120578 that 120579 is

Y-measurable and that the integrand in (74) is a measurablefunction of 120578 for every (119909

1 1199092) isin 1198622

119886119887[0 119879]

We define a measure 120591 onY timesB(R119889) by

120591 (119864) = int

119884

]120578(119864(120578)

) 119889120574 (120578) for 119864 isin Y timesB (R119889) (76)

Then by the first assertion of Theorem 31 in [17] 120591 satisfies120591 le int

119884

]120578119889120574(120578) Now let Φ 119884 times R119889 rarr 119862

1015840

119886119887[0 119879] be

defined by Φ(120578 V1 V

119889) = sum

119889

119897=1V119897120593119897(120578) Then Φ is Y times

B(R119889) ndashB(1198621015840119886119887[0 119879])-measurable on the hypothesis for 120593

119897

119897 isin 1 119889 Let 120590 = 120591 ∘Φminus1 Then clearly 120590 isinM(1198621015840119886119887[0 119879])

and satisfies 120590 le 120591From the change of variables theorem and the second

assertion of Theorem 31 in [17] it follows that for ae(1199091 1199092) isin 1198622

119886119887[0 119879] and for every 120588

1gt 0 and 120588

2gt 0

119865 (12058811199091 12058821199092)

= int

119884

]120578(

2

sum

119895=1

(11986012

1198951205931(120578) 120588

119895119909119895)

sim

2

sum

119895=1

(11986012

119895120593119889(120578) 120588

119895119909119895)

sim

)119889120574 (120578)

= int

119884

[

[

int

R119889exp

119894

119889

sum

119897=1

V119897

[

[

2

sum

119895=1

(11986012

119895120593119897(120578)

120588119895119909119895)

sim

]

]

119889]120578

times (V1 V

119889)]

]

119889120574 (120578)

= int

119884timesR119889exp

119894

119889

sum

119897=1

V119897

[

[

2

sum

119895=1

(11986012

119895120593119897(120578) 120588

119895119909119895)

sim

]

]

119889120591

times (120578 V1 V

119889)

Journal of Function Spaces and Applications 11

= int

119884timesR119889exp

2

sum

119895=1

119894(11986012

119895Φ(120578 V

1 V

119889) 120588119895119909119895)

sim

119889120591

times (120578 V1 V

119889)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 120588119895119909119895)

sim

119889120591 ∘ Φminus1

(119908)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 120588119895119909119895)

sim

119889120590 (119908)

(77)

Thus the functional 119865 given by (74) belongs to F11988611988711986011198602

andsatisfies the inequality

119865 = 120590 le 120591 le int

119884

10038171003817100381710038171003817]120578

10038171003817100381710038171003817119889120574 (120578) (78)

As mentioned in (2) of Remark 6 F 11988611988711986011198602

is a Banachalgebra if Ran(119860

1+ 1198602) is dense in 1198621015840

119886119887[0 119879] In this case

many analytic functionals of 119865 can be formed The followingcorollary is relevant to Feynman integration theories andquantum mechanics where exponential functions play animportant role

Corollary 20 Let 1198601and 119860

2be bounded nonnegative and

self-adjoint operators on 1198621015840119886119887[0 119879] such that Ran(119860

1+ 1198602)

is dense in 1198621015840119886119887[0 119879] Let 119865 be given by (74) with 120579 as in

Theorem 19 and let 120573 C rarr C be an entire function Then(120573 ∘ 119865)(119909

1 1199092) is in F119886119887

11986011198602

In particular exp119865(1199091 1199092) isin

F11988611988711986011198602

Corollary 21 Let 1198601and 119860

2be bounded nonnegative and

self-adjoint operators on 1198621015840119886119887[0 119879] and let 119892

1 119892

119889 be a

finite subset of 1198621015840119886119887[0 119879] Given 120573 = ] where ] isin M(R119889)

define 119865 1198622119886119887[0 119879] rarr C by

119865 (1199091 1199092) = 120573(

2

sum

119895=1

(11986012

1198951198921 119909119895)

sim

2

sum

119895=1

(11986012

119895119892119889 119909119895)

sim

)

(79)

Then 119865 is an element ofF11988611988711986011198602

Proof Let (119884Y 120574) be a probability space and for 119897 isin1 119889 let 120593

119897(120578) equiv 119892

119897 Take 120579(120578 sdot) = 120573(sdot) = ](sdot) Then for

all 1205881gt 0 and 120588

2gt 0 and for ae (119909

1 1199092) isin 1198622

119886119887[0 119879]

int

119884

120579(120578

2

sum

119895=1

(11986012

1198951205931(120578) 120588

119895119909119895)

sim

2

sum

119895=1

(11986012

119895120593119889(120578) 120588

119895119909119895)

sim

)119889120574 (120578)

= int

119884

120573(

2

sum

119895=1

(11986012

1198951198921 120588119895119909119895)

sim

2

sum

119895=1

(11986012

119895119892119889 120588119895119909119895)

sim

)119889120574 (120578)

= 120573(

2

sum

119895=1

(11986012

1198951198921 120588119895119909119895)

sim

2

sum

119895=1

(11986012

119895119892119889 120588119895119909119895)

sim

)

= 119865 (12058811199091 12058821199092)

(80)

Hence 119865 isin F11988611988711986011198602

Remark 22 Let 119889 = 1 and let (119884Y 120574) = ([0 119879]B([0 119879])119898119871) in Theorem 19 where 119898

119871denotes the Lebesgue measure

on [0 119879] ThenTheorems 46 47 and 49 in [18] follow fromthe results in this section by letting119860

1be the identity operator

and letting 1198602equiv 0 on 1198621015840

119886119887[0 119879] The function 120579 studied in

[18] (and mentioned in Remark 2 above) is interpreted as thepotential energy in quantum mechanics

Acknowledgments

The authors would like to express their gratitude to the refer-ees for their valuable comments and suggestions which haveimproved the original paper This research was supported bythe Basic Science Research Program through the NationalResearch Foundation of Korea (NRF) funded by theMinistryof Education (2011-0014552)

References

[1] G Kallianpur and C Bromley ldquoGeneralized Feynman integralsusing analytic continuation in several complex variablesrdquo inStochastic Analysis and Applications M A Pinsky Ed vol 7pp 217ndash267 Marcel Dekker New York NY USA 1984

[2] G Kallianpur D Kannan and R L Karandikar ldquoAnalytic andsequential Feynman integrals on abstract Wiener and Hilbertspaces and a Cameron-Martin formulardquo Annales de lrsquoInstitutHenri Poincare vol 21 no 4 pp 323ndash361 1985

[3] G W Johnson and M L Lapidus The Feynman Integral andFeynmanrsquos Operational Calculus Clarendon Press Oxford UK2000

[4] J Yeh ldquoSingularity of Gaussian measures on function spacesinduced by Brownian motion processes with non-stationaryincrementsrdquo Illinois Journal of Mathematics vol 15 pp 37ndash461971

[5] J Yeh Stochastic Processes and the Wiener Integral MarcelDekker New York NY USA 1973

[6] S J Chang J G Choi and D Skoug ldquoIntegration by partsformulas involving generalized Fourier-Feynman transformson function spacerdquo Transactions of the American MathematicalSociety vol 355 no 7 pp 2925ndash2948 2003

[7] S J Chang J G Choi and D Skoug ldquoParts formulas involvingconditional generalized Feynman integrals and conditionalgeneralized Fourier-Feynman transforms on function spacerdquo

12 Journal of Function Spaces and Applications

Integral Transforms and Special Functions vol 15 no 6 pp 491ndash512 2004

[8] S J Chang J G Choi and D Skoug ldquoEvaluation formulas forconditional function space integralsmdashIrdquo Stochastic Analysis andApplications vol 25 no 1 pp 141ndash168 2007

[9] S J Chang J G Choi and D Skoug ldquoGeneralized Fourier-Feynman transforms convolution products and first variationson function spacerdquoTheRockyMountain Journal ofMathematicsvol 40 no 3 pp 761ndash788 2010

[10] S J Chang and D M Chung ldquoConditional function spaceintegrals with applicationsrdquo The Rocky Mountain Journal ofMathematics vol 26 no 1 pp 37ndash62 1996

[11] S J Chang H S Chung and D Skoug ldquoIntegral transformsof functionals in 119871

2(119862119886119887[0 119879])rdquoThe Journal of Fourier Analysis

and Applications vol 15 no 4 pp 441ndash462 2009[12] S J Chang and D Skoug ldquoGeneralized Fourier-Feynman

transforms and a first variation on function spacerdquo IntegralTransforms and Special Functions vol 14 pp 375ndash393 2003

[13] J G Choi and S J Chang ldquoGeneralized Fourier-Feynmantransform and sequential transforms on function spacerdquo Jour-nal of the Korean Mathematical Society vol 49 pp 1065ndash10822012

[14] R H Cameron and D A Storvick ldquoRelationships between theWiener integral and the analytic Feynman integralrdquo Rendicontidel Circolo Matematico di Palermo no 17 supplement pp 117ndash133 1987

[15] RHCameron andDA Storvick ldquoChange of scale formulas forWiener integralrdquo Rendiconti del Circolo Matematico di Palermono 17 pp 105ndash115 1987

[16] G W Johnson ldquoThe equivalence of two approaches to theFeynman integralrdquo Journal of Mathematical Physics vol 23 pp2090ndash2096 1982

[17] G W Johnson and D L Skoug ldquoNotes on the FeynmanintegralmdashIII the Schroedinger equationrdquo Pacific Journal ofMathematics vol 105 pp 321ndash358 1983

[18] S J Chang J G Choi and S D Lee ldquoA Fresnel type class onfunction spacerdquo Journal of the Korean Society of MathematicalEducation Series B vol 16 no 1 pp 107ndash119 2009

[19] I Yoo B J Kim and B S Kim ldquoA change of scale formulafor a function space integral on 119862

119886119887[0 119879]rdquo Proceedings of the

American Mathematical Society vol 141 no 8 pp 2729ndash27392013

[20] K S Chang G W Johnson and D L Skoug ldquoFunctions inthe Fresnel classrdquo Proceedings of the American MathematicalSociety vol 100 no 2 pp 309ndash318 1987

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 2: Research Article Generalized Analytic Fourier-Feynman ...downloads.hindawi.com/journals/jfs/2013/954098.pdf · Journal of Function Spaces and Applications Volume , Article ID , pages

2 Journal of Function Spaces and Applications

of functionals on 1198622119886119887[0 119879] very difficult However when

119886(119905) equiv 0 and 119887(119905) = 119905 on [0 119879] the general function space119862119886119887[0 119879] reduces to the Wiener space 119862

0[0 119879]

2 Definitions and Preliminaries

Let 119886(119905) be an absolutely continuous real-valued function on[0 119879] with 119886(0) = 0 1198861015840(119905) isin 1198712[0 119879] and let 119887(119905) be a strictlyincreasing continuously differentiable real-valued functionwith 119887(0) = 0 and 1198871015840(119905) gt 0 for each 119905 isin [0 119879]The generalizedBrownian motion process 119884 determined by 119886(119905) and 119887(119905) isa Gaussian process with mean function 119886(119905) and covariancefunction 119903(119904 119905) = min119887(119904) 119887(119905) For more details see[6 10 12] By Theorem 142 in [5] the probability measure120583 induced by 119884 taking a separable version is supportedby 119862119886119887[0 119879] (which is equivalent to the Banach space of

continuous functions 119909 on [0 119879]with 119909(0) = 0 under the supnorm) Hence (119862

119886119887[0 119879] B(119862

119886119887[0 119879]) 120583) is the function

space induced by119884whereB(119862119886119887[0 119879]) is the Borel120590-algebra

of 119862119886119887[0 119879] We then complete this function space to obtain

(119862119886119887[0 119879] W(119862

119886119887[0 119879]) 120583) whereW(119862

119886119887[0 119879]) is the set

of all Wiener measurable subsets of 119862119886119887[0 119879]

A subset 119861 of 119862119886119887[0 119879] is said to be scale-invariant

measurable provided 120588119861 is W(119862119886119887[0 119879])-measurable for all

120588 gt 0 and a scale-invariant measurable set 119873 is said to be ascale-invariant null set provided 120583(120588119873) = 0 for all 120588 gt 0A property that holds except on a scale-invariant null setis said to hold scale-invariant almost everywhere (s-ae) Afunctional119865 is said to be scale-invariantmeasurable provided119865 is defined on a scale-invariant measurable set and 119865(120588sdot) isW(119862119886119887[0 119879])-measurable for every 120588 gt 0 If two functionals

119865 and119866 defined on119862119886119887[0 119879] are equal s-ae we write 119865 asymp 119866

Let 11987112119886119887[0 119879] be the space of Lebesgue measurable func-

tions on [0 119879] given by

11987112

119886119887[0 119879] = V int

119879

0

|V (119904)|2119889119887 (119904) lt infin

int

119879

0

|V (119904)| 119889 |119886| (119904) lt infin

(4)

where |119886|(sdot) is the total variation function of 119886(sdot) Then11987112

119886119887[0 119879] is a separable Hilbert space with inner product

defined by

(119906 V)11987112

119886119887

= int

119879

0

119906 (119905) V (119905) 119889119887 (119905)

+ (int

119879

0

119906 (119905) 119889119886 (119905)) (int

119879

0

V (119905) 119889119886 (119905))

(5)

In particular note that 11990611987112

119886119887

equiv [(119906 119906)11987112

119886119887

]12

= 0 if and onlyif 119906(119905) = 0 ae on [0 119879]

Let 120601119895infin

119895=1be a complete orthonormal set in 11987112

119886119887[0 119879]

each of whose elements is of bounded variation on [0 119879] suchthat

int

119879

0

120601119895(119905) 120601119896(119905) 119889119887 (119905) =

0 119895 = 119896

1 119895 = 119896

(6)

Then for each V isin 11987112119886119887[0 119879] the Paley-Wiener-Zygmund

(PWZ) stochastic integral ⟨V 119909⟩ is defined by the followingformula

⟨V 119909⟩ = lim119899rarrinfin

int

119879

0

119899

sum

119895=1

(V 120601119895)119886119887

120601119895(119905) 119889119909 (119905) (7)

for all 119909 isin 119862119886119887[0 119879] for which the limit exists one can show

that for each V isin 11987112119886119887[0 119879] the PWZ stochastic integral

⟨V 119909⟩ exists for 120583-ae 119909 isin 119862119886119887[0 119879] and if V is of bounded

variation on [0 119879] then the PWZ stochastic integral ⟨V 119909⟩equals the Riemann-Stieltjes integral int119879

0

V(119905)119889119909(119905) for s-ae119909 isin 119862

119886119887[0 119879]

Remark 1 (1) For each V isin 11987112119886119887[0 119879] the PWZ stochastic

integral ⟨V 119909⟩ is a Gaussian random variable on 119862119886119887[0 119879]

with mean int1198790

V(119904)119889119886(119904) and variance int1198790

V2(119904)119889119887(119904)(2) For all 119906 V isin 11987112

119886119887[0 119879]

int

119862119886119887[0119879]

⟨119906 119909⟩⟨V 119909⟩ 119889120583 (119909)

= int

119879

0

119906 (119904) V (119904) 119889119887 (119904)

+ (int

119879

0

119906 (119904) 119889119886 (119904)) (int

119879

0

V (119904) 119889119886 (119904))

(8)

Hence we see that for all 119906 V isin 11987112119886119887[0 119879] int119879

0

119906(119904)V(119904)119889119887(119904) =0 if and only if ⟨119906 119909⟩ and ⟨V 119909⟩ are independent randomvariables

The following Cameron-Martin subspace of 119862119886119887[0 119879]

plays an important role throughout this paperLet

1198621015840

119886119887[0 119879] = 119908 isin 119862

119886119887[0 119879] 119908 (119905) = int

119905

0

119911 (119904) 119889119887 (119904)

for some 119911 isin 11987112119886119887[0 119879]

(9)

For 119908 isin 1198621015840119886119887[0 119879] let119863 1198621015840

119886119887[0 119879] rarr 119871

12

119886119887[0 119879] be defined

by the following formula

119863119908 (119905) =

119889120582119908

119889120582119887

(119905) (10)

where 119889120582119908119889120582119887denotes the Radon-Nikodym derivative of

the signed measure 120582119908

induced by 119908 with respect tothe Borel-Stieltjes measure 120582

119887induced by 119887 Then 1198621015840

119886119887equiv

1198621015840

119886119887[0 119879] with inner product

(1199081 1199082)1198621015840

119886119887

= int

119862119886119887[0119879]

⟨1198631199081 119909⟩⟨119863119908

2 119909⟩ 119889120583 (119909) (11)

is a separable Hilbert space

Journal of Function Spaces and Applications 3

Using (8) we observe that the linear operator given by(10) is an isometry In fact the inverse operator 119863minus1 11987112

119886119887[0 119879] rarr 119862

1015840

119886119887[0 119879] is given by

(119863minus1

119911) (119905) = int

119905

0

119911 (119904) 119889119887 (119904) (12)

Moreover the triple (1198621015840119886119887[0 119879] 119862

119886119887[0 119879] 120583) becomes an

abstract Wiener spaceThroughout this paper for 119908 isin 1198621015840

119886119887[0 119879] we will use the

notation (119908 119909)sim instead of ⟨119863119908 119909⟩We also use the followingnotations for 119908

1 1199082 119908 isin 1198621015840

119886119887[0 119879]

(1199081 1199082)119887= int

119879

0

1198631199081(119905) 119863119908

2(119905) 119889119887 (119905)

119908119887= radic(119908119908)

119887

(13)

Then 1198621015840119886119887[0 119879] with the inner product given by (13) is also a

separable Hilbert space It is easy to see that the two norms sdot 1198621015840

119886119887

and sdot 119887are equivalent Furthermore we have the

following assertions

(i) 119886(sdot) is an element of 1198621015840119886119887[0 119879]

(ii) For each 119908 isin 1198621015840119886119887[0 119879] the random variable 119909 997891rarr

(119908 119909)sim is Gaussian with mean (119908 119886)

119887and variance

1199082

119887

(iii) (119908 120572119909)sim = (120572119908 119909)sim = 120572(119908 119909)sim for any real number120572 119908 isin 1198621015840

119886119887[0 119879] and 119909 isin 119862

119886119887[0 119879]

(iv) Let 1199081 119908

119899 be a subset of 1198621015840

119886119887[0 119879] such that

int

119879

0

119863119908119894(119905)119863119908

119895(119905)119889119887(119905) = 120575

119894119895 where 120575

119894119895is the Kro-

necker delta Then the random variables (119908119894 119909)simrsquos are

independent

In this paper we adopt asmuch as possible the definitionsand notations used in [7 9 12 13] for the definitions ofthe generalized analytic Feynman integral and the GFFT offunctionals on 119862

119886119887[0 119879]

The following integration formula is used several times inthis paper

int

R

exp minus1205721199062 + 120573119906 119889119906 = radic120587120572

exp1205732

4120572

(14)

for complex numbers 120572 and 120573 with Re(120572) gt 0

3 The GFFT of Functionals in a BanachAlgebra F119886119887

11986011198602

LetM(1198621015840119886119887[0 119879]) be the space of complex-valued countably

additive (and hence finite) Borel measures on 1198621015840119886119887[0 119879]

M(1198621015840119886119887[0 119879]) is a Banach algebra under the total variation

norm and with convolution as multiplicationWe define the Fresnel type class F(119862

119886119887[0 119879]) of

functionals on 119862119886119887[0 119879] as the space of all stochastic

Fourier transforms of elements of M(1198621015840119886119887[0 119879]) that is

119865 isin F(119862119886119887[0 119879]) if and only if there exists a measure 119891 in

M(1198621015840119886119887[0 119879]) such that

119865 (119909) = int

1198621015840

119886119887[0119879]

exp 119894(119908 119909)sim 119889119891 (119908) (15)

for s-ae 119909 isin 119862119886119887[0 119879] More precisely since we will identify

functionals which coincide s-ae on 119862119886119887[0 119879]F(119862

119886119887[0 119879])

can be regarded as the space of all 119904-equivalence classes offunctionals of the form (15)

The Fresnel type class F(119862119886119887[0 119879]) is a Banach algebra

with norm

119865 =10038171003817100381710038171198911003817100381710038171003817= int

1198621015840

119886119887[0119879]

11988910038161003816100381610038161198911003816100381610038161003816(119908) (16)

In fact the correspondence 119891 997891rarr 119865 is injective carriesconvolution into pointwise multiplication and is a Banachalgebra isomorphism where 119891 and 119865 are related by (15)

Remark 2 The Banach algebra F(119862119886119887[0 119879]) contains sev-

eral interesting functions which arise naturally in quantummechanics Let M(R) be the class of C-valued countablyadditive measures on B(R) the Borel class of R For ] isinM(R) the Fourier transform ] of ] is a complex-valuedfunction defined on R by the following formula

] (119906) = intR

exp 119894119906V 119889] (V) (17)

Let G be the set of all complex-valued functions on[0 119879]timesR of the form 120579(119904 119906) =

119904(119906) where 120590

119904 0 le 119904 le 119879 is

a family fromM(R) satisfying the following two conditions

(i) for every 119864 isinB(R) 120590119904(119864) is Borel measurable in 119904

(ii) int1198790

120590119904119889119887(119904) lt +infin

Let 120579 isin G and let119867 be given by

119867(119909) = expint119879

0

120579 (119905 119909 (119905)) 119889119905 (18)

for s-ae 119909 isin 119862119886119887[0 119879] Then using the methods similar

to those used in [18] we can show that the function 120579(119905 119906)is Borel-measurable and that 120579(119905 119909(119905)) int119879

0

120579(119905 119909(119905))119889119905 and119867(119909) are elements of F(119862

119886119887[0 119879]) These facts are relevant

to quantum mechanics where exponential functions play aprominent role

Let119860 be a nonnegative self-adjoint operator on1198621015840119886119887[0 119879]

and 119891 any complex measure on 1198621015840119886119887[0 119879] Then the func-

tional

119865 (119909) = int

1198621015840

119886119887[0119879]

exp 119894(11986012119908 119909)sim

119889119891 (119908) (19)

belongs to F(119862119886119887[0 119879]) because it can be rewritten as

int1198621015840

119886119887[0119879]

exp119894(119908 119909)sim119889119891119860(119908) for 119891

119860= 119891 ∘ (119860

12

)minus1 Let 119860 be

self-adjoint but not nonnegative Then 119860 has the form

119860 = 119860+

minus 119860minus

(20)

4 Journal of Function Spaces and Applications

where both 119860+ and 119860minus are bounded nonnegative and self-adjoint operators

In this section we will extend the ideas of [1] to obtainexpressions of the generalized analytic Feynman integral andthe GFFT of functionals of the form (19) when119860 is no longerrequired to be nonnegative To do this we will introducedefinitions and notations analogous to those in [7 12 13]

Let W(1198622119886119887[0 119879]) denote the class of all Wiener mea-

surable subsets of the product function space 1198622119886119887[0 119879] A

subset 119861 of 1198622119886119887[0 119879] is said to be scale-invariant measurable

provided (12058811199091 12058821199092) (119909

1 1199092) isin 119861 is W(1198622

119886119887[0 119879])-

measurable for every 1205881gt 0 and 120588

2gt 0 and a scale-

invariantmeasurable subset119873 of1198622119886119887[0 119879] is said to be scale-

invariant null provided (120583 times 120583)((12058811199091 12058821199092) (119909

1 1199092) isin

119873) = 0 for every 1205881gt 0 and 120588

2gt 0 A property that

holds except on a scale-invariant null set is said to hold s-ae on 1198622

119886119887[0 119879] A functional 119865 on 1198622

119886119887[0 119879] is said to be

scale-invariant measurable provided 119865 is defined on a scale-invariant measurable set and 119865(120588

1sdot 1205882sdot) is W(1198622

119886119887[0 119879])-

measurable for every 1205881gt 0 and 120588

2gt 0 If two functionals

119865 and 119866 defined on 1198622119886119887[0 119879] are equal s-ae then we write

119865 asymp 119866We denote the product function space integral of a

W(1198622119886119887[0 119879])-measurable functional 119865 by

119864 [119865] equiv 119864119909[119865 (1199091 1199092)]

= int

1198622

119886119887[0119879]

119865 (1199091 1199092) 119889 (120583 times 120583) (119909

1 1199092)

(21)

whenever the integral existsThroughout this paper letCC

+and C

+denote the set of

complex numbers complex numbers with positive real partand nonzero complex numbers with nonnegative real partrespectively Furthermore for all 120582 isin C

+ 120582minus12 (or 12058212) is

always chosen to have positive real part We also assume thatevery functional 119865 on 1198622

119886119887[0 119879] we consider is s-ae defined

and is scale-invariant measurable

Definition 3 Let C2+equiv C+times C+and let C2

+equivC+timesC+ Let

119865 1198622

119886119887[0 119879] rarr C be such that for each 120582

1gt 0 and 120582

2gt 0

the function space integral

119869 (1205821 1205822)

= int

1198622

119886119887[0119879]

119865 (120582minus12

11199091 120582minus12

21199092) 119889 (120583 times 120583) (119909

1 1199092)

(22)

exists If there exists a function 119869lowast(1205821 1205822) analytic inC2

+such

that 119869lowast(1205821 1205822) = 119869(120582

1 1205822) for all 120582

1gt 0 and 120582

2gt 0 then

119869lowast

(1205821 1205822) is defined to be the analytic function space integral

of 119865 over 1198622119886119887[0 119879] with parameter 120582 = (120582

1 1205822) and for 120582 isin

C2+we write

119864an[119865] equiv 119864

an

119909[119865 (1199091 1199092)]

equiv 119864

an(12058211205822)

11990911199092[119865 (1199091 1199092)] = 119869

lowast

(1205821 1205822)

(23)

Let 1199021and 1199022be nonzero real numbers Let 119865 be a functional

such that 119864an[119865] exists for all 120582 isin C2+ If the following limit

exists we call it the generalized analytic Feynman integral of119865 with parameter 119902 = (119902

1 1199022) and we write

119864anf 119902[119865] equiv 119864

anf 119902119909[119865 (1199091 1199092)]

equiv 119864

anf(11990211199022)

11990911199092[119865 (1199091 1199092)] = lim

120582rarrminus119894 119902

119864an[119865]

(24)

where 120582 = (1205821 1205822) rarr minus119894 119902 = (minus119894119902

1 minus1198941199022) through values in

C2+

Definition 4 Let 1199021and 1199022be nonzero real numbers For 120582 =

(1205821 1205822) isin C2+and (119910

1 1199102) isin 1198622

119886119887[0 119879] let

119879 120582(119865) (119910

1 1199102) equiv 119879(12058211205822)(119865) (119910

1 1199102)

= 119864

an

119909[119865 (1199101+ 1199091 1199102+ 1199092)]

(25)

For 119901 isin (1 2] we define the 119871119901analytic GFFT 119879(119901)

119902(119865) of 119865

by the formula ( 120582 isin C2+)

119879(119901)

119902(119865) (119910

1 1199102) equiv 119879(119901)

(1199021 1199022)(119865) (119910

1 1199102)

= lim120582rarrminus119894 119902

119879 120582(119865) (119910

1 1199102)

(26)

if it exists that is for each 1205881gt 0 and 120588

2gt 0

lim120582rarrminus119894 119902

int

1198622

119886119887[0119879]

100381610038161003816100381610038161003816

119879 120582(119865) (120588

11199101 12058821199102)

minus119879(119901)

119902(119865) (120588

11199101 12058821199102)

100381610038161003816100381610038161003816

1199011015840

119889 (120583 times 120583) (1199101 1199102)

= 0

(27)

where 1119901+11199011015840 = 1We define the 1198711analytic GFFT119879(1)

119902(119865)

of 119865 by the formula ( 120582 isin C2+)

119879(1)

119902(119865) (119910

1 1199102) = lim120582rarrminus119894 119902

119879 120582(119865) (119910

1 1199102) (28)

if it exists

We note that for 1 le 119901 le 2 119879(119901)119902(119865) is defined only s-ae

We also note that if 119879(119901)119902(119865) exists and if 119865 asymp 119866 then 119879(119901)

119902(119866)

exists and 119879(119901)119902(119866) asymp 119879

(119901)

119902(119865) Moreover from Definition 4

we see that for 1199021 1199022isin R minus 0

119864

anf 119902119909[119865 (1199091 1199092)] = 119879

(1)

119902(119865) (0 0) (29)

Next we give the definition of the generalized Fresnel typeclassF119886119887

11986011198602

Journal of Function Spaces and Applications 5

Definition 5 Let 1198601and 119860

2be bounded nonnegative and

self-adjoint operators on 1198621015840119886119887[0 119879] The generalized Fresnel

type classF11988611988711986011198602

of functionals on1198622119886119887[0 119879] is defined as the

space of all functionals 119865 on 1198622119886119887[0 119879] of the following form

119865 (1199091 1199092) = int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119909119895)

sim

119889119891 (119908) (30)

for some119891 isinM(1198621015840119886119887[0 119879]) More precisely since we identify

functionals which coincide s-ae on 1198622119886119887[0 119879] F119886119887

11986011198602

canbe regarded as the space of all 119904-equivalence classes offunctionals of the form (30)

Remark 6 (1) In Definition 5 let 1198601be the identity operator

on 1198621015840119886119887[0 119879] and 119860

2equiv 0 Then F 119886119887

11986011198602

is essentially theFresnel type class F(119862

119886119887[0 119879]) and for 119901 isin [1 2] and

nonzero real numbers 1199021and 1199022

119879(119901)

(1199021 1199022)(119865) (119910

1 1199102) = 119879(119901)

1199021

(1198650) (1199101) (31)

if it exists where 1198650(1199091) = 119865(119909

1 1199092) for all (119909

1 1199092) isin

1198622

119886119887[0 119879] and 119879(119901)

1199021

(1198650) means the 119871

119901analytic GFFT on

119862119886119887[0 119879] see [6 12](2) The map 119891 997891rarr 119865 defined by (30) sets up an algebra

isomorphism betweenM(1198621015840119886119887[0 119879]) andF119886119887

11986011198602

if Ran(1198601+

1198602) is dense in1198621015840

119886119887[0 119879] where Ran indicates the range of an

operator In this caseF 11988611988711986011198602

becomes a Banach algebra underthe norm 119865 = 119891 For more details see [1]

Remark 7 Let 119865 be given by (30) In evaluating119864119909[119865(120582minus12

11199091 120582minus12

21199092)] and 119879

(12058211205822)(119865)(1199101 1199102) = 119864

119909[119865(1199101+

120582minus12

11199091 1199102+ 120582minus12

21199092)] for 120582

1gt 0 and 120582

2gt 0 the expression

120595 (120582 119908)

equiv 120595 (1205821 1205822 1198601 1198602 119908)

= exp

2

sum

119895=1

[

[

minus

(119860119895119908119908)

119887

2120582119895

+ 119894120582minus12

119895(11986012

119895119908 119886)119887

]

]

(32)

occurs Clearly for 120582119895gt 0 119895 isin 1 2 |120595( 120582 119908)| le 1 for all

119908 isin 1198621015840

119886119887[0 119879] But for 120582 isin C2

+ |120595( 120582 119908)| is not necessarily

bounded by 1Note that for each 120582

119895isinC+with 120582

119895= 120572119895+ 119894120573119895 119895 isin 1 2

12058212

119895=

radicradic1205722

119895+ 1205732

119895+ 120572119895

2

+ 119894

120573119895

10038161003816100381610038161003816120573119895

10038161003816100381610038161003816

radicradic1205722

119895+ 1205732

119895minus 120572119895

2

120582minus12

119895=radic

radic1205722

119895+ 1205732

119895+ 120572119895

2 (1205722

119895+ 1205732

119895)

minus 119894

120573119895

10038161003816100381610038161003816120573119895

10038161003816100381610038161003816

radic

radic1205722

119895+ 1205732

119895minus 120572119895

2 (1205722

119895+ 1205732

119895)

(33)

Hence for 120582119895isinC+with 120582

119895= 120572119895+ 119894120573119895 119895 isin 1 2

10038161003816100381610038161003816120595 (120582 119908)

10038161003816100381610038161003816

= exp

2

sum

119895=1

[

[

[

[

minus

120572119895

2 (1205722

119895+ 1205732

119895)

(119860119895119908119908)

119887

+

120573119895

10038161003816100381610038161003816120573119895

10038161003816100381610038161003816

radic

radic1205722

119895+ 1205732

119895minus 120572119895

2 (1205722

119895+ 1205732

119895)

(11986012

119895119908 119886)119887

]

]

]

]

(34)

The right hand side of (34) is an unbounded functionof 119908 for 119908 isin 1198621015840

119886119887[0 119879] Thus 119864an[119865] 119864anf 119902[119865] 119879

120582(119865) and

119879(119901)

119902(119865) might not exist Thus throughout this paper we will

need to put additional restrictions on the complex measure119891 corresponding to 119865 in order to obtain our results for theGFFT and the generalized analytic Feynman integral of 119865

In view of Remark 7 we clearly need to impose additionalrestrictions on the functionals 119865 inF119886119887

11986011198602

For a positive real number 119902

0 let

Γ1199020

=

120582 = (120582

1 1205822) isinC2

+| 120582119895= 120572119895+ 119894120573119895

10038161003816100381610038161003816Im (120582minus12

119895)

10038161003816100381610038161003816=radic

radic1205722

119895+ 1205732

119895minus 120572119895

2 (1205722

119895+ 1205732

119895)

lt

1

radic21199020

119895 = 1 2

(35)

and let119896 (1199020 119908) equiv 119896 (119902

0 1198601 1198602 119908)

= exp

2

sum

119895=1

(21199020)minus121003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817119887119886119887

(36)

Then for all 120582 = (1205821 1205822) isin Γ1199020

10038161003816100381610038161003816120595 (120582 119908)

10038161003816100381610038161003816le exp

2

sum

119895=1

radic

radic1205722

119895+ 1205732

119895minus 120572119895

2 (1205722

119895+ 1205732

119895)

100381610038161003816100381610038161003816

(11986012

119895119908 119886)119887

100381610038161003816100381610038161003816

le exp

2

sum

119895=1

radic

radic1205722

119895+ 1205732

119895minus 120572119895

2 (1205722

119895+ 1205732

119895)

1003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817119887119886119887

lt 119896 (1199020 119908)

(37)

6 Journal of Function Spaces and Applications

We note that for all real 119902119895with |119902

119895| gt 1199020 119895 isin 1 2

(minus119894119902119895)

minus12

=

1

radic

100381610038161003816100381610038162119902119895

10038161003816100381610038161003816

+ sign (119902119895)

119894

radic

100381610038161003816100381610038162119902119895

10038161003816100381610038161003816

(38)

and (minus1198941199021 minus1198941199022) isin Γ1199020

For the existence of the GFFT of 119865 we define a subclass

F1199020

11986011198602

ofF 11988611988711986011198602

by 119865 isin F 119902011986011198602

if and only if

int

1198621015840

119886119887[0119879]

119896 (1199020 119908) 119889

10038161003816100381610038161198911003816100381610038161003816(119908) lt +infin (39)

where 119891 and 119865 are related by (30) and 119896 is given by (36)

Remark 8 Note that in case 119886(119905) equiv 0 and 119887(119905) = 119905 on [0 119879]the function space 119862

119886119887[0 119879] reduces to the classical Wiener

space 1198620[0 119879] and (119908 119886)

119887= 0 for all 119908 isin 1198621015840

119886119887[0 119879] =

1198621015840

0[0 119879] Hence for all 120582 isin C2

+ |120595( 120582 119908)| le 1 and for any

positive real number 1199020F 119902011986011198602

= F11986011198602

theKallianpur andBromleyrsquos class introduced in Section 1

Theorem 9 Let 1199020be a positive real number and let 119865 be an

element ofF 119902011986011198602

Then for any nonzero real numbers 1199021and

1199022with |119902

119895| gt 1199020 119895 isin 1 2 the 119871

1analytic GFFT of 119865 119879(1)

119902(119865)

exists and is given by the following formula

119879(1)

119902(119865) (119910

1 1199102)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119910119895)

sim

120595(minus119894 119902 119908) 119889119891 (119908)

(40)

for s-ae (1199101 1199102) isin 1198622

119886119887[0 119879] where 120595 is given by (32)

Proof We first note that for 119895 isin 1 2 the PWZ stochasticintegral (11986012

119895119908 119909)sim is a Gaussian random variable withmean

(11986012

119895119908 119886)119887and variance 11986012

119895119908

2

119887

= (119860119895119908119908)119887

Hence using(30) the Fubini theorem the change of variables theorem and(14) we have that for all 120582

1gt 0 and 120582

2gt 0

119869 (1199101 1199102 1205821 1205822)

equiv 119864119909[119865 (1199101+ 120582minus12

11199091 1199102+ 120582minus12

21199092)]

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119910119895)

sim

times(

2

prod

119895=1

119864119909119895

[exp 119894120582minus12119895(11986012

119895119908 119909119895)

sim

])119889119891 (119908)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119910119895)

sim

times[

[

[

2

prod

119895=1

(2120587(119860119895119908119908)

119887

)

minus12

times int

R

exp

119894120582minus12

119895119906119895

minus

[119906119895minus (11986012

119895119908 119886)119887

]

2

2(119860119895119908119908)

119887

119889119906119895

]

]

]

119889119891(119908)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119910119895)

sim

120595(120582 119908) 119889119891 (119908)

(41)

Let

119879 120582(119865) (119910

1 1199102)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119910119895)

sim

120595(120582 119908) 119889119891 (119908)

(42)

for each 120582 isin C2+ Clearly

119879 120582(119865) (119910

1 1199102) = 119869 (119910

1 1199102 1205821 1205822) (43)

for all 1205821gt 0 and 120582

2gt 0 Let Γ

1199020

be given by (35)Then for all120582 isin Int(Γ

1199020

)

1003816100381610038161003816119879 120582(119865) (119910

1 1199102)1003816100381610038161003816lt int

1198621015840

119886119887[0119879]

119896 (1199020 119908) 119889

10038161003816100381610038161198911003816100381610038161003816(119908) lt +infin

(44)

Using this fact and the dominated convergence theoremwe see that 119879

120582(119865)(1199101 1199102) is a continuous function of 120582 =

(1205821 1205822) on Int(Γ

1199020

) For each 119908 isin 1198621015840119886119887[0 119879] 120595( 120582 119908) is an

analytic function of 120582 throughout the domain Int(Γ1199020

) so thatintΔ

120595(120582 119908)119889

120582 = 0 for every rectifiable simple closed curve

Δ in Int(Γ1199020

) By (42) the Fubini theorem and the Moreratheorem we see that 119879

120582(119865)(1199101 1199102) is an analytic function of

120582 throughout the domain Int(Γ

1199020

) Finally using (28) withthe dominated convergence theorem we obtain the desiredresult

Theorem 10 Let 1199020and 119865 be as inTheorem 9Then for all 119901 isin

(1 2] and all nonzero real numbers 1199021and 119902

2with |119902

119895| gt 1199020

119895 isin 1 2 the119871119901analytic GFFT of119865119879(119901)

119902(119865) exists and is given

by the right hand side of (40) for s-ae (1199101 1199102) isin 1198622

119886119887[0 119879]

Journal of Function Spaces and Applications 7

Proof Let Γ1199020

be given by (35) It was shown in the proofof Theorem 9 that 119879

120582(119865)(1199101 1199102) is an analytic function of 120582

throughout the domain Int(Γ1199020

) In viewofDefinition 4 it willsuffice to show that for each 120588

1gt 0 and 120588

2gt 0

lim120582rarrminus119894 119902

int

1198622

119886119887[0119879]

100381610038161003816100381610038161003816

119879 120582(119865) (120588

11199101 12058821199102)

minus119879(119901)

119902(119865) (120588

11199101 12058821199102)

100381610038161003816100381610038161003816

1199011015840

times 119889 (120583 times 120583) (1199101 1199102) = 0

(45)

Fixing 119901 isin (1 2] and using the inequalities (37) and (39)we obtain that for all 120588

119895gt 0 119895 isin 1 2 and all 120582 isin Γ

1199020

100381610038161003816100381610038161003816

119879 120582(119865) (120588

11199101 12058821199102) minus 119879(119901)

119902(119865) (120588

11199101 12058821199102)

100381610038161003816100381610038161003816

1199011015840

le

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894120588119895(11986012

119895119908 119910119895)

sim

times[120595 (120582 119908) minus 120595 (minus119894 119902 119908)] 119889119891 (119908)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1199011015840

le (int

1198621015840

119886119887[0119879]

[

10038161003816100381610038161003816120595 (120582 119908)

10038161003816100381610038161003816+

10038161003816100381610038161003816120595 (minus119894 119902 119908)

10038161003816100381610038161003816] 11988910038161003816100381610038161198911003816100381610038161003816(119908))

1199011015840

le (2int

1198621015840

119886119887[0119879]

119896 (1199020 119908) 119889

10038161003816100381610038161198911003816100381610038161003816(119908))

1199011015840

lt +infin

(46)

Hence by the dominated convergence theorem we see thatfor each 119901 isin (1 2] and each 120588

1gt 0 and 120588

2gt 0

lim120582rarrminus119894 119902

int

1198622

119886119887[0119879]

100381610038161003816100381610038161003816

119879 120582(119865) (120588

11199101 12058821199102)

minus119879(119901)

119902(119865) (120588

11199101 12058821199102)

100381610038161003816100381610038161003816

1199011015840

119889 (120583 times 120583) (1199101 1199102)

= lim120582rarrminus119894 119902

int

1198622

119886119887[0119879]

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 120588119895119910119895)

sim

times 120595(120582 119908) 119889119891 (119908)

minus int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 120588119895119910119895)

sim

times120595(minus119894 119902 119908) 119889119891 (119908)

10038161003816100381610038161003816100381610038161003816100381610038161003816

1199011015840

times 119889 (120583 times 120583) (1199101 1199102)

= int

1198622

119886119887[0119879]

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 120588119895119910119895)

sim

times lim120582rarrminus119894 119902

[120595 (120582 119908)

minus120595 (minus119894 119902 119908)] 119889119891 (119908)

10038161003816100381610038161003816100381610038161003816100381610038161003816

1199011015840

times 119889 (120583 times 120583) (1199101 1199102)

= 0

(47)

which concludes the proof of Theorem 10

Remark 11 (1) In view of Theorems 9 and 10 we see thatfor each 119901 isin [1 2] the 119871

119901analytic GFFT of 119865 119879(119901)

119902(119865) is

given by the right hand side of (40) for 1199020 1199021 1199022 and 119865 as

in Theorem 9 and for s-ae (1199101 1199102) isin 1198622

119886119887[0 119879]

119879(119901)

119902(119865) (119910

1 1199102) = 119864

anf 119902119909[119865 (1199101+ 1199091 1199102+ 1199092)] 119901 isin [1 2]

(48)

In particular using this fact and (29) we have that for all 119901 isin[1 2]

119879(119901)

119902(119865) (0 0) = 119864

anf 119902119909[119865 (1199091 1199092)] (49)

(2) For nonzero real numbers 1199021and 119902

2with |119902

119895| gt 119902

0

119895 isin 1 2 define a set function 119891 119860119902B(1198621015840

119886119887[0 119879]) rarr C by

119891

119860

119902(119861) = int

119861

120595 (minus119894 119902 119908) 119889119891 (119908) 119861 isinB (1198621015840

119886119887[0 119879])

(50)

where 119891 and 119865 are related by (30) and B(1198621015840119886119887[0 119879]) is the

Borel 120590-algebra of 1198621015840119886119887[0 119879] Then it is obvious that 119891 119860

119902

belongs to M(1198621015840119886119887[0 119879]) and for all 119901 isin [1 2] 119879(119901)

119902(119865) can

be expressed as

119879(119901)

119902(119865) (119910

1 1199102) = int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119910119895)

sim

119889119891

119860

119902(119908)

(51)

for s-ae (1199101 1199102) isin 119862

2

119886119887[0 119879] Hence 119879(119901)

119902(119865) belongs to

F 11988611988711986011198602

for all 119901 isin [1 2]

4 Relationships between the GFFT and theFunction Space Integral of Functionals inF11988611988711986011198602

In this section we establish a relationship between the GFFTand the function space integral of functionals in the Fresneltype classF119886119887

11986011198602

8 Journal of Function Spaces and Applications

Throughout this section for convenience we use thefollowing notation for given 120582 isin C

+and 119899 = 1 2 let

119866119899(120582 119909)

= exp[1 minus 1205822

]

119899

sum

119896=1

[(119890119896 119909)sim

]

2

+ (12058212

minus 1)

119899

sum

119896=1

(119890119896 119886)1198621015840

119886119887

(119890119896 119909)sim

(52)

where 119890119899infin

119899=1is a complete orthonormal set in (1198621015840

119886119887[0 119879]

sdot 119887)To obtain our main results Theorems 14 and 17 below

we state a fundamental integration formula for the functionspace 119862

119886119887[0 119879]

Let 1198901 119890

119899 be an orthonormal set in (1198621015840

119886119887[0 119879] sdot

119887)

let 119896 R119899 rarr C be a Lebesgue measurable function and let119870 119862119886119887[0 119879] rarr C be given by

119870 (119909) = 119896 ((1198901 119909)sim

(119890119899 119909)sim

) (53)

Then

119864 [119870] = int

119862119886119887[0119879]

119896 ((1198901 119909)sim

(119890119899 119909)sim

) 119889120583 (119909)

= (2120587)minus1198992

int

R119899119896 (1199061 119906

119899)

times exp

minus

119899

sum

119895=1

[119906119895minus (119890119895 119886)119887

]

2

2

1198891199061 119889119906

119899

(54)

in the sense that if either side of (54) exists both sides existand equality holds

We also need the following lemma to obtain our maintheorem in this section

Lemma 12 Let 1198901 119890

119899 be an orthonormal subset of

(1198621015840

119886119887[0 119879] sdot

119887) and let 119908 be an element of 1198621015840

119886119887[0 119879] Then

for each 120582 isin C+ the function space integral

119864119909[119866119899(120582 119909) exp 119894(119908 119909)sim] (55)

exists and is given by the formula

119864119909[119866119899(120582 119909) exp 119894(119908 119909)sim]

= 120582minus1198992 exp

[

120582 minus 1

2120582

]

119899

sum

119896=1

(119890119896 119908)2

119887minus

1

2

1199082

119887

+ 119894120582minus12

119899

sum

119896=1

(119890119896 119886)119887(119890119896 119908)119887

+ 119894(119890119899+1 119886)119887[1199082

119887minus

119899

sum

119896=1

(119890119896 119908)2

119887]

12

(56)

where 119866119899is given by (52) above and

119890119899+1=[

[

1199082

119887minus

119899

sum

119895=1

(119890119895 119908)

2

119887

]

]

minus12

119908 minus

119899

sum

119895=1

(119890119895 119908)119887

119890119895

(57)

Proof (Outline) Using the Gram-Schmidt process for any119908 isin 119862

1015840

119886119887[0 119879] we can write 119908 = sum

119899+1

119896=1119888119896119890119896 where

1198901 119890

119899 119890119899+1 is an orthonormal set in (1198621015840

119886119887[0 119879] sdot

119887)

and

119888119896=

(119890119896 119908)119887 119896 = 1 119899

[1199082

119887minus

119899

sum

119895=1

(119890119895 119908)

2

119887

]

12

119896 = 119899 + 1

(58)

Then using (52) (54) the Fubini theorem and (14) it followsthat (56) holds for all 120582 isin C

+

The following remark will be very useful in the proof ofour main theorem in this section

Remark 13 Let 1199020be a positive real number and let Γ

1199020

begiven by (35) For real numbers 119902

1and 1199022with |119902

119895| gt 1199020 119895 isin

1 2 let 120582119899infin

119899=1= (1205821119899 1205822119899)infin

119899=1be a sequence in C2

+such

that

120582119899= (1205821119899 1205822119899) 997888rarr minus119894 119902 = (minus119894119902

1 minus1198941199022) (59)

Let 120582119895119899= 120572119895119899+ 119894120573119895119899

for 119895 isin 1 2 and 119899 isin N Then for119895 isin 1 2 Re(120582

119895119899) = 120572119895119899gt 0 and

120582minus1

119895119899= (120572119895119899+ 119894120573119895119899)

minus1

=

120572119895119899minus 119894120573119895119899

1205722

119895119899+ 1205732

119895119899

(60)

for each 119899 isin N Since |Im ((minus119894119902119895)minus12

)| = 1radic2|119902119895| lt 1radic2119902

0

for 119895 isin 1 2 there exists a sufficiently large 119871 isin N such thatfor any 119899 ge 119871 120582

1119899and 120582

2119899are in Int(Γ

1199020

) and

120575 (1199021 1199022) equiv sup ( 1003816100381610038161003816

1003816Im (120582minus12

1119899)

10038161003816100381610038161003816 119899 ge 119871

cup

10038161003816100381610038161003816Im (120582minus12

2119899)

10038161003816100381610038161003816 119899 ge 119871

cup

100381610038161003816100381610038161003816

Im ((minus1198941199021)minus12

)

100381610038161003816100381610038161003816

100381610038161003816100381610038161003816

Im ((minus1198941199022)minus12

)

100381610038161003816100381610038161003816

)

lt

1

radic21199020

(61)

Thus there exists a positive real number 120576 gt 1 such that120575(1199021 1199022) lt 1(120576radic2119902

0)

Let 119890119899infin

119899=1be a complete orthonormal set in (1198621015840

119886119887[0 119879]

sdot 119887) Using Parsevalrsquos identity it follows that

(1198921 1198922)119887=

infin

sum

119899=1

(119890119899 1198921)119887(119890119899 1198922)119887

(62)

Journal of Function Spaces and Applications 9

for all 1198921 1198922isin 1198621015840

119886119887[0 119879] In addition for each 119892 isin 1198621015840

119886119887[0 119879]

10038171003817100381710038171198921003817100381710038171003817

2

119887minus

119899

sum

119896=1

(119890119896 119892)2

119887=

infin

sum

119896=119899+1

(119890119896 119892)2

119887ge 0 (63)

for every 119899 isin NSince

(119892 119886)119887=

infin

sum

119899=1

(119890119899 119892)119887(119890119899 119886)119887

(64)

and for 120576 gt 1

minus12057610038171003817100381710038171198921003817100381710038171003817119887119886119887lt minus10038171003817100381710038171198921003817100381710038171003817119887119886119887le (119892 119886)

119887

le10038171003817100381710038171198921003817100381710038171003817119887119886119887lt 12057610038171003817100381710038171198921003817100381710038171003817119887119886119887

(65)

there exists a sufficiently large119870119895isin N such that for any 119899 ge 119870

119895

1003816100381610038161003816100381610038161003816100381610038161003816

119899

sum

119896=1

(119890119896 11986012

119895119908)119887

(119890119896 119886)119887

1003816100381610038161003816100381610038161003816100381610038161003816

lt 120576

1003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817119887119886119887

(66)

for 119895 isin 1 2Using these and a long and tedious calculation we can

show that for every 119899 ge max119871 1198701 1198702

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

exp

2

sum

119895=1

([

120582119895119899minus 1

2120582119895119899

]

119899

sum

119896=1

(119890119896 11986012

119895119908)

2

119887

minus

1

2

1003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817

2

119887

+ 119894120582minus12

119895119899

119899

sum

119896=1

(119890119896 11986012

119895119908)119887

(119890119896 119886)119887+ 119894(119890119899+1 119886)119887

times [

1003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817

2

119887

minus

119899

sum

119896=1

(119890119896 11986012

119895119908)

2

119887

]

12

)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

lt 119896 (1199020 119908)

(67)

where 119896(1199020 119908) is given by (36)

In our next theorem for119865 isin F11988611988711986011198602

we express theGFFTof 119865 as the limit of a sequence of function space integrals on1198622

119886119887[0 119879]

Theorem 14 Let 1199020and 119865 be as in Theorem 10 Let 119890

119899infin

119899=1

be a complete orthonormal set in (1198621015840119886119887[0 119879] sdot

119887) and let

(1205821119899 1205822119899)infin

119899=1be a sequence in C2

+such that 120582

119895119899rarr minus119894119902

119895

where 119902119895is a real number with |119902

119895| gt 1199020 119895 isin 1 2 Then for

119901 isin [1 2] and for s-ae (1199101 1199102) isin 1198622

119886119887[0 119879]

119879(119901)

119902(119865) (119910

1 1199102)

= lim119899rarrinfin

1205821198992

11198991205821198992

2119899

times119864119909[119866119899(1205821119899 1199091) 119866119899(1205822119899 1199092) 119865 (119910

1+ 1199091 1199102+ 1199092)]

(68)

where 119866119899is given by (52)

Proof ByTheorems9 and 10we know that for each119901 isin [1 2]the 119871119901analytic GFFT of 119865 119879(119901)

119902(119865) exists and is given by the

right hand side of (40) Thus it suffices to show that

119879(1)

119902(119865) (119910

1 1199102) = 119864

anf 119902119909[119865 (1199101+ 1199091 1199102+ 1199092)]

= lim119899rarrinfin

1205821198992

11198991205821198992

2119899

times 119864119909[119866119899(1205821119899 1199091) 119866119899(1205822119899 1199092)

times 119865 (1199101+ 1199091 1199102+ 1199092)] sdot

(69)

Using (30) the Fubini theorem and (56) with 120582 and 119908replaced with 120582

119895119899and 11986012

119895119908 119895 isin 1 2 respectively we see

that

1205821198992

11198991205821198992

2119899119864119909[119866119899(1205821119899 1199091) 119866119899(1205822119899 1199092) 119865 (119910

1+ 1199091 1199102+ 1199092)]

= 1205821198992

11198991205821198992

2119899int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119910119895)

sim

times(

2

prod

119895=1

119864119909119895

[119866119899(120582minus12

119895119899 119909119895)

times exp 119894(11986012119895119908 119909119895)

sim

])119889119891 (119908)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

(119894(11986012

119895119908 119910119895)

sim

+ [

120582119895119899minus 1

2120582119895119899

]

119899

sum

119896=1

(119890119896 11986012

119895119908)

2

119887

minus

1

2

1003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817

2

119887

+ 119894120582minus12

119895119899

119899

sum

119896=1

(119890119896 119886)119887(119890119896 11986012

119895119908)119887

+ 119894(119890119899+1 119886)119887[

1003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817

2

119887

minus

119899

sum

119896=1

(119890119896 11986012

119895119908)

2

119887

]

12

)

119889119891 (119908)

(70)

But by Remark 13 we see that the last expression of (70) isdominated by (39) on the region Γ

1199020

given by (35) for allbut a finite number of values of 119899 Next using the dominatedconvergence theorem Parsevalrsquos relation and (40) we obtainthe desired result

Corollary 15 Let 1199020 119865 119890

119899infin

119899=1 (1205821119899 1205822119899)infin

119899=1and (119902

1 1199022)

be as in Theorem 14 Then

119864

anf119902

119909[119865 (1199091 1199092)]

= lim119899rarrinfin

1205821198992

11198991205821198992

2119899

times 119864119909[119866119899(1205821119899 1199091) 119866119899(1205822119899 1199092) 119865 (119909

1 1199092)]

(71)

where 119866119899is given by (52)

10 Journal of Function Spaces and Applications

Corollary 16 Let 1199020 119865 and 119890

119899infin

119899=1be as in Theorem 14 and

let Γ1199020

be given by (35) Let 120582 = (1205821 1205822) isin Int (Γ

1199020

) and(1205821119899 1205822119899)infin

119899=1be a sequence in C2

+such that 120582

119895119899rarr 120582

119895

119895 isin 1 2 Then

119864

an

119909[119865 (1199091 1199092)] = lim119899rarrinfin

1205821198992

11198991205821198992

2119899

times119864119909[119866119899(1205821119899 1199091) 119866119899(1205822119899 1199092) 119865(1199091 1199092)]

(72)

where 119866119899is given by (52)

Our another result namely a change of scale formula forfunction space integrals now follows fromCorollary 16 above

Theorem 17 Let 119865 isin F11988611988711986011198602

and let 119890119899infin

119899=1be a complete

orthonormal set in (1198621015840119886119887[0 119879] sdot

119887) Then for any 120588

1gt 0 and

1205882gt 0

119864119909[119865 (12058811199091 12058821199092)]

= lim119899rarrinfin

120588minus119899

1120588minus119899

2

times 119864119909[119866119899(120588minus2

1 1199091)119866119899(120588minus2

2 1199092) 119865 (119909

1 1199092)]

(73)

where 119866119899is given by (52)

Proof Simply choose 120582119895= 120588minus2

119895for 119895 isin 1 2 and 120582

119895119899= 120588minus2

119895

for 119895 isin 1 2 and 119899 isin N in (72)

Remark 18 Of course if we choose 119886(119905) equiv 0 119887(119905) = 1199051198601= 119868 (identity operator) and 119860

2= 0 (zero operator) then

the function space 119862119886119887[0 119879] reduces to the classical Wiener

space 1198620[0 119879] and the generalized Fresnel type class F 119886119887

11986011198602

reduces to the Fresnel class F(1198620[0 119879]) It is known that

F(1198620[0 119879]) forms a Banach algebra over the complex field

In this case we have the relationships between the analyticFeynman integral and theWiener integral on classicalWienerspace as discussed in [14 15]

In recent paper [19] Yoo et al have studied a change ofscale formula for function space integral of the functionalsin the Banach algebra S(1198712

119886119887[0 119879]) the Banach algebra

S(1198712119886119887[0 119879]) is introduced in [12]

5 Functionals in F11988611988711986011198602

In this section we prove a theorem ensuring that variousfunctionals are inF119886119887

11986011198602

Theorem 19 Let 1198601and 119860

2be bounded nonnegative and

self-adjoint operators on 1198621015840119886119887[0 119879] Let (119884Y 120574) be a 120590-finite

measure space and let 120593119897 119884 rarr 119862

1015840

119886119887[0 119879] beYndashB(1198621015840

119886119887[0 119879])

measurable for 119897 isin 1 119889 Let 120579 119884 times R119889 rarr C be given by120579(120578 sdot) = ]

120578(sdot) where ]

120578isin M(R119889) for every 120578 isin 119884 and where

the family ]120578 120578 isin 119884 satisfies

(i) ]120578(119864) is a Y-measurable function of 120578 for every 119864 isin

B(R119889)(ii) ]

120578 isin 1198711

(119884Y 120574)

Under these hypothesis the functional 119865 1198622119886119887[0 119879] rarr C

given by

119865 (1199091 1199092) = int

119884

120579(120578

2

sum

119895=1

(11986012

1198951205931(120578) 119909

119895)

sim

2

sum

119895=1

(11986012

119895120593119889(120578) 119909

119895)

sim

)119889120574 (120578)

(74)

belongs toF11988611988711986011198602

and satisfies the inequality

119865 le int

119884

10038171003817100381710038171003817]120578

10038171003817100381710038171003817119889120574 (120578) (75)

Proof Using the techniques similar to those used in [20] wecan show that ]

120578 is measurable as a function of 120578 that 120579 is

Y-measurable and that the integrand in (74) is a measurablefunction of 120578 for every (119909

1 1199092) isin 1198622

119886119887[0 119879]

We define a measure 120591 onY timesB(R119889) by

120591 (119864) = int

119884

]120578(119864(120578)

) 119889120574 (120578) for 119864 isin Y timesB (R119889) (76)

Then by the first assertion of Theorem 31 in [17] 120591 satisfies120591 le int

119884

]120578119889120574(120578) Now let Φ 119884 times R119889 rarr 119862

1015840

119886119887[0 119879] be

defined by Φ(120578 V1 V

119889) = sum

119889

119897=1V119897120593119897(120578) Then Φ is Y times

B(R119889) ndashB(1198621015840119886119887[0 119879])-measurable on the hypothesis for 120593

119897

119897 isin 1 119889 Let 120590 = 120591 ∘Φminus1 Then clearly 120590 isinM(1198621015840119886119887[0 119879])

and satisfies 120590 le 120591From the change of variables theorem and the second

assertion of Theorem 31 in [17] it follows that for ae(1199091 1199092) isin 1198622

119886119887[0 119879] and for every 120588

1gt 0 and 120588

2gt 0

119865 (12058811199091 12058821199092)

= int

119884

]120578(

2

sum

119895=1

(11986012

1198951205931(120578) 120588

119895119909119895)

sim

2

sum

119895=1

(11986012

119895120593119889(120578) 120588

119895119909119895)

sim

)119889120574 (120578)

= int

119884

[

[

int

R119889exp

119894

119889

sum

119897=1

V119897

[

[

2

sum

119895=1

(11986012

119895120593119897(120578)

120588119895119909119895)

sim

]

]

119889]120578

times (V1 V

119889)]

]

119889120574 (120578)

= int

119884timesR119889exp

119894

119889

sum

119897=1

V119897

[

[

2

sum

119895=1

(11986012

119895120593119897(120578) 120588

119895119909119895)

sim

]

]

119889120591

times (120578 V1 V

119889)

Journal of Function Spaces and Applications 11

= int

119884timesR119889exp

2

sum

119895=1

119894(11986012

119895Φ(120578 V

1 V

119889) 120588119895119909119895)

sim

119889120591

times (120578 V1 V

119889)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 120588119895119909119895)

sim

119889120591 ∘ Φminus1

(119908)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 120588119895119909119895)

sim

119889120590 (119908)

(77)

Thus the functional 119865 given by (74) belongs to F11988611988711986011198602

andsatisfies the inequality

119865 = 120590 le 120591 le int

119884

10038171003817100381710038171003817]120578

10038171003817100381710038171003817119889120574 (120578) (78)

As mentioned in (2) of Remark 6 F 11988611988711986011198602

is a Banachalgebra if Ran(119860

1+ 1198602) is dense in 1198621015840

119886119887[0 119879] In this case

many analytic functionals of 119865 can be formed The followingcorollary is relevant to Feynman integration theories andquantum mechanics where exponential functions play animportant role

Corollary 20 Let 1198601and 119860

2be bounded nonnegative and

self-adjoint operators on 1198621015840119886119887[0 119879] such that Ran(119860

1+ 1198602)

is dense in 1198621015840119886119887[0 119879] Let 119865 be given by (74) with 120579 as in

Theorem 19 and let 120573 C rarr C be an entire function Then(120573 ∘ 119865)(119909

1 1199092) is in F119886119887

11986011198602

In particular exp119865(1199091 1199092) isin

F11988611988711986011198602

Corollary 21 Let 1198601and 119860

2be bounded nonnegative and

self-adjoint operators on 1198621015840119886119887[0 119879] and let 119892

1 119892

119889 be a

finite subset of 1198621015840119886119887[0 119879] Given 120573 = ] where ] isin M(R119889)

define 119865 1198622119886119887[0 119879] rarr C by

119865 (1199091 1199092) = 120573(

2

sum

119895=1

(11986012

1198951198921 119909119895)

sim

2

sum

119895=1

(11986012

119895119892119889 119909119895)

sim

)

(79)

Then 119865 is an element ofF11988611988711986011198602

Proof Let (119884Y 120574) be a probability space and for 119897 isin1 119889 let 120593

119897(120578) equiv 119892

119897 Take 120579(120578 sdot) = 120573(sdot) = ](sdot) Then for

all 1205881gt 0 and 120588

2gt 0 and for ae (119909

1 1199092) isin 1198622

119886119887[0 119879]

int

119884

120579(120578

2

sum

119895=1

(11986012

1198951205931(120578) 120588

119895119909119895)

sim

2

sum

119895=1

(11986012

119895120593119889(120578) 120588

119895119909119895)

sim

)119889120574 (120578)

= int

119884

120573(

2

sum

119895=1

(11986012

1198951198921 120588119895119909119895)

sim

2

sum

119895=1

(11986012

119895119892119889 120588119895119909119895)

sim

)119889120574 (120578)

= 120573(

2

sum

119895=1

(11986012

1198951198921 120588119895119909119895)

sim

2

sum

119895=1

(11986012

119895119892119889 120588119895119909119895)

sim

)

= 119865 (12058811199091 12058821199092)

(80)

Hence 119865 isin F11988611988711986011198602

Remark 22 Let 119889 = 1 and let (119884Y 120574) = ([0 119879]B([0 119879])119898119871) in Theorem 19 where 119898

119871denotes the Lebesgue measure

on [0 119879] ThenTheorems 46 47 and 49 in [18] follow fromthe results in this section by letting119860

1be the identity operator

and letting 1198602equiv 0 on 1198621015840

119886119887[0 119879] The function 120579 studied in

[18] (and mentioned in Remark 2 above) is interpreted as thepotential energy in quantum mechanics

Acknowledgments

The authors would like to express their gratitude to the refer-ees for their valuable comments and suggestions which haveimproved the original paper This research was supported bythe Basic Science Research Program through the NationalResearch Foundation of Korea (NRF) funded by theMinistryof Education (2011-0014552)

References

[1] G Kallianpur and C Bromley ldquoGeneralized Feynman integralsusing analytic continuation in several complex variablesrdquo inStochastic Analysis and Applications M A Pinsky Ed vol 7pp 217ndash267 Marcel Dekker New York NY USA 1984

[2] G Kallianpur D Kannan and R L Karandikar ldquoAnalytic andsequential Feynman integrals on abstract Wiener and Hilbertspaces and a Cameron-Martin formulardquo Annales de lrsquoInstitutHenri Poincare vol 21 no 4 pp 323ndash361 1985

[3] G W Johnson and M L Lapidus The Feynman Integral andFeynmanrsquos Operational Calculus Clarendon Press Oxford UK2000

[4] J Yeh ldquoSingularity of Gaussian measures on function spacesinduced by Brownian motion processes with non-stationaryincrementsrdquo Illinois Journal of Mathematics vol 15 pp 37ndash461971

[5] J Yeh Stochastic Processes and the Wiener Integral MarcelDekker New York NY USA 1973

[6] S J Chang J G Choi and D Skoug ldquoIntegration by partsformulas involving generalized Fourier-Feynman transformson function spacerdquo Transactions of the American MathematicalSociety vol 355 no 7 pp 2925ndash2948 2003

[7] S J Chang J G Choi and D Skoug ldquoParts formulas involvingconditional generalized Feynman integrals and conditionalgeneralized Fourier-Feynman transforms on function spacerdquo

12 Journal of Function Spaces and Applications

Integral Transforms and Special Functions vol 15 no 6 pp 491ndash512 2004

[8] S J Chang J G Choi and D Skoug ldquoEvaluation formulas forconditional function space integralsmdashIrdquo Stochastic Analysis andApplications vol 25 no 1 pp 141ndash168 2007

[9] S J Chang J G Choi and D Skoug ldquoGeneralized Fourier-Feynman transforms convolution products and first variationson function spacerdquoTheRockyMountain Journal ofMathematicsvol 40 no 3 pp 761ndash788 2010

[10] S J Chang and D M Chung ldquoConditional function spaceintegrals with applicationsrdquo The Rocky Mountain Journal ofMathematics vol 26 no 1 pp 37ndash62 1996

[11] S J Chang H S Chung and D Skoug ldquoIntegral transformsof functionals in 119871

2(119862119886119887[0 119879])rdquoThe Journal of Fourier Analysis

and Applications vol 15 no 4 pp 441ndash462 2009[12] S J Chang and D Skoug ldquoGeneralized Fourier-Feynman

transforms and a first variation on function spacerdquo IntegralTransforms and Special Functions vol 14 pp 375ndash393 2003

[13] J G Choi and S J Chang ldquoGeneralized Fourier-Feynmantransform and sequential transforms on function spacerdquo Jour-nal of the Korean Mathematical Society vol 49 pp 1065ndash10822012

[14] R H Cameron and D A Storvick ldquoRelationships between theWiener integral and the analytic Feynman integralrdquo Rendicontidel Circolo Matematico di Palermo no 17 supplement pp 117ndash133 1987

[15] RHCameron andDA Storvick ldquoChange of scale formulas forWiener integralrdquo Rendiconti del Circolo Matematico di Palermono 17 pp 105ndash115 1987

[16] G W Johnson ldquoThe equivalence of two approaches to theFeynman integralrdquo Journal of Mathematical Physics vol 23 pp2090ndash2096 1982

[17] G W Johnson and D L Skoug ldquoNotes on the FeynmanintegralmdashIII the Schroedinger equationrdquo Pacific Journal ofMathematics vol 105 pp 321ndash358 1983

[18] S J Chang J G Choi and S D Lee ldquoA Fresnel type class onfunction spacerdquo Journal of the Korean Society of MathematicalEducation Series B vol 16 no 1 pp 107ndash119 2009

[19] I Yoo B J Kim and B S Kim ldquoA change of scale formulafor a function space integral on 119862

119886119887[0 119879]rdquo Proceedings of the

American Mathematical Society vol 141 no 8 pp 2729ndash27392013

[20] K S Chang G W Johnson and D L Skoug ldquoFunctions inthe Fresnel classrdquo Proceedings of the American MathematicalSociety vol 100 no 2 pp 309ndash318 1987

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 3: Research Article Generalized Analytic Fourier-Feynman ...downloads.hindawi.com/journals/jfs/2013/954098.pdf · Journal of Function Spaces and Applications Volume , Article ID , pages

Journal of Function Spaces and Applications 3

Using (8) we observe that the linear operator given by(10) is an isometry In fact the inverse operator 119863minus1 11987112

119886119887[0 119879] rarr 119862

1015840

119886119887[0 119879] is given by

(119863minus1

119911) (119905) = int

119905

0

119911 (119904) 119889119887 (119904) (12)

Moreover the triple (1198621015840119886119887[0 119879] 119862

119886119887[0 119879] 120583) becomes an

abstract Wiener spaceThroughout this paper for 119908 isin 1198621015840

119886119887[0 119879] we will use the

notation (119908 119909)sim instead of ⟨119863119908 119909⟩We also use the followingnotations for 119908

1 1199082 119908 isin 1198621015840

119886119887[0 119879]

(1199081 1199082)119887= int

119879

0

1198631199081(119905) 119863119908

2(119905) 119889119887 (119905)

119908119887= radic(119908119908)

119887

(13)

Then 1198621015840119886119887[0 119879] with the inner product given by (13) is also a

separable Hilbert space It is easy to see that the two norms sdot 1198621015840

119886119887

and sdot 119887are equivalent Furthermore we have the

following assertions

(i) 119886(sdot) is an element of 1198621015840119886119887[0 119879]

(ii) For each 119908 isin 1198621015840119886119887[0 119879] the random variable 119909 997891rarr

(119908 119909)sim is Gaussian with mean (119908 119886)

119887and variance

1199082

119887

(iii) (119908 120572119909)sim = (120572119908 119909)sim = 120572(119908 119909)sim for any real number120572 119908 isin 1198621015840

119886119887[0 119879] and 119909 isin 119862

119886119887[0 119879]

(iv) Let 1199081 119908

119899 be a subset of 1198621015840

119886119887[0 119879] such that

int

119879

0

119863119908119894(119905)119863119908

119895(119905)119889119887(119905) = 120575

119894119895 where 120575

119894119895is the Kro-

necker delta Then the random variables (119908119894 119909)simrsquos are

independent

In this paper we adopt asmuch as possible the definitionsand notations used in [7 9 12 13] for the definitions ofthe generalized analytic Feynman integral and the GFFT offunctionals on 119862

119886119887[0 119879]

The following integration formula is used several times inthis paper

int

R

exp minus1205721199062 + 120573119906 119889119906 = radic120587120572

exp1205732

4120572

(14)

for complex numbers 120572 and 120573 with Re(120572) gt 0

3 The GFFT of Functionals in a BanachAlgebra F119886119887

11986011198602

LetM(1198621015840119886119887[0 119879]) be the space of complex-valued countably

additive (and hence finite) Borel measures on 1198621015840119886119887[0 119879]

M(1198621015840119886119887[0 119879]) is a Banach algebra under the total variation

norm and with convolution as multiplicationWe define the Fresnel type class F(119862

119886119887[0 119879]) of

functionals on 119862119886119887[0 119879] as the space of all stochastic

Fourier transforms of elements of M(1198621015840119886119887[0 119879]) that is

119865 isin F(119862119886119887[0 119879]) if and only if there exists a measure 119891 in

M(1198621015840119886119887[0 119879]) such that

119865 (119909) = int

1198621015840

119886119887[0119879]

exp 119894(119908 119909)sim 119889119891 (119908) (15)

for s-ae 119909 isin 119862119886119887[0 119879] More precisely since we will identify

functionals which coincide s-ae on 119862119886119887[0 119879]F(119862

119886119887[0 119879])

can be regarded as the space of all 119904-equivalence classes offunctionals of the form (15)

The Fresnel type class F(119862119886119887[0 119879]) is a Banach algebra

with norm

119865 =10038171003817100381710038171198911003817100381710038171003817= int

1198621015840

119886119887[0119879]

11988910038161003816100381610038161198911003816100381610038161003816(119908) (16)

In fact the correspondence 119891 997891rarr 119865 is injective carriesconvolution into pointwise multiplication and is a Banachalgebra isomorphism where 119891 and 119865 are related by (15)

Remark 2 The Banach algebra F(119862119886119887[0 119879]) contains sev-

eral interesting functions which arise naturally in quantummechanics Let M(R) be the class of C-valued countablyadditive measures on B(R) the Borel class of R For ] isinM(R) the Fourier transform ] of ] is a complex-valuedfunction defined on R by the following formula

] (119906) = intR

exp 119894119906V 119889] (V) (17)

Let G be the set of all complex-valued functions on[0 119879]timesR of the form 120579(119904 119906) =

119904(119906) where 120590

119904 0 le 119904 le 119879 is

a family fromM(R) satisfying the following two conditions

(i) for every 119864 isinB(R) 120590119904(119864) is Borel measurable in 119904

(ii) int1198790

120590119904119889119887(119904) lt +infin

Let 120579 isin G and let119867 be given by

119867(119909) = expint119879

0

120579 (119905 119909 (119905)) 119889119905 (18)

for s-ae 119909 isin 119862119886119887[0 119879] Then using the methods similar

to those used in [18] we can show that the function 120579(119905 119906)is Borel-measurable and that 120579(119905 119909(119905)) int119879

0

120579(119905 119909(119905))119889119905 and119867(119909) are elements of F(119862

119886119887[0 119879]) These facts are relevant

to quantum mechanics where exponential functions play aprominent role

Let119860 be a nonnegative self-adjoint operator on1198621015840119886119887[0 119879]

and 119891 any complex measure on 1198621015840119886119887[0 119879] Then the func-

tional

119865 (119909) = int

1198621015840

119886119887[0119879]

exp 119894(11986012119908 119909)sim

119889119891 (119908) (19)

belongs to F(119862119886119887[0 119879]) because it can be rewritten as

int1198621015840

119886119887[0119879]

exp119894(119908 119909)sim119889119891119860(119908) for 119891

119860= 119891 ∘ (119860

12

)minus1 Let 119860 be

self-adjoint but not nonnegative Then 119860 has the form

119860 = 119860+

minus 119860minus

(20)

4 Journal of Function Spaces and Applications

where both 119860+ and 119860minus are bounded nonnegative and self-adjoint operators

In this section we will extend the ideas of [1] to obtainexpressions of the generalized analytic Feynman integral andthe GFFT of functionals of the form (19) when119860 is no longerrequired to be nonnegative To do this we will introducedefinitions and notations analogous to those in [7 12 13]

Let W(1198622119886119887[0 119879]) denote the class of all Wiener mea-

surable subsets of the product function space 1198622119886119887[0 119879] A

subset 119861 of 1198622119886119887[0 119879] is said to be scale-invariant measurable

provided (12058811199091 12058821199092) (119909

1 1199092) isin 119861 is W(1198622

119886119887[0 119879])-

measurable for every 1205881gt 0 and 120588

2gt 0 and a scale-

invariantmeasurable subset119873 of1198622119886119887[0 119879] is said to be scale-

invariant null provided (120583 times 120583)((12058811199091 12058821199092) (119909

1 1199092) isin

119873) = 0 for every 1205881gt 0 and 120588

2gt 0 A property that

holds except on a scale-invariant null set is said to hold s-ae on 1198622

119886119887[0 119879] A functional 119865 on 1198622

119886119887[0 119879] is said to be

scale-invariant measurable provided 119865 is defined on a scale-invariant measurable set and 119865(120588

1sdot 1205882sdot) is W(1198622

119886119887[0 119879])-

measurable for every 1205881gt 0 and 120588

2gt 0 If two functionals

119865 and 119866 defined on 1198622119886119887[0 119879] are equal s-ae then we write

119865 asymp 119866We denote the product function space integral of a

W(1198622119886119887[0 119879])-measurable functional 119865 by

119864 [119865] equiv 119864119909[119865 (1199091 1199092)]

= int

1198622

119886119887[0119879]

119865 (1199091 1199092) 119889 (120583 times 120583) (119909

1 1199092)

(21)

whenever the integral existsThroughout this paper letCC

+and C

+denote the set of

complex numbers complex numbers with positive real partand nonzero complex numbers with nonnegative real partrespectively Furthermore for all 120582 isin C

+ 120582minus12 (or 12058212) is

always chosen to have positive real part We also assume thatevery functional 119865 on 1198622

119886119887[0 119879] we consider is s-ae defined

and is scale-invariant measurable

Definition 3 Let C2+equiv C+times C+and let C2

+equivC+timesC+ Let

119865 1198622

119886119887[0 119879] rarr C be such that for each 120582

1gt 0 and 120582

2gt 0

the function space integral

119869 (1205821 1205822)

= int

1198622

119886119887[0119879]

119865 (120582minus12

11199091 120582minus12

21199092) 119889 (120583 times 120583) (119909

1 1199092)

(22)

exists If there exists a function 119869lowast(1205821 1205822) analytic inC2

+such

that 119869lowast(1205821 1205822) = 119869(120582

1 1205822) for all 120582

1gt 0 and 120582

2gt 0 then

119869lowast

(1205821 1205822) is defined to be the analytic function space integral

of 119865 over 1198622119886119887[0 119879] with parameter 120582 = (120582

1 1205822) and for 120582 isin

C2+we write

119864an[119865] equiv 119864

an

119909[119865 (1199091 1199092)]

equiv 119864

an(12058211205822)

11990911199092[119865 (1199091 1199092)] = 119869

lowast

(1205821 1205822)

(23)

Let 1199021and 1199022be nonzero real numbers Let 119865 be a functional

such that 119864an[119865] exists for all 120582 isin C2+ If the following limit

exists we call it the generalized analytic Feynman integral of119865 with parameter 119902 = (119902

1 1199022) and we write

119864anf 119902[119865] equiv 119864

anf 119902119909[119865 (1199091 1199092)]

equiv 119864

anf(11990211199022)

11990911199092[119865 (1199091 1199092)] = lim

120582rarrminus119894 119902

119864an[119865]

(24)

where 120582 = (1205821 1205822) rarr minus119894 119902 = (minus119894119902

1 minus1198941199022) through values in

C2+

Definition 4 Let 1199021and 1199022be nonzero real numbers For 120582 =

(1205821 1205822) isin C2+and (119910

1 1199102) isin 1198622

119886119887[0 119879] let

119879 120582(119865) (119910

1 1199102) equiv 119879(12058211205822)(119865) (119910

1 1199102)

= 119864

an

119909[119865 (1199101+ 1199091 1199102+ 1199092)]

(25)

For 119901 isin (1 2] we define the 119871119901analytic GFFT 119879(119901)

119902(119865) of 119865

by the formula ( 120582 isin C2+)

119879(119901)

119902(119865) (119910

1 1199102) equiv 119879(119901)

(1199021 1199022)(119865) (119910

1 1199102)

= lim120582rarrminus119894 119902

119879 120582(119865) (119910

1 1199102)

(26)

if it exists that is for each 1205881gt 0 and 120588

2gt 0

lim120582rarrminus119894 119902

int

1198622

119886119887[0119879]

100381610038161003816100381610038161003816

119879 120582(119865) (120588

11199101 12058821199102)

minus119879(119901)

119902(119865) (120588

11199101 12058821199102)

100381610038161003816100381610038161003816

1199011015840

119889 (120583 times 120583) (1199101 1199102)

= 0

(27)

where 1119901+11199011015840 = 1We define the 1198711analytic GFFT119879(1)

119902(119865)

of 119865 by the formula ( 120582 isin C2+)

119879(1)

119902(119865) (119910

1 1199102) = lim120582rarrminus119894 119902

119879 120582(119865) (119910

1 1199102) (28)

if it exists

We note that for 1 le 119901 le 2 119879(119901)119902(119865) is defined only s-ae

We also note that if 119879(119901)119902(119865) exists and if 119865 asymp 119866 then 119879(119901)

119902(119866)

exists and 119879(119901)119902(119866) asymp 119879

(119901)

119902(119865) Moreover from Definition 4

we see that for 1199021 1199022isin R minus 0

119864

anf 119902119909[119865 (1199091 1199092)] = 119879

(1)

119902(119865) (0 0) (29)

Next we give the definition of the generalized Fresnel typeclassF119886119887

11986011198602

Journal of Function Spaces and Applications 5

Definition 5 Let 1198601and 119860

2be bounded nonnegative and

self-adjoint operators on 1198621015840119886119887[0 119879] The generalized Fresnel

type classF11988611988711986011198602

of functionals on1198622119886119887[0 119879] is defined as the

space of all functionals 119865 on 1198622119886119887[0 119879] of the following form

119865 (1199091 1199092) = int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119909119895)

sim

119889119891 (119908) (30)

for some119891 isinM(1198621015840119886119887[0 119879]) More precisely since we identify

functionals which coincide s-ae on 1198622119886119887[0 119879] F119886119887

11986011198602

canbe regarded as the space of all 119904-equivalence classes offunctionals of the form (30)

Remark 6 (1) In Definition 5 let 1198601be the identity operator

on 1198621015840119886119887[0 119879] and 119860

2equiv 0 Then F 119886119887

11986011198602

is essentially theFresnel type class F(119862

119886119887[0 119879]) and for 119901 isin [1 2] and

nonzero real numbers 1199021and 1199022

119879(119901)

(1199021 1199022)(119865) (119910

1 1199102) = 119879(119901)

1199021

(1198650) (1199101) (31)

if it exists where 1198650(1199091) = 119865(119909

1 1199092) for all (119909

1 1199092) isin

1198622

119886119887[0 119879] and 119879(119901)

1199021

(1198650) means the 119871

119901analytic GFFT on

119862119886119887[0 119879] see [6 12](2) The map 119891 997891rarr 119865 defined by (30) sets up an algebra

isomorphism betweenM(1198621015840119886119887[0 119879]) andF119886119887

11986011198602

if Ran(1198601+

1198602) is dense in1198621015840

119886119887[0 119879] where Ran indicates the range of an

operator In this caseF 11988611988711986011198602

becomes a Banach algebra underthe norm 119865 = 119891 For more details see [1]

Remark 7 Let 119865 be given by (30) In evaluating119864119909[119865(120582minus12

11199091 120582minus12

21199092)] and 119879

(12058211205822)(119865)(1199101 1199102) = 119864

119909[119865(1199101+

120582minus12

11199091 1199102+ 120582minus12

21199092)] for 120582

1gt 0 and 120582

2gt 0 the expression

120595 (120582 119908)

equiv 120595 (1205821 1205822 1198601 1198602 119908)

= exp

2

sum

119895=1

[

[

minus

(119860119895119908119908)

119887

2120582119895

+ 119894120582minus12

119895(11986012

119895119908 119886)119887

]

]

(32)

occurs Clearly for 120582119895gt 0 119895 isin 1 2 |120595( 120582 119908)| le 1 for all

119908 isin 1198621015840

119886119887[0 119879] But for 120582 isin C2

+ |120595( 120582 119908)| is not necessarily

bounded by 1Note that for each 120582

119895isinC+with 120582

119895= 120572119895+ 119894120573119895 119895 isin 1 2

12058212

119895=

radicradic1205722

119895+ 1205732

119895+ 120572119895

2

+ 119894

120573119895

10038161003816100381610038161003816120573119895

10038161003816100381610038161003816

radicradic1205722

119895+ 1205732

119895minus 120572119895

2

120582minus12

119895=radic

radic1205722

119895+ 1205732

119895+ 120572119895

2 (1205722

119895+ 1205732

119895)

minus 119894

120573119895

10038161003816100381610038161003816120573119895

10038161003816100381610038161003816

radic

radic1205722

119895+ 1205732

119895minus 120572119895

2 (1205722

119895+ 1205732

119895)

(33)

Hence for 120582119895isinC+with 120582

119895= 120572119895+ 119894120573119895 119895 isin 1 2

10038161003816100381610038161003816120595 (120582 119908)

10038161003816100381610038161003816

= exp

2

sum

119895=1

[

[

[

[

minus

120572119895

2 (1205722

119895+ 1205732

119895)

(119860119895119908119908)

119887

+

120573119895

10038161003816100381610038161003816120573119895

10038161003816100381610038161003816

radic

radic1205722

119895+ 1205732

119895minus 120572119895

2 (1205722

119895+ 1205732

119895)

(11986012

119895119908 119886)119887

]

]

]

]

(34)

The right hand side of (34) is an unbounded functionof 119908 for 119908 isin 1198621015840

119886119887[0 119879] Thus 119864an[119865] 119864anf 119902[119865] 119879

120582(119865) and

119879(119901)

119902(119865) might not exist Thus throughout this paper we will

need to put additional restrictions on the complex measure119891 corresponding to 119865 in order to obtain our results for theGFFT and the generalized analytic Feynman integral of 119865

In view of Remark 7 we clearly need to impose additionalrestrictions on the functionals 119865 inF119886119887

11986011198602

For a positive real number 119902

0 let

Γ1199020

=

120582 = (120582

1 1205822) isinC2

+| 120582119895= 120572119895+ 119894120573119895

10038161003816100381610038161003816Im (120582minus12

119895)

10038161003816100381610038161003816=radic

radic1205722

119895+ 1205732

119895minus 120572119895

2 (1205722

119895+ 1205732

119895)

lt

1

radic21199020

119895 = 1 2

(35)

and let119896 (1199020 119908) equiv 119896 (119902

0 1198601 1198602 119908)

= exp

2

sum

119895=1

(21199020)minus121003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817119887119886119887

(36)

Then for all 120582 = (1205821 1205822) isin Γ1199020

10038161003816100381610038161003816120595 (120582 119908)

10038161003816100381610038161003816le exp

2

sum

119895=1

radic

radic1205722

119895+ 1205732

119895minus 120572119895

2 (1205722

119895+ 1205732

119895)

100381610038161003816100381610038161003816

(11986012

119895119908 119886)119887

100381610038161003816100381610038161003816

le exp

2

sum

119895=1

radic

radic1205722

119895+ 1205732

119895minus 120572119895

2 (1205722

119895+ 1205732

119895)

1003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817119887119886119887

lt 119896 (1199020 119908)

(37)

6 Journal of Function Spaces and Applications

We note that for all real 119902119895with |119902

119895| gt 1199020 119895 isin 1 2

(minus119894119902119895)

minus12

=

1

radic

100381610038161003816100381610038162119902119895

10038161003816100381610038161003816

+ sign (119902119895)

119894

radic

100381610038161003816100381610038162119902119895

10038161003816100381610038161003816

(38)

and (minus1198941199021 minus1198941199022) isin Γ1199020

For the existence of the GFFT of 119865 we define a subclass

F1199020

11986011198602

ofF 11988611988711986011198602

by 119865 isin F 119902011986011198602

if and only if

int

1198621015840

119886119887[0119879]

119896 (1199020 119908) 119889

10038161003816100381610038161198911003816100381610038161003816(119908) lt +infin (39)

where 119891 and 119865 are related by (30) and 119896 is given by (36)

Remark 8 Note that in case 119886(119905) equiv 0 and 119887(119905) = 119905 on [0 119879]the function space 119862

119886119887[0 119879] reduces to the classical Wiener

space 1198620[0 119879] and (119908 119886)

119887= 0 for all 119908 isin 1198621015840

119886119887[0 119879] =

1198621015840

0[0 119879] Hence for all 120582 isin C2

+ |120595( 120582 119908)| le 1 and for any

positive real number 1199020F 119902011986011198602

= F11986011198602

theKallianpur andBromleyrsquos class introduced in Section 1

Theorem 9 Let 1199020be a positive real number and let 119865 be an

element ofF 119902011986011198602

Then for any nonzero real numbers 1199021and

1199022with |119902

119895| gt 1199020 119895 isin 1 2 the 119871

1analytic GFFT of 119865 119879(1)

119902(119865)

exists and is given by the following formula

119879(1)

119902(119865) (119910

1 1199102)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119910119895)

sim

120595(minus119894 119902 119908) 119889119891 (119908)

(40)

for s-ae (1199101 1199102) isin 1198622

119886119887[0 119879] where 120595 is given by (32)

Proof We first note that for 119895 isin 1 2 the PWZ stochasticintegral (11986012

119895119908 119909)sim is a Gaussian random variable withmean

(11986012

119895119908 119886)119887and variance 11986012

119895119908

2

119887

= (119860119895119908119908)119887

Hence using(30) the Fubini theorem the change of variables theorem and(14) we have that for all 120582

1gt 0 and 120582

2gt 0

119869 (1199101 1199102 1205821 1205822)

equiv 119864119909[119865 (1199101+ 120582minus12

11199091 1199102+ 120582minus12

21199092)]

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119910119895)

sim

times(

2

prod

119895=1

119864119909119895

[exp 119894120582minus12119895(11986012

119895119908 119909119895)

sim

])119889119891 (119908)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119910119895)

sim

times[

[

[

2

prod

119895=1

(2120587(119860119895119908119908)

119887

)

minus12

times int

R

exp

119894120582minus12

119895119906119895

minus

[119906119895minus (11986012

119895119908 119886)119887

]

2

2(119860119895119908119908)

119887

119889119906119895

]

]

]

119889119891(119908)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119910119895)

sim

120595(120582 119908) 119889119891 (119908)

(41)

Let

119879 120582(119865) (119910

1 1199102)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119910119895)

sim

120595(120582 119908) 119889119891 (119908)

(42)

for each 120582 isin C2+ Clearly

119879 120582(119865) (119910

1 1199102) = 119869 (119910

1 1199102 1205821 1205822) (43)

for all 1205821gt 0 and 120582

2gt 0 Let Γ

1199020

be given by (35)Then for all120582 isin Int(Γ

1199020

)

1003816100381610038161003816119879 120582(119865) (119910

1 1199102)1003816100381610038161003816lt int

1198621015840

119886119887[0119879]

119896 (1199020 119908) 119889

10038161003816100381610038161198911003816100381610038161003816(119908) lt +infin

(44)

Using this fact and the dominated convergence theoremwe see that 119879

120582(119865)(1199101 1199102) is a continuous function of 120582 =

(1205821 1205822) on Int(Γ

1199020

) For each 119908 isin 1198621015840119886119887[0 119879] 120595( 120582 119908) is an

analytic function of 120582 throughout the domain Int(Γ1199020

) so thatintΔ

120595(120582 119908)119889

120582 = 0 for every rectifiable simple closed curve

Δ in Int(Γ1199020

) By (42) the Fubini theorem and the Moreratheorem we see that 119879

120582(119865)(1199101 1199102) is an analytic function of

120582 throughout the domain Int(Γ

1199020

) Finally using (28) withthe dominated convergence theorem we obtain the desiredresult

Theorem 10 Let 1199020and 119865 be as inTheorem 9Then for all 119901 isin

(1 2] and all nonzero real numbers 1199021and 119902

2with |119902

119895| gt 1199020

119895 isin 1 2 the119871119901analytic GFFT of119865119879(119901)

119902(119865) exists and is given

by the right hand side of (40) for s-ae (1199101 1199102) isin 1198622

119886119887[0 119879]

Journal of Function Spaces and Applications 7

Proof Let Γ1199020

be given by (35) It was shown in the proofof Theorem 9 that 119879

120582(119865)(1199101 1199102) is an analytic function of 120582

throughout the domain Int(Γ1199020

) In viewofDefinition 4 it willsuffice to show that for each 120588

1gt 0 and 120588

2gt 0

lim120582rarrminus119894 119902

int

1198622

119886119887[0119879]

100381610038161003816100381610038161003816

119879 120582(119865) (120588

11199101 12058821199102)

minus119879(119901)

119902(119865) (120588

11199101 12058821199102)

100381610038161003816100381610038161003816

1199011015840

times 119889 (120583 times 120583) (1199101 1199102) = 0

(45)

Fixing 119901 isin (1 2] and using the inequalities (37) and (39)we obtain that for all 120588

119895gt 0 119895 isin 1 2 and all 120582 isin Γ

1199020

100381610038161003816100381610038161003816

119879 120582(119865) (120588

11199101 12058821199102) minus 119879(119901)

119902(119865) (120588

11199101 12058821199102)

100381610038161003816100381610038161003816

1199011015840

le

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894120588119895(11986012

119895119908 119910119895)

sim

times[120595 (120582 119908) minus 120595 (minus119894 119902 119908)] 119889119891 (119908)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1199011015840

le (int

1198621015840

119886119887[0119879]

[

10038161003816100381610038161003816120595 (120582 119908)

10038161003816100381610038161003816+

10038161003816100381610038161003816120595 (minus119894 119902 119908)

10038161003816100381610038161003816] 11988910038161003816100381610038161198911003816100381610038161003816(119908))

1199011015840

le (2int

1198621015840

119886119887[0119879]

119896 (1199020 119908) 119889

10038161003816100381610038161198911003816100381610038161003816(119908))

1199011015840

lt +infin

(46)

Hence by the dominated convergence theorem we see thatfor each 119901 isin (1 2] and each 120588

1gt 0 and 120588

2gt 0

lim120582rarrminus119894 119902

int

1198622

119886119887[0119879]

100381610038161003816100381610038161003816

119879 120582(119865) (120588

11199101 12058821199102)

minus119879(119901)

119902(119865) (120588

11199101 12058821199102)

100381610038161003816100381610038161003816

1199011015840

119889 (120583 times 120583) (1199101 1199102)

= lim120582rarrminus119894 119902

int

1198622

119886119887[0119879]

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 120588119895119910119895)

sim

times 120595(120582 119908) 119889119891 (119908)

minus int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 120588119895119910119895)

sim

times120595(minus119894 119902 119908) 119889119891 (119908)

10038161003816100381610038161003816100381610038161003816100381610038161003816

1199011015840

times 119889 (120583 times 120583) (1199101 1199102)

= int

1198622

119886119887[0119879]

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 120588119895119910119895)

sim

times lim120582rarrminus119894 119902

[120595 (120582 119908)

minus120595 (minus119894 119902 119908)] 119889119891 (119908)

10038161003816100381610038161003816100381610038161003816100381610038161003816

1199011015840

times 119889 (120583 times 120583) (1199101 1199102)

= 0

(47)

which concludes the proof of Theorem 10

Remark 11 (1) In view of Theorems 9 and 10 we see thatfor each 119901 isin [1 2] the 119871

119901analytic GFFT of 119865 119879(119901)

119902(119865) is

given by the right hand side of (40) for 1199020 1199021 1199022 and 119865 as

in Theorem 9 and for s-ae (1199101 1199102) isin 1198622

119886119887[0 119879]

119879(119901)

119902(119865) (119910

1 1199102) = 119864

anf 119902119909[119865 (1199101+ 1199091 1199102+ 1199092)] 119901 isin [1 2]

(48)

In particular using this fact and (29) we have that for all 119901 isin[1 2]

119879(119901)

119902(119865) (0 0) = 119864

anf 119902119909[119865 (1199091 1199092)] (49)

(2) For nonzero real numbers 1199021and 119902

2with |119902

119895| gt 119902

0

119895 isin 1 2 define a set function 119891 119860119902B(1198621015840

119886119887[0 119879]) rarr C by

119891

119860

119902(119861) = int

119861

120595 (minus119894 119902 119908) 119889119891 (119908) 119861 isinB (1198621015840

119886119887[0 119879])

(50)

where 119891 and 119865 are related by (30) and B(1198621015840119886119887[0 119879]) is the

Borel 120590-algebra of 1198621015840119886119887[0 119879] Then it is obvious that 119891 119860

119902

belongs to M(1198621015840119886119887[0 119879]) and for all 119901 isin [1 2] 119879(119901)

119902(119865) can

be expressed as

119879(119901)

119902(119865) (119910

1 1199102) = int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119910119895)

sim

119889119891

119860

119902(119908)

(51)

for s-ae (1199101 1199102) isin 119862

2

119886119887[0 119879] Hence 119879(119901)

119902(119865) belongs to

F 11988611988711986011198602

for all 119901 isin [1 2]

4 Relationships between the GFFT and theFunction Space Integral of Functionals inF11988611988711986011198602

In this section we establish a relationship between the GFFTand the function space integral of functionals in the Fresneltype classF119886119887

11986011198602

8 Journal of Function Spaces and Applications

Throughout this section for convenience we use thefollowing notation for given 120582 isin C

+and 119899 = 1 2 let

119866119899(120582 119909)

= exp[1 minus 1205822

]

119899

sum

119896=1

[(119890119896 119909)sim

]

2

+ (12058212

minus 1)

119899

sum

119896=1

(119890119896 119886)1198621015840

119886119887

(119890119896 119909)sim

(52)

where 119890119899infin

119899=1is a complete orthonormal set in (1198621015840

119886119887[0 119879]

sdot 119887)To obtain our main results Theorems 14 and 17 below

we state a fundamental integration formula for the functionspace 119862

119886119887[0 119879]

Let 1198901 119890

119899 be an orthonormal set in (1198621015840

119886119887[0 119879] sdot

119887)

let 119896 R119899 rarr C be a Lebesgue measurable function and let119870 119862119886119887[0 119879] rarr C be given by

119870 (119909) = 119896 ((1198901 119909)sim

(119890119899 119909)sim

) (53)

Then

119864 [119870] = int

119862119886119887[0119879]

119896 ((1198901 119909)sim

(119890119899 119909)sim

) 119889120583 (119909)

= (2120587)minus1198992

int

R119899119896 (1199061 119906

119899)

times exp

minus

119899

sum

119895=1

[119906119895minus (119890119895 119886)119887

]

2

2

1198891199061 119889119906

119899

(54)

in the sense that if either side of (54) exists both sides existand equality holds

We also need the following lemma to obtain our maintheorem in this section

Lemma 12 Let 1198901 119890

119899 be an orthonormal subset of

(1198621015840

119886119887[0 119879] sdot

119887) and let 119908 be an element of 1198621015840

119886119887[0 119879] Then

for each 120582 isin C+ the function space integral

119864119909[119866119899(120582 119909) exp 119894(119908 119909)sim] (55)

exists and is given by the formula

119864119909[119866119899(120582 119909) exp 119894(119908 119909)sim]

= 120582minus1198992 exp

[

120582 minus 1

2120582

]

119899

sum

119896=1

(119890119896 119908)2

119887minus

1

2

1199082

119887

+ 119894120582minus12

119899

sum

119896=1

(119890119896 119886)119887(119890119896 119908)119887

+ 119894(119890119899+1 119886)119887[1199082

119887minus

119899

sum

119896=1

(119890119896 119908)2

119887]

12

(56)

where 119866119899is given by (52) above and

119890119899+1=[

[

1199082

119887minus

119899

sum

119895=1

(119890119895 119908)

2

119887

]

]

minus12

119908 minus

119899

sum

119895=1

(119890119895 119908)119887

119890119895

(57)

Proof (Outline) Using the Gram-Schmidt process for any119908 isin 119862

1015840

119886119887[0 119879] we can write 119908 = sum

119899+1

119896=1119888119896119890119896 where

1198901 119890

119899 119890119899+1 is an orthonormal set in (1198621015840

119886119887[0 119879] sdot

119887)

and

119888119896=

(119890119896 119908)119887 119896 = 1 119899

[1199082

119887minus

119899

sum

119895=1

(119890119895 119908)

2

119887

]

12

119896 = 119899 + 1

(58)

Then using (52) (54) the Fubini theorem and (14) it followsthat (56) holds for all 120582 isin C

+

The following remark will be very useful in the proof ofour main theorem in this section

Remark 13 Let 1199020be a positive real number and let Γ

1199020

begiven by (35) For real numbers 119902

1and 1199022with |119902

119895| gt 1199020 119895 isin

1 2 let 120582119899infin

119899=1= (1205821119899 1205822119899)infin

119899=1be a sequence in C2

+such

that

120582119899= (1205821119899 1205822119899) 997888rarr minus119894 119902 = (minus119894119902

1 minus1198941199022) (59)

Let 120582119895119899= 120572119895119899+ 119894120573119895119899

for 119895 isin 1 2 and 119899 isin N Then for119895 isin 1 2 Re(120582

119895119899) = 120572119895119899gt 0 and

120582minus1

119895119899= (120572119895119899+ 119894120573119895119899)

minus1

=

120572119895119899minus 119894120573119895119899

1205722

119895119899+ 1205732

119895119899

(60)

for each 119899 isin N Since |Im ((minus119894119902119895)minus12

)| = 1radic2|119902119895| lt 1radic2119902

0

for 119895 isin 1 2 there exists a sufficiently large 119871 isin N such thatfor any 119899 ge 119871 120582

1119899and 120582

2119899are in Int(Γ

1199020

) and

120575 (1199021 1199022) equiv sup ( 1003816100381610038161003816

1003816Im (120582minus12

1119899)

10038161003816100381610038161003816 119899 ge 119871

cup

10038161003816100381610038161003816Im (120582minus12

2119899)

10038161003816100381610038161003816 119899 ge 119871

cup

100381610038161003816100381610038161003816

Im ((minus1198941199021)minus12

)

100381610038161003816100381610038161003816

100381610038161003816100381610038161003816

Im ((minus1198941199022)minus12

)

100381610038161003816100381610038161003816

)

lt

1

radic21199020

(61)

Thus there exists a positive real number 120576 gt 1 such that120575(1199021 1199022) lt 1(120576radic2119902

0)

Let 119890119899infin

119899=1be a complete orthonormal set in (1198621015840

119886119887[0 119879]

sdot 119887) Using Parsevalrsquos identity it follows that

(1198921 1198922)119887=

infin

sum

119899=1

(119890119899 1198921)119887(119890119899 1198922)119887

(62)

Journal of Function Spaces and Applications 9

for all 1198921 1198922isin 1198621015840

119886119887[0 119879] In addition for each 119892 isin 1198621015840

119886119887[0 119879]

10038171003817100381710038171198921003817100381710038171003817

2

119887minus

119899

sum

119896=1

(119890119896 119892)2

119887=

infin

sum

119896=119899+1

(119890119896 119892)2

119887ge 0 (63)

for every 119899 isin NSince

(119892 119886)119887=

infin

sum

119899=1

(119890119899 119892)119887(119890119899 119886)119887

(64)

and for 120576 gt 1

minus12057610038171003817100381710038171198921003817100381710038171003817119887119886119887lt minus10038171003817100381710038171198921003817100381710038171003817119887119886119887le (119892 119886)

119887

le10038171003817100381710038171198921003817100381710038171003817119887119886119887lt 12057610038171003817100381710038171198921003817100381710038171003817119887119886119887

(65)

there exists a sufficiently large119870119895isin N such that for any 119899 ge 119870

119895

1003816100381610038161003816100381610038161003816100381610038161003816

119899

sum

119896=1

(119890119896 11986012

119895119908)119887

(119890119896 119886)119887

1003816100381610038161003816100381610038161003816100381610038161003816

lt 120576

1003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817119887119886119887

(66)

for 119895 isin 1 2Using these and a long and tedious calculation we can

show that for every 119899 ge max119871 1198701 1198702

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

exp

2

sum

119895=1

([

120582119895119899minus 1

2120582119895119899

]

119899

sum

119896=1

(119890119896 11986012

119895119908)

2

119887

minus

1

2

1003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817

2

119887

+ 119894120582minus12

119895119899

119899

sum

119896=1

(119890119896 11986012

119895119908)119887

(119890119896 119886)119887+ 119894(119890119899+1 119886)119887

times [

1003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817

2

119887

minus

119899

sum

119896=1

(119890119896 11986012

119895119908)

2

119887

]

12

)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

lt 119896 (1199020 119908)

(67)

where 119896(1199020 119908) is given by (36)

In our next theorem for119865 isin F11988611988711986011198602

we express theGFFTof 119865 as the limit of a sequence of function space integrals on1198622

119886119887[0 119879]

Theorem 14 Let 1199020and 119865 be as in Theorem 10 Let 119890

119899infin

119899=1

be a complete orthonormal set in (1198621015840119886119887[0 119879] sdot

119887) and let

(1205821119899 1205822119899)infin

119899=1be a sequence in C2

+such that 120582

119895119899rarr minus119894119902

119895

where 119902119895is a real number with |119902

119895| gt 1199020 119895 isin 1 2 Then for

119901 isin [1 2] and for s-ae (1199101 1199102) isin 1198622

119886119887[0 119879]

119879(119901)

119902(119865) (119910

1 1199102)

= lim119899rarrinfin

1205821198992

11198991205821198992

2119899

times119864119909[119866119899(1205821119899 1199091) 119866119899(1205822119899 1199092) 119865 (119910

1+ 1199091 1199102+ 1199092)]

(68)

where 119866119899is given by (52)

Proof ByTheorems9 and 10we know that for each119901 isin [1 2]the 119871119901analytic GFFT of 119865 119879(119901)

119902(119865) exists and is given by the

right hand side of (40) Thus it suffices to show that

119879(1)

119902(119865) (119910

1 1199102) = 119864

anf 119902119909[119865 (1199101+ 1199091 1199102+ 1199092)]

= lim119899rarrinfin

1205821198992

11198991205821198992

2119899

times 119864119909[119866119899(1205821119899 1199091) 119866119899(1205822119899 1199092)

times 119865 (1199101+ 1199091 1199102+ 1199092)] sdot

(69)

Using (30) the Fubini theorem and (56) with 120582 and 119908replaced with 120582

119895119899and 11986012

119895119908 119895 isin 1 2 respectively we see

that

1205821198992

11198991205821198992

2119899119864119909[119866119899(1205821119899 1199091) 119866119899(1205822119899 1199092) 119865 (119910

1+ 1199091 1199102+ 1199092)]

= 1205821198992

11198991205821198992

2119899int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119910119895)

sim

times(

2

prod

119895=1

119864119909119895

[119866119899(120582minus12

119895119899 119909119895)

times exp 119894(11986012119895119908 119909119895)

sim

])119889119891 (119908)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

(119894(11986012

119895119908 119910119895)

sim

+ [

120582119895119899minus 1

2120582119895119899

]

119899

sum

119896=1

(119890119896 11986012

119895119908)

2

119887

minus

1

2

1003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817

2

119887

+ 119894120582minus12

119895119899

119899

sum

119896=1

(119890119896 119886)119887(119890119896 11986012

119895119908)119887

+ 119894(119890119899+1 119886)119887[

1003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817

2

119887

minus

119899

sum

119896=1

(119890119896 11986012

119895119908)

2

119887

]

12

)

119889119891 (119908)

(70)

But by Remark 13 we see that the last expression of (70) isdominated by (39) on the region Γ

1199020

given by (35) for allbut a finite number of values of 119899 Next using the dominatedconvergence theorem Parsevalrsquos relation and (40) we obtainthe desired result

Corollary 15 Let 1199020 119865 119890

119899infin

119899=1 (1205821119899 1205822119899)infin

119899=1and (119902

1 1199022)

be as in Theorem 14 Then

119864

anf119902

119909[119865 (1199091 1199092)]

= lim119899rarrinfin

1205821198992

11198991205821198992

2119899

times 119864119909[119866119899(1205821119899 1199091) 119866119899(1205822119899 1199092) 119865 (119909

1 1199092)]

(71)

where 119866119899is given by (52)

10 Journal of Function Spaces and Applications

Corollary 16 Let 1199020 119865 and 119890

119899infin

119899=1be as in Theorem 14 and

let Γ1199020

be given by (35) Let 120582 = (1205821 1205822) isin Int (Γ

1199020

) and(1205821119899 1205822119899)infin

119899=1be a sequence in C2

+such that 120582

119895119899rarr 120582

119895

119895 isin 1 2 Then

119864

an

119909[119865 (1199091 1199092)] = lim119899rarrinfin

1205821198992

11198991205821198992

2119899

times119864119909[119866119899(1205821119899 1199091) 119866119899(1205822119899 1199092) 119865(1199091 1199092)]

(72)

where 119866119899is given by (52)

Our another result namely a change of scale formula forfunction space integrals now follows fromCorollary 16 above

Theorem 17 Let 119865 isin F11988611988711986011198602

and let 119890119899infin

119899=1be a complete

orthonormal set in (1198621015840119886119887[0 119879] sdot

119887) Then for any 120588

1gt 0 and

1205882gt 0

119864119909[119865 (12058811199091 12058821199092)]

= lim119899rarrinfin

120588minus119899

1120588minus119899

2

times 119864119909[119866119899(120588minus2

1 1199091)119866119899(120588minus2

2 1199092) 119865 (119909

1 1199092)]

(73)

where 119866119899is given by (52)

Proof Simply choose 120582119895= 120588minus2

119895for 119895 isin 1 2 and 120582

119895119899= 120588minus2

119895

for 119895 isin 1 2 and 119899 isin N in (72)

Remark 18 Of course if we choose 119886(119905) equiv 0 119887(119905) = 1199051198601= 119868 (identity operator) and 119860

2= 0 (zero operator) then

the function space 119862119886119887[0 119879] reduces to the classical Wiener

space 1198620[0 119879] and the generalized Fresnel type class F 119886119887

11986011198602

reduces to the Fresnel class F(1198620[0 119879]) It is known that

F(1198620[0 119879]) forms a Banach algebra over the complex field

In this case we have the relationships between the analyticFeynman integral and theWiener integral on classicalWienerspace as discussed in [14 15]

In recent paper [19] Yoo et al have studied a change ofscale formula for function space integral of the functionalsin the Banach algebra S(1198712

119886119887[0 119879]) the Banach algebra

S(1198712119886119887[0 119879]) is introduced in [12]

5 Functionals in F11988611988711986011198602

In this section we prove a theorem ensuring that variousfunctionals are inF119886119887

11986011198602

Theorem 19 Let 1198601and 119860

2be bounded nonnegative and

self-adjoint operators on 1198621015840119886119887[0 119879] Let (119884Y 120574) be a 120590-finite

measure space and let 120593119897 119884 rarr 119862

1015840

119886119887[0 119879] beYndashB(1198621015840

119886119887[0 119879])

measurable for 119897 isin 1 119889 Let 120579 119884 times R119889 rarr C be given by120579(120578 sdot) = ]

120578(sdot) where ]

120578isin M(R119889) for every 120578 isin 119884 and where

the family ]120578 120578 isin 119884 satisfies

(i) ]120578(119864) is a Y-measurable function of 120578 for every 119864 isin

B(R119889)(ii) ]

120578 isin 1198711

(119884Y 120574)

Under these hypothesis the functional 119865 1198622119886119887[0 119879] rarr C

given by

119865 (1199091 1199092) = int

119884

120579(120578

2

sum

119895=1

(11986012

1198951205931(120578) 119909

119895)

sim

2

sum

119895=1

(11986012

119895120593119889(120578) 119909

119895)

sim

)119889120574 (120578)

(74)

belongs toF11988611988711986011198602

and satisfies the inequality

119865 le int

119884

10038171003817100381710038171003817]120578

10038171003817100381710038171003817119889120574 (120578) (75)

Proof Using the techniques similar to those used in [20] wecan show that ]

120578 is measurable as a function of 120578 that 120579 is

Y-measurable and that the integrand in (74) is a measurablefunction of 120578 for every (119909

1 1199092) isin 1198622

119886119887[0 119879]

We define a measure 120591 onY timesB(R119889) by

120591 (119864) = int

119884

]120578(119864(120578)

) 119889120574 (120578) for 119864 isin Y timesB (R119889) (76)

Then by the first assertion of Theorem 31 in [17] 120591 satisfies120591 le int

119884

]120578119889120574(120578) Now let Φ 119884 times R119889 rarr 119862

1015840

119886119887[0 119879] be

defined by Φ(120578 V1 V

119889) = sum

119889

119897=1V119897120593119897(120578) Then Φ is Y times

B(R119889) ndashB(1198621015840119886119887[0 119879])-measurable on the hypothesis for 120593

119897

119897 isin 1 119889 Let 120590 = 120591 ∘Φminus1 Then clearly 120590 isinM(1198621015840119886119887[0 119879])

and satisfies 120590 le 120591From the change of variables theorem and the second

assertion of Theorem 31 in [17] it follows that for ae(1199091 1199092) isin 1198622

119886119887[0 119879] and for every 120588

1gt 0 and 120588

2gt 0

119865 (12058811199091 12058821199092)

= int

119884

]120578(

2

sum

119895=1

(11986012

1198951205931(120578) 120588

119895119909119895)

sim

2

sum

119895=1

(11986012

119895120593119889(120578) 120588

119895119909119895)

sim

)119889120574 (120578)

= int

119884

[

[

int

R119889exp

119894

119889

sum

119897=1

V119897

[

[

2

sum

119895=1

(11986012

119895120593119897(120578)

120588119895119909119895)

sim

]

]

119889]120578

times (V1 V

119889)]

]

119889120574 (120578)

= int

119884timesR119889exp

119894

119889

sum

119897=1

V119897

[

[

2

sum

119895=1

(11986012

119895120593119897(120578) 120588

119895119909119895)

sim

]

]

119889120591

times (120578 V1 V

119889)

Journal of Function Spaces and Applications 11

= int

119884timesR119889exp

2

sum

119895=1

119894(11986012

119895Φ(120578 V

1 V

119889) 120588119895119909119895)

sim

119889120591

times (120578 V1 V

119889)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 120588119895119909119895)

sim

119889120591 ∘ Φminus1

(119908)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 120588119895119909119895)

sim

119889120590 (119908)

(77)

Thus the functional 119865 given by (74) belongs to F11988611988711986011198602

andsatisfies the inequality

119865 = 120590 le 120591 le int

119884

10038171003817100381710038171003817]120578

10038171003817100381710038171003817119889120574 (120578) (78)

As mentioned in (2) of Remark 6 F 11988611988711986011198602

is a Banachalgebra if Ran(119860

1+ 1198602) is dense in 1198621015840

119886119887[0 119879] In this case

many analytic functionals of 119865 can be formed The followingcorollary is relevant to Feynman integration theories andquantum mechanics where exponential functions play animportant role

Corollary 20 Let 1198601and 119860

2be bounded nonnegative and

self-adjoint operators on 1198621015840119886119887[0 119879] such that Ran(119860

1+ 1198602)

is dense in 1198621015840119886119887[0 119879] Let 119865 be given by (74) with 120579 as in

Theorem 19 and let 120573 C rarr C be an entire function Then(120573 ∘ 119865)(119909

1 1199092) is in F119886119887

11986011198602

In particular exp119865(1199091 1199092) isin

F11988611988711986011198602

Corollary 21 Let 1198601and 119860

2be bounded nonnegative and

self-adjoint operators on 1198621015840119886119887[0 119879] and let 119892

1 119892

119889 be a

finite subset of 1198621015840119886119887[0 119879] Given 120573 = ] where ] isin M(R119889)

define 119865 1198622119886119887[0 119879] rarr C by

119865 (1199091 1199092) = 120573(

2

sum

119895=1

(11986012

1198951198921 119909119895)

sim

2

sum

119895=1

(11986012

119895119892119889 119909119895)

sim

)

(79)

Then 119865 is an element ofF11988611988711986011198602

Proof Let (119884Y 120574) be a probability space and for 119897 isin1 119889 let 120593

119897(120578) equiv 119892

119897 Take 120579(120578 sdot) = 120573(sdot) = ](sdot) Then for

all 1205881gt 0 and 120588

2gt 0 and for ae (119909

1 1199092) isin 1198622

119886119887[0 119879]

int

119884

120579(120578

2

sum

119895=1

(11986012

1198951205931(120578) 120588

119895119909119895)

sim

2

sum

119895=1

(11986012

119895120593119889(120578) 120588

119895119909119895)

sim

)119889120574 (120578)

= int

119884

120573(

2

sum

119895=1

(11986012

1198951198921 120588119895119909119895)

sim

2

sum

119895=1

(11986012

119895119892119889 120588119895119909119895)

sim

)119889120574 (120578)

= 120573(

2

sum

119895=1

(11986012

1198951198921 120588119895119909119895)

sim

2

sum

119895=1

(11986012

119895119892119889 120588119895119909119895)

sim

)

= 119865 (12058811199091 12058821199092)

(80)

Hence 119865 isin F11988611988711986011198602

Remark 22 Let 119889 = 1 and let (119884Y 120574) = ([0 119879]B([0 119879])119898119871) in Theorem 19 where 119898

119871denotes the Lebesgue measure

on [0 119879] ThenTheorems 46 47 and 49 in [18] follow fromthe results in this section by letting119860

1be the identity operator

and letting 1198602equiv 0 on 1198621015840

119886119887[0 119879] The function 120579 studied in

[18] (and mentioned in Remark 2 above) is interpreted as thepotential energy in quantum mechanics

Acknowledgments

The authors would like to express their gratitude to the refer-ees for their valuable comments and suggestions which haveimproved the original paper This research was supported bythe Basic Science Research Program through the NationalResearch Foundation of Korea (NRF) funded by theMinistryof Education (2011-0014552)

References

[1] G Kallianpur and C Bromley ldquoGeneralized Feynman integralsusing analytic continuation in several complex variablesrdquo inStochastic Analysis and Applications M A Pinsky Ed vol 7pp 217ndash267 Marcel Dekker New York NY USA 1984

[2] G Kallianpur D Kannan and R L Karandikar ldquoAnalytic andsequential Feynman integrals on abstract Wiener and Hilbertspaces and a Cameron-Martin formulardquo Annales de lrsquoInstitutHenri Poincare vol 21 no 4 pp 323ndash361 1985

[3] G W Johnson and M L Lapidus The Feynman Integral andFeynmanrsquos Operational Calculus Clarendon Press Oxford UK2000

[4] J Yeh ldquoSingularity of Gaussian measures on function spacesinduced by Brownian motion processes with non-stationaryincrementsrdquo Illinois Journal of Mathematics vol 15 pp 37ndash461971

[5] J Yeh Stochastic Processes and the Wiener Integral MarcelDekker New York NY USA 1973

[6] S J Chang J G Choi and D Skoug ldquoIntegration by partsformulas involving generalized Fourier-Feynman transformson function spacerdquo Transactions of the American MathematicalSociety vol 355 no 7 pp 2925ndash2948 2003

[7] S J Chang J G Choi and D Skoug ldquoParts formulas involvingconditional generalized Feynman integrals and conditionalgeneralized Fourier-Feynman transforms on function spacerdquo

12 Journal of Function Spaces and Applications

Integral Transforms and Special Functions vol 15 no 6 pp 491ndash512 2004

[8] S J Chang J G Choi and D Skoug ldquoEvaluation formulas forconditional function space integralsmdashIrdquo Stochastic Analysis andApplications vol 25 no 1 pp 141ndash168 2007

[9] S J Chang J G Choi and D Skoug ldquoGeneralized Fourier-Feynman transforms convolution products and first variationson function spacerdquoTheRockyMountain Journal ofMathematicsvol 40 no 3 pp 761ndash788 2010

[10] S J Chang and D M Chung ldquoConditional function spaceintegrals with applicationsrdquo The Rocky Mountain Journal ofMathematics vol 26 no 1 pp 37ndash62 1996

[11] S J Chang H S Chung and D Skoug ldquoIntegral transformsof functionals in 119871

2(119862119886119887[0 119879])rdquoThe Journal of Fourier Analysis

and Applications vol 15 no 4 pp 441ndash462 2009[12] S J Chang and D Skoug ldquoGeneralized Fourier-Feynman

transforms and a first variation on function spacerdquo IntegralTransforms and Special Functions vol 14 pp 375ndash393 2003

[13] J G Choi and S J Chang ldquoGeneralized Fourier-Feynmantransform and sequential transforms on function spacerdquo Jour-nal of the Korean Mathematical Society vol 49 pp 1065ndash10822012

[14] R H Cameron and D A Storvick ldquoRelationships between theWiener integral and the analytic Feynman integralrdquo Rendicontidel Circolo Matematico di Palermo no 17 supplement pp 117ndash133 1987

[15] RHCameron andDA Storvick ldquoChange of scale formulas forWiener integralrdquo Rendiconti del Circolo Matematico di Palermono 17 pp 105ndash115 1987

[16] G W Johnson ldquoThe equivalence of two approaches to theFeynman integralrdquo Journal of Mathematical Physics vol 23 pp2090ndash2096 1982

[17] G W Johnson and D L Skoug ldquoNotes on the FeynmanintegralmdashIII the Schroedinger equationrdquo Pacific Journal ofMathematics vol 105 pp 321ndash358 1983

[18] S J Chang J G Choi and S D Lee ldquoA Fresnel type class onfunction spacerdquo Journal of the Korean Society of MathematicalEducation Series B vol 16 no 1 pp 107ndash119 2009

[19] I Yoo B J Kim and B S Kim ldquoA change of scale formulafor a function space integral on 119862

119886119887[0 119879]rdquo Proceedings of the

American Mathematical Society vol 141 no 8 pp 2729ndash27392013

[20] K S Chang G W Johnson and D L Skoug ldquoFunctions inthe Fresnel classrdquo Proceedings of the American MathematicalSociety vol 100 no 2 pp 309ndash318 1987

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 4: Research Article Generalized Analytic Fourier-Feynman ...downloads.hindawi.com/journals/jfs/2013/954098.pdf · Journal of Function Spaces and Applications Volume , Article ID , pages

4 Journal of Function Spaces and Applications

where both 119860+ and 119860minus are bounded nonnegative and self-adjoint operators

In this section we will extend the ideas of [1] to obtainexpressions of the generalized analytic Feynman integral andthe GFFT of functionals of the form (19) when119860 is no longerrequired to be nonnegative To do this we will introducedefinitions and notations analogous to those in [7 12 13]

Let W(1198622119886119887[0 119879]) denote the class of all Wiener mea-

surable subsets of the product function space 1198622119886119887[0 119879] A

subset 119861 of 1198622119886119887[0 119879] is said to be scale-invariant measurable

provided (12058811199091 12058821199092) (119909

1 1199092) isin 119861 is W(1198622

119886119887[0 119879])-

measurable for every 1205881gt 0 and 120588

2gt 0 and a scale-

invariantmeasurable subset119873 of1198622119886119887[0 119879] is said to be scale-

invariant null provided (120583 times 120583)((12058811199091 12058821199092) (119909

1 1199092) isin

119873) = 0 for every 1205881gt 0 and 120588

2gt 0 A property that

holds except on a scale-invariant null set is said to hold s-ae on 1198622

119886119887[0 119879] A functional 119865 on 1198622

119886119887[0 119879] is said to be

scale-invariant measurable provided 119865 is defined on a scale-invariant measurable set and 119865(120588

1sdot 1205882sdot) is W(1198622

119886119887[0 119879])-

measurable for every 1205881gt 0 and 120588

2gt 0 If two functionals

119865 and 119866 defined on 1198622119886119887[0 119879] are equal s-ae then we write

119865 asymp 119866We denote the product function space integral of a

W(1198622119886119887[0 119879])-measurable functional 119865 by

119864 [119865] equiv 119864119909[119865 (1199091 1199092)]

= int

1198622

119886119887[0119879]

119865 (1199091 1199092) 119889 (120583 times 120583) (119909

1 1199092)

(21)

whenever the integral existsThroughout this paper letCC

+and C

+denote the set of

complex numbers complex numbers with positive real partand nonzero complex numbers with nonnegative real partrespectively Furthermore for all 120582 isin C

+ 120582minus12 (or 12058212) is

always chosen to have positive real part We also assume thatevery functional 119865 on 1198622

119886119887[0 119879] we consider is s-ae defined

and is scale-invariant measurable

Definition 3 Let C2+equiv C+times C+and let C2

+equivC+timesC+ Let

119865 1198622

119886119887[0 119879] rarr C be such that for each 120582

1gt 0 and 120582

2gt 0

the function space integral

119869 (1205821 1205822)

= int

1198622

119886119887[0119879]

119865 (120582minus12

11199091 120582minus12

21199092) 119889 (120583 times 120583) (119909

1 1199092)

(22)

exists If there exists a function 119869lowast(1205821 1205822) analytic inC2

+such

that 119869lowast(1205821 1205822) = 119869(120582

1 1205822) for all 120582

1gt 0 and 120582

2gt 0 then

119869lowast

(1205821 1205822) is defined to be the analytic function space integral

of 119865 over 1198622119886119887[0 119879] with parameter 120582 = (120582

1 1205822) and for 120582 isin

C2+we write

119864an[119865] equiv 119864

an

119909[119865 (1199091 1199092)]

equiv 119864

an(12058211205822)

11990911199092[119865 (1199091 1199092)] = 119869

lowast

(1205821 1205822)

(23)

Let 1199021and 1199022be nonzero real numbers Let 119865 be a functional

such that 119864an[119865] exists for all 120582 isin C2+ If the following limit

exists we call it the generalized analytic Feynman integral of119865 with parameter 119902 = (119902

1 1199022) and we write

119864anf 119902[119865] equiv 119864

anf 119902119909[119865 (1199091 1199092)]

equiv 119864

anf(11990211199022)

11990911199092[119865 (1199091 1199092)] = lim

120582rarrminus119894 119902

119864an[119865]

(24)

where 120582 = (1205821 1205822) rarr minus119894 119902 = (minus119894119902

1 minus1198941199022) through values in

C2+

Definition 4 Let 1199021and 1199022be nonzero real numbers For 120582 =

(1205821 1205822) isin C2+and (119910

1 1199102) isin 1198622

119886119887[0 119879] let

119879 120582(119865) (119910

1 1199102) equiv 119879(12058211205822)(119865) (119910

1 1199102)

= 119864

an

119909[119865 (1199101+ 1199091 1199102+ 1199092)]

(25)

For 119901 isin (1 2] we define the 119871119901analytic GFFT 119879(119901)

119902(119865) of 119865

by the formula ( 120582 isin C2+)

119879(119901)

119902(119865) (119910

1 1199102) equiv 119879(119901)

(1199021 1199022)(119865) (119910

1 1199102)

= lim120582rarrminus119894 119902

119879 120582(119865) (119910

1 1199102)

(26)

if it exists that is for each 1205881gt 0 and 120588

2gt 0

lim120582rarrminus119894 119902

int

1198622

119886119887[0119879]

100381610038161003816100381610038161003816

119879 120582(119865) (120588

11199101 12058821199102)

minus119879(119901)

119902(119865) (120588

11199101 12058821199102)

100381610038161003816100381610038161003816

1199011015840

119889 (120583 times 120583) (1199101 1199102)

= 0

(27)

where 1119901+11199011015840 = 1We define the 1198711analytic GFFT119879(1)

119902(119865)

of 119865 by the formula ( 120582 isin C2+)

119879(1)

119902(119865) (119910

1 1199102) = lim120582rarrminus119894 119902

119879 120582(119865) (119910

1 1199102) (28)

if it exists

We note that for 1 le 119901 le 2 119879(119901)119902(119865) is defined only s-ae

We also note that if 119879(119901)119902(119865) exists and if 119865 asymp 119866 then 119879(119901)

119902(119866)

exists and 119879(119901)119902(119866) asymp 119879

(119901)

119902(119865) Moreover from Definition 4

we see that for 1199021 1199022isin R minus 0

119864

anf 119902119909[119865 (1199091 1199092)] = 119879

(1)

119902(119865) (0 0) (29)

Next we give the definition of the generalized Fresnel typeclassF119886119887

11986011198602

Journal of Function Spaces and Applications 5

Definition 5 Let 1198601and 119860

2be bounded nonnegative and

self-adjoint operators on 1198621015840119886119887[0 119879] The generalized Fresnel

type classF11988611988711986011198602

of functionals on1198622119886119887[0 119879] is defined as the

space of all functionals 119865 on 1198622119886119887[0 119879] of the following form

119865 (1199091 1199092) = int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119909119895)

sim

119889119891 (119908) (30)

for some119891 isinM(1198621015840119886119887[0 119879]) More precisely since we identify

functionals which coincide s-ae on 1198622119886119887[0 119879] F119886119887

11986011198602

canbe regarded as the space of all 119904-equivalence classes offunctionals of the form (30)

Remark 6 (1) In Definition 5 let 1198601be the identity operator

on 1198621015840119886119887[0 119879] and 119860

2equiv 0 Then F 119886119887

11986011198602

is essentially theFresnel type class F(119862

119886119887[0 119879]) and for 119901 isin [1 2] and

nonzero real numbers 1199021and 1199022

119879(119901)

(1199021 1199022)(119865) (119910

1 1199102) = 119879(119901)

1199021

(1198650) (1199101) (31)

if it exists where 1198650(1199091) = 119865(119909

1 1199092) for all (119909

1 1199092) isin

1198622

119886119887[0 119879] and 119879(119901)

1199021

(1198650) means the 119871

119901analytic GFFT on

119862119886119887[0 119879] see [6 12](2) The map 119891 997891rarr 119865 defined by (30) sets up an algebra

isomorphism betweenM(1198621015840119886119887[0 119879]) andF119886119887

11986011198602

if Ran(1198601+

1198602) is dense in1198621015840

119886119887[0 119879] where Ran indicates the range of an

operator In this caseF 11988611988711986011198602

becomes a Banach algebra underthe norm 119865 = 119891 For more details see [1]

Remark 7 Let 119865 be given by (30) In evaluating119864119909[119865(120582minus12

11199091 120582minus12

21199092)] and 119879

(12058211205822)(119865)(1199101 1199102) = 119864

119909[119865(1199101+

120582minus12

11199091 1199102+ 120582minus12

21199092)] for 120582

1gt 0 and 120582

2gt 0 the expression

120595 (120582 119908)

equiv 120595 (1205821 1205822 1198601 1198602 119908)

= exp

2

sum

119895=1

[

[

minus

(119860119895119908119908)

119887

2120582119895

+ 119894120582minus12

119895(11986012

119895119908 119886)119887

]

]

(32)

occurs Clearly for 120582119895gt 0 119895 isin 1 2 |120595( 120582 119908)| le 1 for all

119908 isin 1198621015840

119886119887[0 119879] But for 120582 isin C2

+ |120595( 120582 119908)| is not necessarily

bounded by 1Note that for each 120582

119895isinC+with 120582

119895= 120572119895+ 119894120573119895 119895 isin 1 2

12058212

119895=

radicradic1205722

119895+ 1205732

119895+ 120572119895

2

+ 119894

120573119895

10038161003816100381610038161003816120573119895

10038161003816100381610038161003816

radicradic1205722

119895+ 1205732

119895minus 120572119895

2

120582minus12

119895=radic

radic1205722

119895+ 1205732

119895+ 120572119895

2 (1205722

119895+ 1205732

119895)

minus 119894

120573119895

10038161003816100381610038161003816120573119895

10038161003816100381610038161003816

radic

radic1205722

119895+ 1205732

119895minus 120572119895

2 (1205722

119895+ 1205732

119895)

(33)

Hence for 120582119895isinC+with 120582

119895= 120572119895+ 119894120573119895 119895 isin 1 2

10038161003816100381610038161003816120595 (120582 119908)

10038161003816100381610038161003816

= exp

2

sum

119895=1

[

[

[

[

minus

120572119895

2 (1205722

119895+ 1205732

119895)

(119860119895119908119908)

119887

+

120573119895

10038161003816100381610038161003816120573119895

10038161003816100381610038161003816

radic

radic1205722

119895+ 1205732

119895minus 120572119895

2 (1205722

119895+ 1205732

119895)

(11986012

119895119908 119886)119887

]

]

]

]

(34)

The right hand side of (34) is an unbounded functionof 119908 for 119908 isin 1198621015840

119886119887[0 119879] Thus 119864an[119865] 119864anf 119902[119865] 119879

120582(119865) and

119879(119901)

119902(119865) might not exist Thus throughout this paper we will

need to put additional restrictions on the complex measure119891 corresponding to 119865 in order to obtain our results for theGFFT and the generalized analytic Feynman integral of 119865

In view of Remark 7 we clearly need to impose additionalrestrictions on the functionals 119865 inF119886119887

11986011198602

For a positive real number 119902

0 let

Γ1199020

=

120582 = (120582

1 1205822) isinC2

+| 120582119895= 120572119895+ 119894120573119895

10038161003816100381610038161003816Im (120582minus12

119895)

10038161003816100381610038161003816=radic

radic1205722

119895+ 1205732

119895minus 120572119895

2 (1205722

119895+ 1205732

119895)

lt

1

radic21199020

119895 = 1 2

(35)

and let119896 (1199020 119908) equiv 119896 (119902

0 1198601 1198602 119908)

= exp

2

sum

119895=1

(21199020)minus121003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817119887119886119887

(36)

Then for all 120582 = (1205821 1205822) isin Γ1199020

10038161003816100381610038161003816120595 (120582 119908)

10038161003816100381610038161003816le exp

2

sum

119895=1

radic

radic1205722

119895+ 1205732

119895minus 120572119895

2 (1205722

119895+ 1205732

119895)

100381610038161003816100381610038161003816

(11986012

119895119908 119886)119887

100381610038161003816100381610038161003816

le exp

2

sum

119895=1

radic

radic1205722

119895+ 1205732

119895minus 120572119895

2 (1205722

119895+ 1205732

119895)

1003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817119887119886119887

lt 119896 (1199020 119908)

(37)

6 Journal of Function Spaces and Applications

We note that for all real 119902119895with |119902

119895| gt 1199020 119895 isin 1 2

(minus119894119902119895)

minus12

=

1

radic

100381610038161003816100381610038162119902119895

10038161003816100381610038161003816

+ sign (119902119895)

119894

radic

100381610038161003816100381610038162119902119895

10038161003816100381610038161003816

(38)

and (minus1198941199021 minus1198941199022) isin Γ1199020

For the existence of the GFFT of 119865 we define a subclass

F1199020

11986011198602

ofF 11988611988711986011198602

by 119865 isin F 119902011986011198602

if and only if

int

1198621015840

119886119887[0119879]

119896 (1199020 119908) 119889

10038161003816100381610038161198911003816100381610038161003816(119908) lt +infin (39)

where 119891 and 119865 are related by (30) and 119896 is given by (36)

Remark 8 Note that in case 119886(119905) equiv 0 and 119887(119905) = 119905 on [0 119879]the function space 119862

119886119887[0 119879] reduces to the classical Wiener

space 1198620[0 119879] and (119908 119886)

119887= 0 for all 119908 isin 1198621015840

119886119887[0 119879] =

1198621015840

0[0 119879] Hence for all 120582 isin C2

+ |120595( 120582 119908)| le 1 and for any

positive real number 1199020F 119902011986011198602

= F11986011198602

theKallianpur andBromleyrsquos class introduced in Section 1

Theorem 9 Let 1199020be a positive real number and let 119865 be an

element ofF 119902011986011198602

Then for any nonzero real numbers 1199021and

1199022with |119902

119895| gt 1199020 119895 isin 1 2 the 119871

1analytic GFFT of 119865 119879(1)

119902(119865)

exists and is given by the following formula

119879(1)

119902(119865) (119910

1 1199102)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119910119895)

sim

120595(minus119894 119902 119908) 119889119891 (119908)

(40)

for s-ae (1199101 1199102) isin 1198622

119886119887[0 119879] where 120595 is given by (32)

Proof We first note that for 119895 isin 1 2 the PWZ stochasticintegral (11986012

119895119908 119909)sim is a Gaussian random variable withmean

(11986012

119895119908 119886)119887and variance 11986012

119895119908

2

119887

= (119860119895119908119908)119887

Hence using(30) the Fubini theorem the change of variables theorem and(14) we have that for all 120582

1gt 0 and 120582

2gt 0

119869 (1199101 1199102 1205821 1205822)

equiv 119864119909[119865 (1199101+ 120582minus12

11199091 1199102+ 120582minus12

21199092)]

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119910119895)

sim

times(

2

prod

119895=1

119864119909119895

[exp 119894120582minus12119895(11986012

119895119908 119909119895)

sim

])119889119891 (119908)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119910119895)

sim

times[

[

[

2

prod

119895=1

(2120587(119860119895119908119908)

119887

)

minus12

times int

R

exp

119894120582minus12

119895119906119895

minus

[119906119895minus (11986012

119895119908 119886)119887

]

2

2(119860119895119908119908)

119887

119889119906119895

]

]

]

119889119891(119908)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119910119895)

sim

120595(120582 119908) 119889119891 (119908)

(41)

Let

119879 120582(119865) (119910

1 1199102)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119910119895)

sim

120595(120582 119908) 119889119891 (119908)

(42)

for each 120582 isin C2+ Clearly

119879 120582(119865) (119910

1 1199102) = 119869 (119910

1 1199102 1205821 1205822) (43)

for all 1205821gt 0 and 120582

2gt 0 Let Γ

1199020

be given by (35)Then for all120582 isin Int(Γ

1199020

)

1003816100381610038161003816119879 120582(119865) (119910

1 1199102)1003816100381610038161003816lt int

1198621015840

119886119887[0119879]

119896 (1199020 119908) 119889

10038161003816100381610038161198911003816100381610038161003816(119908) lt +infin

(44)

Using this fact and the dominated convergence theoremwe see that 119879

120582(119865)(1199101 1199102) is a continuous function of 120582 =

(1205821 1205822) on Int(Γ

1199020

) For each 119908 isin 1198621015840119886119887[0 119879] 120595( 120582 119908) is an

analytic function of 120582 throughout the domain Int(Γ1199020

) so thatintΔ

120595(120582 119908)119889

120582 = 0 for every rectifiable simple closed curve

Δ in Int(Γ1199020

) By (42) the Fubini theorem and the Moreratheorem we see that 119879

120582(119865)(1199101 1199102) is an analytic function of

120582 throughout the domain Int(Γ

1199020

) Finally using (28) withthe dominated convergence theorem we obtain the desiredresult

Theorem 10 Let 1199020and 119865 be as inTheorem 9Then for all 119901 isin

(1 2] and all nonzero real numbers 1199021and 119902

2with |119902

119895| gt 1199020

119895 isin 1 2 the119871119901analytic GFFT of119865119879(119901)

119902(119865) exists and is given

by the right hand side of (40) for s-ae (1199101 1199102) isin 1198622

119886119887[0 119879]

Journal of Function Spaces and Applications 7

Proof Let Γ1199020

be given by (35) It was shown in the proofof Theorem 9 that 119879

120582(119865)(1199101 1199102) is an analytic function of 120582

throughout the domain Int(Γ1199020

) In viewofDefinition 4 it willsuffice to show that for each 120588

1gt 0 and 120588

2gt 0

lim120582rarrminus119894 119902

int

1198622

119886119887[0119879]

100381610038161003816100381610038161003816

119879 120582(119865) (120588

11199101 12058821199102)

minus119879(119901)

119902(119865) (120588

11199101 12058821199102)

100381610038161003816100381610038161003816

1199011015840

times 119889 (120583 times 120583) (1199101 1199102) = 0

(45)

Fixing 119901 isin (1 2] and using the inequalities (37) and (39)we obtain that for all 120588

119895gt 0 119895 isin 1 2 and all 120582 isin Γ

1199020

100381610038161003816100381610038161003816

119879 120582(119865) (120588

11199101 12058821199102) minus 119879(119901)

119902(119865) (120588

11199101 12058821199102)

100381610038161003816100381610038161003816

1199011015840

le

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894120588119895(11986012

119895119908 119910119895)

sim

times[120595 (120582 119908) minus 120595 (minus119894 119902 119908)] 119889119891 (119908)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1199011015840

le (int

1198621015840

119886119887[0119879]

[

10038161003816100381610038161003816120595 (120582 119908)

10038161003816100381610038161003816+

10038161003816100381610038161003816120595 (minus119894 119902 119908)

10038161003816100381610038161003816] 11988910038161003816100381610038161198911003816100381610038161003816(119908))

1199011015840

le (2int

1198621015840

119886119887[0119879]

119896 (1199020 119908) 119889

10038161003816100381610038161198911003816100381610038161003816(119908))

1199011015840

lt +infin

(46)

Hence by the dominated convergence theorem we see thatfor each 119901 isin (1 2] and each 120588

1gt 0 and 120588

2gt 0

lim120582rarrminus119894 119902

int

1198622

119886119887[0119879]

100381610038161003816100381610038161003816

119879 120582(119865) (120588

11199101 12058821199102)

minus119879(119901)

119902(119865) (120588

11199101 12058821199102)

100381610038161003816100381610038161003816

1199011015840

119889 (120583 times 120583) (1199101 1199102)

= lim120582rarrminus119894 119902

int

1198622

119886119887[0119879]

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 120588119895119910119895)

sim

times 120595(120582 119908) 119889119891 (119908)

minus int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 120588119895119910119895)

sim

times120595(minus119894 119902 119908) 119889119891 (119908)

10038161003816100381610038161003816100381610038161003816100381610038161003816

1199011015840

times 119889 (120583 times 120583) (1199101 1199102)

= int

1198622

119886119887[0119879]

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 120588119895119910119895)

sim

times lim120582rarrminus119894 119902

[120595 (120582 119908)

minus120595 (minus119894 119902 119908)] 119889119891 (119908)

10038161003816100381610038161003816100381610038161003816100381610038161003816

1199011015840

times 119889 (120583 times 120583) (1199101 1199102)

= 0

(47)

which concludes the proof of Theorem 10

Remark 11 (1) In view of Theorems 9 and 10 we see thatfor each 119901 isin [1 2] the 119871

119901analytic GFFT of 119865 119879(119901)

119902(119865) is

given by the right hand side of (40) for 1199020 1199021 1199022 and 119865 as

in Theorem 9 and for s-ae (1199101 1199102) isin 1198622

119886119887[0 119879]

119879(119901)

119902(119865) (119910

1 1199102) = 119864

anf 119902119909[119865 (1199101+ 1199091 1199102+ 1199092)] 119901 isin [1 2]

(48)

In particular using this fact and (29) we have that for all 119901 isin[1 2]

119879(119901)

119902(119865) (0 0) = 119864

anf 119902119909[119865 (1199091 1199092)] (49)

(2) For nonzero real numbers 1199021and 119902

2with |119902

119895| gt 119902

0

119895 isin 1 2 define a set function 119891 119860119902B(1198621015840

119886119887[0 119879]) rarr C by

119891

119860

119902(119861) = int

119861

120595 (minus119894 119902 119908) 119889119891 (119908) 119861 isinB (1198621015840

119886119887[0 119879])

(50)

where 119891 and 119865 are related by (30) and B(1198621015840119886119887[0 119879]) is the

Borel 120590-algebra of 1198621015840119886119887[0 119879] Then it is obvious that 119891 119860

119902

belongs to M(1198621015840119886119887[0 119879]) and for all 119901 isin [1 2] 119879(119901)

119902(119865) can

be expressed as

119879(119901)

119902(119865) (119910

1 1199102) = int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119910119895)

sim

119889119891

119860

119902(119908)

(51)

for s-ae (1199101 1199102) isin 119862

2

119886119887[0 119879] Hence 119879(119901)

119902(119865) belongs to

F 11988611988711986011198602

for all 119901 isin [1 2]

4 Relationships between the GFFT and theFunction Space Integral of Functionals inF11988611988711986011198602

In this section we establish a relationship between the GFFTand the function space integral of functionals in the Fresneltype classF119886119887

11986011198602

8 Journal of Function Spaces and Applications

Throughout this section for convenience we use thefollowing notation for given 120582 isin C

+and 119899 = 1 2 let

119866119899(120582 119909)

= exp[1 minus 1205822

]

119899

sum

119896=1

[(119890119896 119909)sim

]

2

+ (12058212

minus 1)

119899

sum

119896=1

(119890119896 119886)1198621015840

119886119887

(119890119896 119909)sim

(52)

where 119890119899infin

119899=1is a complete orthonormal set in (1198621015840

119886119887[0 119879]

sdot 119887)To obtain our main results Theorems 14 and 17 below

we state a fundamental integration formula for the functionspace 119862

119886119887[0 119879]

Let 1198901 119890

119899 be an orthonormal set in (1198621015840

119886119887[0 119879] sdot

119887)

let 119896 R119899 rarr C be a Lebesgue measurable function and let119870 119862119886119887[0 119879] rarr C be given by

119870 (119909) = 119896 ((1198901 119909)sim

(119890119899 119909)sim

) (53)

Then

119864 [119870] = int

119862119886119887[0119879]

119896 ((1198901 119909)sim

(119890119899 119909)sim

) 119889120583 (119909)

= (2120587)minus1198992

int

R119899119896 (1199061 119906

119899)

times exp

minus

119899

sum

119895=1

[119906119895minus (119890119895 119886)119887

]

2

2

1198891199061 119889119906

119899

(54)

in the sense that if either side of (54) exists both sides existand equality holds

We also need the following lemma to obtain our maintheorem in this section

Lemma 12 Let 1198901 119890

119899 be an orthonormal subset of

(1198621015840

119886119887[0 119879] sdot

119887) and let 119908 be an element of 1198621015840

119886119887[0 119879] Then

for each 120582 isin C+ the function space integral

119864119909[119866119899(120582 119909) exp 119894(119908 119909)sim] (55)

exists and is given by the formula

119864119909[119866119899(120582 119909) exp 119894(119908 119909)sim]

= 120582minus1198992 exp

[

120582 minus 1

2120582

]

119899

sum

119896=1

(119890119896 119908)2

119887minus

1

2

1199082

119887

+ 119894120582minus12

119899

sum

119896=1

(119890119896 119886)119887(119890119896 119908)119887

+ 119894(119890119899+1 119886)119887[1199082

119887minus

119899

sum

119896=1

(119890119896 119908)2

119887]

12

(56)

where 119866119899is given by (52) above and

119890119899+1=[

[

1199082

119887minus

119899

sum

119895=1

(119890119895 119908)

2

119887

]

]

minus12

119908 minus

119899

sum

119895=1

(119890119895 119908)119887

119890119895

(57)

Proof (Outline) Using the Gram-Schmidt process for any119908 isin 119862

1015840

119886119887[0 119879] we can write 119908 = sum

119899+1

119896=1119888119896119890119896 where

1198901 119890

119899 119890119899+1 is an orthonormal set in (1198621015840

119886119887[0 119879] sdot

119887)

and

119888119896=

(119890119896 119908)119887 119896 = 1 119899

[1199082

119887minus

119899

sum

119895=1

(119890119895 119908)

2

119887

]

12

119896 = 119899 + 1

(58)

Then using (52) (54) the Fubini theorem and (14) it followsthat (56) holds for all 120582 isin C

+

The following remark will be very useful in the proof ofour main theorem in this section

Remark 13 Let 1199020be a positive real number and let Γ

1199020

begiven by (35) For real numbers 119902

1and 1199022with |119902

119895| gt 1199020 119895 isin

1 2 let 120582119899infin

119899=1= (1205821119899 1205822119899)infin

119899=1be a sequence in C2

+such

that

120582119899= (1205821119899 1205822119899) 997888rarr minus119894 119902 = (minus119894119902

1 minus1198941199022) (59)

Let 120582119895119899= 120572119895119899+ 119894120573119895119899

for 119895 isin 1 2 and 119899 isin N Then for119895 isin 1 2 Re(120582

119895119899) = 120572119895119899gt 0 and

120582minus1

119895119899= (120572119895119899+ 119894120573119895119899)

minus1

=

120572119895119899minus 119894120573119895119899

1205722

119895119899+ 1205732

119895119899

(60)

for each 119899 isin N Since |Im ((minus119894119902119895)minus12

)| = 1radic2|119902119895| lt 1radic2119902

0

for 119895 isin 1 2 there exists a sufficiently large 119871 isin N such thatfor any 119899 ge 119871 120582

1119899and 120582

2119899are in Int(Γ

1199020

) and

120575 (1199021 1199022) equiv sup ( 1003816100381610038161003816

1003816Im (120582minus12

1119899)

10038161003816100381610038161003816 119899 ge 119871

cup

10038161003816100381610038161003816Im (120582minus12

2119899)

10038161003816100381610038161003816 119899 ge 119871

cup

100381610038161003816100381610038161003816

Im ((minus1198941199021)minus12

)

100381610038161003816100381610038161003816

100381610038161003816100381610038161003816

Im ((minus1198941199022)minus12

)

100381610038161003816100381610038161003816

)

lt

1

radic21199020

(61)

Thus there exists a positive real number 120576 gt 1 such that120575(1199021 1199022) lt 1(120576radic2119902

0)

Let 119890119899infin

119899=1be a complete orthonormal set in (1198621015840

119886119887[0 119879]

sdot 119887) Using Parsevalrsquos identity it follows that

(1198921 1198922)119887=

infin

sum

119899=1

(119890119899 1198921)119887(119890119899 1198922)119887

(62)

Journal of Function Spaces and Applications 9

for all 1198921 1198922isin 1198621015840

119886119887[0 119879] In addition for each 119892 isin 1198621015840

119886119887[0 119879]

10038171003817100381710038171198921003817100381710038171003817

2

119887minus

119899

sum

119896=1

(119890119896 119892)2

119887=

infin

sum

119896=119899+1

(119890119896 119892)2

119887ge 0 (63)

for every 119899 isin NSince

(119892 119886)119887=

infin

sum

119899=1

(119890119899 119892)119887(119890119899 119886)119887

(64)

and for 120576 gt 1

minus12057610038171003817100381710038171198921003817100381710038171003817119887119886119887lt minus10038171003817100381710038171198921003817100381710038171003817119887119886119887le (119892 119886)

119887

le10038171003817100381710038171198921003817100381710038171003817119887119886119887lt 12057610038171003817100381710038171198921003817100381710038171003817119887119886119887

(65)

there exists a sufficiently large119870119895isin N such that for any 119899 ge 119870

119895

1003816100381610038161003816100381610038161003816100381610038161003816

119899

sum

119896=1

(119890119896 11986012

119895119908)119887

(119890119896 119886)119887

1003816100381610038161003816100381610038161003816100381610038161003816

lt 120576

1003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817119887119886119887

(66)

for 119895 isin 1 2Using these and a long and tedious calculation we can

show that for every 119899 ge max119871 1198701 1198702

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

exp

2

sum

119895=1

([

120582119895119899minus 1

2120582119895119899

]

119899

sum

119896=1

(119890119896 11986012

119895119908)

2

119887

minus

1

2

1003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817

2

119887

+ 119894120582minus12

119895119899

119899

sum

119896=1

(119890119896 11986012

119895119908)119887

(119890119896 119886)119887+ 119894(119890119899+1 119886)119887

times [

1003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817

2

119887

minus

119899

sum

119896=1

(119890119896 11986012

119895119908)

2

119887

]

12

)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

lt 119896 (1199020 119908)

(67)

where 119896(1199020 119908) is given by (36)

In our next theorem for119865 isin F11988611988711986011198602

we express theGFFTof 119865 as the limit of a sequence of function space integrals on1198622

119886119887[0 119879]

Theorem 14 Let 1199020and 119865 be as in Theorem 10 Let 119890

119899infin

119899=1

be a complete orthonormal set in (1198621015840119886119887[0 119879] sdot

119887) and let

(1205821119899 1205822119899)infin

119899=1be a sequence in C2

+such that 120582

119895119899rarr minus119894119902

119895

where 119902119895is a real number with |119902

119895| gt 1199020 119895 isin 1 2 Then for

119901 isin [1 2] and for s-ae (1199101 1199102) isin 1198622

119886119887[0 119879]

119879(119901)

119902(119865) (119910

1 1199102)

= lim119899rarrinfin

1205821198992

11198991205821198992

2119899

times119864119909[119866119899(1205821119899 1199091) 119866119899(1205822119899 1199092) 119865 (119910

1+ 1199091 1199102+ 1199092)]

(68)

where 119866119899is given by (52)

Proof ByTheorems9 and 10we know that for each119901 isin [1 2]the 119871119901analytic GFFT of 119865 119879(119901)

119902(119865) exists and is given by the

right hand side of (40) Thus it suffices to show that

119879(1)

119902(119865) (119910

1 1199102) = 119864

anf 119902119909[119865 (1199101+ 1199091 1199102+ 1199092)]

= lim119899rarrinfin

1205821198992

11198991205821198992

2119899

times 119864119909[119866119899(1205821119899 1199091) 119866119899(1205822119899 1199092)

times 119865 (1199101+ 1199091 1199102+ 1199092)] sdot

(69)

Using (30) the Fubini theorem and (56) with 120582 and 119908replaced with 120582

119895119899and 11986012

119895119908 119895 isin 1 2 respectively we see

that

1205821198992

11198991205821198992

2119899119864119909[119866119899(1205821119899 1199091) 119866119899(1205822119899 1199092) 119865 (119910

1+ 1199091 1199102+ 1199092)]

= 1205821198992

11198991205821198992

2119899int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119910119895)

sim

times(

2

prod

119895=1

119864119909119895

[119866119899(120582minus12

119895119899 119909119895)

times exp 119894(11986012119895119908 119909119895)

sim

])119889119891 (119908)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

(119894(11986012

119895119908 119910119895)

sim

+ [

120582119895119899minus 1

2120582119895119899

]

119899

sum

119896=1

(119890119896 11986012

119895119908)

2

119887

minus

1

2

1003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817

2

119887

+ 119894120582minus12

119895119899

119899

sum

119896=1

(119890119896 119886)119887(119890119896 11986012

119895119908)119887

+ 119894(119890119899+1 119886)119887[

1003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817

2

119887

minus

119899

sum

119896=1

(119890119896 11986012

119895119908)

2

119887

]

12

)

119889119891 (119908)

(70)

But by Remark 13 we see that the last expression of (70) isdominated by (39) on the region Γ

1199020

given by (35) for allbut a finite number of values of 119899 Next using the dominatedconvergence theorem Parsevalrsquos relation and (40) we obtainthe desired result

Corollary 15 Let 1199020 119865 119890

119899infin

119899=1 (1205821119899 1205822119899)infin

119899=1and (119902

1 1199022)

be as in Theorem 14 Then

119864

anf119902

119909[119865 (1199091 1199092)]

= lim119899rarrinfin

1205821198992

11198991205821198992

2119899

times 119864119909[119866119899(1205821119899 1199091) 119866119899(1205822119899 1199092) 119865 (119909

1 1199092)]

(71)

where 119866119899is given by (52)

10 Journal of Function Spaces and Applications

Corollary 16 Let 1199020 119865 and 119890

119899infin

119899=1be as in Theorem 14 and

let Γ1199020

be given by (35) Let 120582 = (1205821 1205822) isin Int (Γ

1199020

) and(1205821119899 1205822119899)infin

119899=1be a sequence in C2

+such that 120582

119895119899rarr 120582

119895

119895 isin 1 2 Then

119864

an

119909[119865 (1199091 1199092)] = lim119899rarrinfin

1205821198992

11198991205821198992

2119899

times119864119909[119866119899(1205821119899 1199091) 119866119899(1205822119899 1199092) 119865(1199091 1199092)]

(72)

where 119866119899is given by (52)

Our another result namely a change of scale formula forfunction space integrals now follows fromCorollary 16 above

Theorem 17 Let 119865 isin F11988611988711986011198602

and let 119890119899infin

119899=1be a complete

orthonormal set in (1198621015840119886119887[0 119879] sdot

119887) Then for any 120588

1gt 0 and

1205882gt 0

119864119909[119865 (12058811199091 12058821199092)]

= lim119899rarrinfin

120588minus119899

1120588minus119899

2

times 119864119909[119866119899(120588minus2

1 1199091)119866119899(120588minus2

2 1199092) 119865 (119909

1 1199092)]

(73)

where 119866119899is given by (52)

Proof Simply choose 120582119895= 120588minus2

119895for 119895 isin 1 2 and 120582

119895119899= 120588minus2

119895

for 119895 isin 1 2 and 119899 isin N in (72)

Remark 18 Of course if we choose 119886(119905) equiv 0 119887(119905) = 1199051198601= 119868 (identity operator) and 119860

2= 0 (zero operator) then

the function space 119862119886119887[0 119879] reduces to the classical Wiener

space 1198620[0 119879] and the generalized Fresnel type class F 119886119887

11986011198602

reduces to the Fresnel class F(1198620[0 119879]) It is known that

F(1198620[0 119879]) forms a Banach algebra over the complex field

In this case we have the relationships between the analyticFeynman integral and theWiener integral on classicalWienerspace as discussed in [14 15]

In recent paper [19] Yoo et al have studied a change ofscale formula for function space integral of the functionalsin the Banach algebra S(1198712

119886119887[0 119879]) the Banach algebra

S(1198712119886119887[0 119879]) is introduced in [12]

5 Functionals in F11988611988711986011198602

In this section we prove a theorem ensuring that variousfunctionals are inF119886119887

11986011198602

Theorem 19 Let 1198601and 119860

2be bounded nonnegative and

self-adjoint operators on 1198621015840119886119887[0 119879] Let (119884Y 120574) be a 120590-finite

measure space and let 120593119897 119884 rarr 119862

1015840

119886119887[0 119879] beYndashB(1198621015840

119886119887[0 119879])

measurable for 119897 isin 1 119889 Let 120579 119884 times R119889 rarr C be given by120579(120578 sdot) = ]

120578(sdot) where ]

120578isin M(R119889) for every 120578 isin 119884 and where

the family ]120578 120578 isin 119884 satisfies

(i) ]120578(119864) is a Y-measurable function of 120578 for every 119864 isin

B(R119889)(ii) ]

120578 isin 1198711

(119884Y 120574)

Under these hypothesis the functional 119865 1198622119886119887[0 119879] rarr C

given by

119865 (1199091 1199092) = int

119884

120579(120578

2

sum

119895=1

(11986012

1198951205931(120578) 119909

119895)

sim

2

sum

119895=1

(11986012

119895120593119889(120578) 119909

119895)

sim

)119889120574 (120578)

(74)

belongs toF11988611988711986011198602

and satisfies the inequality

119865 le int

119884

10038171003817100381710038171003817]120578

10038171003817100381710038171003817119889120574 (120578) (75)

Proof Using the techniques similar to those used in [20] wecan show that ]

120578 is measurable as a function of 120578 that 120579 is

Y-measurable and that the integrand in (74) is a measurablefunction of 120578 for every (119909

1 1199092) isin 1198622

119886119887[0 119879]

We define a measure 120591 onY timesB(R119889) by

120591 (119864) = int

119884

]120578(119864(120578)

) 119889120574 (120578) for 119864 isin Y timesB (R119889) (76)

Then by the first assertion of Theorem 31 in [17] 120591 satisfies120591 le int

119884

]120578119889120574(120578) Now let Φ 119884 times R119889 rarr 119862

1015840

119886119887[0 119879] be

defined by Φ(120578 V1 V

119889) = sum

119889

119897=1V119897120593119897(120578) Then Φ is Y times

B(R119889) ndashB(1198621015840119886119887[0 119879])-measurable on the hypothesis for 120593

119897

119897 isin 1 119889 Let 120590 = 120591 ∘Φminus1 Then clearly 120590 isinM(1198621015840119886119887[0 119879])

and satisfies 120590 le 120591From the change of variables theorem and the second

assertion of Theorem 31 in [17] it follows that for ae(1199091 1199092) isin 1198622

119886119887[0 119879] and for every 120588

1gt 0 and 120588

2gt 0

119865 (12058811199091 12058821199092)

= int

119884

]120578(

2

sum

119895=1

(11986012

1198951205931(120578) 120588

119895119909119895)

sim

2

sum

119895=1

(11986012

119895120593119889(120578) 120588

119895119909119895)

sim

)119889120574 (120578)

= int

119884

[

[

int

R119889exp

119894

119889

sum

119897=1

V119897

[

[

2

sum

119895=1

(11986012

119895120593119897(120578)

120588119895119909119895)

sim

]

]

119889]120578

times (V1 V

119889)]

]

119889120574 (120578)

= int

119884timesR119889exp

119894

119889

sum

119897=1

V119897

[

[

2

sum

119895=1

(11986012

119895120593119897(120578) 120588

119895119909119895)

sim

]

]

119889120591

times (120578 V1 V

119889)

Journal of Function Spaces and Applications 11

= int

119884timesR119889exp

2

sum

119895=1

119894(11986012

119895Φ(120578 V

1 V

119889) 120588119895119909119895)

sim

119889120591

times (120578 V1 V

119889)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 120588119895119909119895)

sim

119889120591 ∘ Φminus1

(119908)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 120588119895119909119895)

sim

119889120590 (119908)

(77)

Thus the functional 119865 given by (74) belongs to F11988611988711986011198602

andsatisfies the inequality

119865 = 120590 le 120591 le int

119884

10038171003817100381710038171003817]120578

10038171003817100381710038171003817119889120574 (120578) (78)

As mentioned in (2) of Remark 6 F 11988611988711986011198602

is a Banachalgebra if Ran(119860

1+ 1198602) is dense in 1198621015840

119886119887[0 119879] In this case

many analytic functionals of 119865 can be formed The followingcorollary is relevant to Feynman integration theories andquantum mechanics where exponential functions play animportant role

Corollary 20 Let 1198601and 119860

2be bounded nonnegative and

self-adjoint operators on 1198621015840119886119887[0 119879] such that Ran(119860

1+ 1198602)

is dense in 1198621015840119886119887[0 119879] Let 119865 be given by (74) with 120579 as in

Theorem 19 and let 120573 C rarr C be an entire function Then(120573 ∘ 119865)(119909

1 1199092) is in F119886119887

11986011198602

In particular exp119865(1199091 1199092) isin

F11988611988711986011198602

Corollary 21 Let 1198601and 119860

2be bounded nonnegative and

self-adjoint operators on 1198621015840119886119887[0 119879] and let 119892

1 119892

119889 be a

finite subset of 1198621015840119886119887[0 119879] Given 120573 = ] where ] isin M(R119889)

define 119865 1198622119886119887[0 119879] rarr C by

119865 (1199091 1199092) = 120573(

2

sum

119895=1

(11986012

1198951198921 119909119895)

sim

2

sum

119895=1

(11986012

119895119892119889 119909119895)

sim

)

(79)

Then 119865 is an element ofF11988611988711986011198602

Proof Let (119884Y 120574) be a probability space and for 119897 isin1 119889 let 120593

119897(120578) equiv 119892

119897 Take 120579(120578 sdot) = 120573(sdot) = ](sdot) Then for

all 1205881gt 0 and 120588

2gt 0 and for ae (119909

1 1199092) isin 1198622

119886119887[0 119879]

int

119884

120579(120578

2

sum

119895=1

(11986012

1198951205931(120578) 120588

119895119909119895)

sim

2

sum

119895=1

(11986012

119895120593119889(120578) 120588

119895119909119895)

sim

)119889120574 (120578)

= int

119884

120573(

2

sum

119895=1

(11986012

1198951198921 120588119895119909119895)

sim

2

sum

119895=1

(11986012

119895119892119889 120588119895119909119895)

sim

)119889120574 (120578)

= 120573(

2

sum

119895=1

(11986012

1198951198921 120588119895119909119895)

sim

2

sum

119895=1

(11986012

119895119892119889 120588119895119909119895)

sim

)

= 119865 (12058811199091 12058821199092)

(80)

Hence 119865 isin F11988611988711986011198602

Remark 22 Let 119889 = 1 and let (119884Y 120574) = ([0 119879]B([0 119879])119898119871) in Theorem 19 where 119898

119871denotes the Lebesgue measure

on [0 119879] ThenTheorems 46 47 and 49 in [18] follow fromthe results in this section by letting119860

1be the identity operator

and letting 1198602equiv 0 on 1198621015840

119886119887[0 119879] The function 120579 studied in

[18] (and mentioned in Remark 2 above) is interpreted as thepotential energy in quantum mechanics

Acknowledgments

The authors would like to express their gratitude to the refer-ees for their valuable comments and suggestions which haveimproved the original paper This research was supported bythe Basic Science Research Program through the NationalResearch Foundation of Korea (NRF) funded by theMinistryof Education (2011-0014552)

References

[1] G Kallianpur and C Bromley ldquoGeneralized Feynman integralsusing analytic continuation in several complex variablesrdquo inStochastic Analysis and Applications M A Pinsky Ed vol 7pp 217ndash267 Marcel Dekker New York NY USA 1984

[2] G Kallianpur D Kannan and R L Karandikar ldquoAnalytic andsequential Feynman integrals on abstract Wiener and Hilbertspaces and a Cameron-Martin formulardquo Annales de lrsquoInstitutHenri Poincare vol 21 no 4 pp 323ndash361 1985

[3] G W Johnson and M L Lapidus The Feynman Integral andFeynmanrsquos Operational Calculus Clarendon Press Oxford UK2000

[4] J Yeh ldquoSingularity of Gaussian measures on function spacesinduced by Brownian motion processes with non-stationaryincrementsrdquo Illinois Journal of Mathematics vol 15 pp 37ndash461971

[5] J Yeh Stochastic Processes and the Wiener Integral MarcelDekker New York NY USA 1973

[6] S J Chang J G Choi and D Skoug ldquoIntegration by partsformulas involving generalized Fourier-Feynman transformson function spacerdquo Transactions of the American MathematicalSociety vol 355 no 7 pp 2925ndash2948 2003

[7] S J Chang J G Choi and D Skoug ldquoParts formulas involvingconditional generalized Feynman integrals and conditionalgeneralized Fourier-Feynman transforms on function spacerdquo

12 Journal of Function Spaces and Applications

Integral Transforms and Special Functions vol 15 no 6 pp 491ndash512 2004

[8] S J Chang J G Choi and D Skoug ldquoEvaluation formulas forconditional function space integralsmdashIrdquo Stochastic Analysis andApplications vol 25 no 1 pp 141ndash168 2007

[9] S J Chang J G Choi and D Skoug ldquoGeneralized Fourier-Feynman transforms convolution products and first variationson function spacerdquoTheRockyMountain Journal ofMathematicsvol 40 no 3 pp 761ndash788 2010

[10] S J Chang and D M Chung ldquoConditional function spaceintegrals with applicationsrdquo The Rocky Mountain Journal ofMathematics vol 26 no 1 pp 37ndash62 1996

[11] S J Chang H S Chung and D Skoug ldquoIntegral transformsof functionals in 119871

2(119862119886119887[0 119879])rdquoThe Journal of Fourier Analysis

and Applications vol 15 no 4 pp 441ndash462 2009[12] S J Chang and D Skoug ldquoGeneralized Fourier-Feynman

transforms and a first variation on function spacerdquo IntegralTransforms and Special Functions vol 14 pp 375ndash393 2003

[13] J G Choi and S J Chang ldquoGeneralized Fourier-Feynmantransform and sequential transforms on function spacerdquo Jour-nal of the Korean Mathematical Society vol 49 pp 1065ndash10822012

[14] R H Cameron and D A Storvick ldquoRelationships between theWiener integral and the analytic Feynman integralrdquo Rendicontidel Circolo Matematico di Palermo no 17 supplement pp 117ndash133 1987

[15] RHCameron andDA Storvick ldquoChange of scale formulas forWiener integralrdquo Rendiconti del Circolo Matematico di Palermono 17 pp 105ndash115 1987

[16] G W Johnson ldquoThe equivalence of two approaches to theFeynman integralrdquo Journal of Mathematical Physics vol 23 pp2090ndash2096 1982

[17] G W Johnson and D L Skoug ldquoNotes on the FeynmanintegralmdashIII the Schroedinger equationrdquo Pacific Journal ofMathematics vol 105 pp 321ndash358 1983

[18] S J Chang J G Choi and S D Lee ldquoA Fresnel type class onfunction spacerdquo Journal of the Korean Society of MathematicalEducation Series B vol 16 no 1 pp 107ndash119 2009

[19] I Yoo B J Kim and B S Kim ldquoA change of scale formulafor a function space integral on 119862

119886119887[0 119879]rdquo Proceedings of the

American Mathematical Society vol 141 no 8 pp 2729ndash27392013

[20] K S Chang G W Johnson and D L Skoug ldquoFunctions inthe Fresnel classrdquo Proceedings of the American MathematicalSociety vol 100 no 2 pp 309ndash318 1987

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 5: Research Article Generalized Analytic Fourier-Feynman ...downloads.hindawi.com/journals/jfs/2013/954098.pdf · Journal of Function Spaces and Applications Volume , Article ID , pages

Journal of Function Spaces and Applications 5

Definition 5 Let 1198601and 119860

2be bounded nonnegative and

self-adjoint operators on 1198621015840119886119887[0 119879] The generalized Fresnel

type classF11988611988711986011198602

of functionals on1198622119886119887[0 119879] is defined as the

space of all functionals 119865 on 1198622119886119887[0 119879] of the following form

119865 (1199091 1199092) = int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119909119895)

sim

119889119891 (119908) (30)

for some119891 isinM(1198621015840119886119887[0 119879]) More precisely since we identify

functionals which coincide s-ae on 1198622119886119887[0 119879] F119886119887

11986011198602

canbe regarded as the space of all 119904-equivalence classes offunctionals of the form (30)

Remark 6 (1) In Definition 5 let 1198601be the identity operator

on 1198621015840119886119887[0 119879] and 119860

2equiv 0 Then F 119886119887

11986011198602

is essentially theFresnel type class F(119862

119886119887[0 119879]) and for 119901 isin [1 2] and

nonzero real numbers 1199021and 1199022

119879(119901)

(1199021 1199022)(119865) (119910

1 1199102) = 119879(119901)

1199021

(1198650) (1199101) (31)

if it exists where 1198650(1199091) = 119865(119909

1 1199092) for all (119909

1 1199092) isin

1198622

119886119887[0 119879] and 119879(119901)

1199021

(1198650) means the 119871

119901analytic GFFT on

119862119886119887[0 119879] see [6 12](2) The map 119891 997891rarr 119865 defined by (30) sets up an algebra

isomorphism betweenM(1198621015840119886119887[0 119879]) andF119886119887

11986011198602

if Ran(1198601+

1198602) is dense in1198621015840

119886119887[0 119879] where Ran indicates the range of an

operator In this caseF 11988611988711986011198602

becomes a Banach algebra underthe norm 119865 = 119891 For more details see [1]

Remark 7 Let 119865 be given by (30) In evaluating119864119909[119865(120582minus12

11199091 120582minus12

21199092)] and 119879

(12058211205822)(119865)(1199101 1199102) = 119864

119909[119865(1199101+

120582minus12

11199091 1199102+ 120582minus12

21199092)] for 120582

1gt 0 and 120582

2gt 0 the expression

120595 (120582 119908)

equiv 120595 (1205821 1205822 1198601 1198602 119908)

= exp

2

sum

119895=1

[

[

minus

(119860119895119908119908)

119887

2120582119895

+ 119894120582minus12

119895(11986012

119895119908 119886)119887

]

]

(32)

occurs Clearly for 120582119895gt 0 119895 isin 1 2 |120595( 120582 119908)| le 1 for all

119908 isin 1198621015840

119886119887[0 119879] But for 120582 isin C2

+ |120595( 120582 119908)| is not necessarily

bounded by 1Note that for each 120582

119895isinC+with 120582

119895= 120572119895+ 119894120573119895 119895 isin 1 2

12058212

119895=

radicradic1205722

119895+ 1205732

119895+ 120572119895

2

+ 119894

120573119895

10038161003816100381610038161003816120573119895

10038161003816100381610038161003816

radicradic1205722

119895+ 1205732

119895minus 120572119895

2

120582minus12

119895=radic

radic1205722

119895+ 1205732

119895+ 120572119895

2 (1205722

119895+ 1205732

119895)

minus 119894

120573119895

10038161003816100381610038161003816120573119895

10038161003816100381610038161003816

radic

radic1205722

119895+ 1205732

119895minus 120572119895

2 (1205722

119895+ 1205732

119895)

(33)

Hence for 120582119895isinC+with 120582

119895= 120572119895+ 119894120573119895 119895 isin 1 2

10038161003816100381610038161003816120595 (120582 119908)

10038161003816100381610038161003816

= exp

2

sum

119895=1

[

[

[

[

minus

120572119895

2 (1205722

119895+ 1205732

119895)

(119860119895119908119908)

119887

+

120573119895

10038161003816100381610038161003816120573119895

10038161003816100381610038161003816

radic

radic1205722

119895+ 1205732

119895minus 120572119895

2 (1205722

119895+ 1205732

119895)

(11986012

119895119908 119886)119887

]

]

]

]

(34)

The right hand side of (34) is an unbounded functionof 119908 for 119908 isin 1198621015840

119886119887[0 119879] Thus 119864an[119865] 119864anf 119902[119865] 119879

120582(119865) and

119879(119901)

119902(119865) might not exist Thus throughout this paper we will

need to put additional restrictions on the complex measure119891 corresponding to 119865 in order to obtain our results for theGFFT and the generalized analytic Feynman integral of 119865

In view of Remark 7 we clearly need to impose additionalrestrictions on the functionals 119865 inF119886119887

11986011198602

For a positive real number 119902

0 let

Γ1199020

=

120582 = (120582

1 1205822) isinC2

+| 120582119895= 120572119895+ 119894120573119895

10038161003816100381610038161003816Im (120582minus12

119895)

10038161003816100381610038161003816=radic

radic1205722

119895+ 1205732

119895minus 120572119895

2 (1205722

119895+ 1205732

119895)

lt

1

radic21199020

119895 = 1 2

(35)

and let119896 (1199020 119908) equiv 119896 (119902

0 1198601 1198602 119908)

= exp

2

sum

119895=1

(21199020)minus121003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817119887119886119887

(36)

Then for all 120582 = (1205821 1205822) isin Γ1199020

10038161003816100381610038161003816120595 (120582 119908)

10038161003816100381610038161003816le exp

2

sum

119895=1

radic

radic1205722

119895+ 1205732

119895minus 120572119895

2 (1205722

119895+ 1205732

119895)

100381610038161003816100381610038161003816

(11986012

119895119908 119886)119887

100381610038161003816100381610038161003816

le exp

2

sum

119895=1

radic

radic1205722

119895+ 1205732

119895minus 120572119895

2 (1205722

119895+ 1205732

119895)

1003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817119887119886119887

lt 119896 (1199020 119908)

(37)

6 Journal of Function Spaces and Applications

We note that for all real 119902119895with |119902

119895| gt 1199020 119895 isin 1 2

(minus119894119902119895)

minus12

=

1

radic

100381610038161003816100381610038162119902119895

10038161003816100381610038161003816

+ sign (119902119895)

119894

radic

100381610038161003816100381610038162119902119895

10038161003816100381610038161003816

(38)

and (minus1198941199021 minus1198941199022) isin Γ1199020

For the existence of the GFFT of 119865 we define a subclass

F1199020

11986011198602

ofF 11988611988711986011198602

by 119865 isin F 119902011986011198602

if and only if

int

1198621015840

119886119887[0119879]

119896 (1199020 119908) 119889

10038161003816100381610038161198911003816100381610038161003816(119908) lt +infin (39)

where 119891 and 119865 are related by (30) and 119896 is given by (36)

Remark 8 Note that in case 119886(119905) equiv 0 and 119887(119905) = 119905 on [0 119879]the function space 119862

119886119887[0 119879] reduces to the classical Wiener

space 1198620[0 119879] and (119908 119886)

119887= 0 for all 119908 isin 1198621015840

119886119887[0 119879] =

1198621015840

0[0 119879] Hence for all 120582 isin C2

+ |120595( 120582 119908)| le 1 and for any

positive real number 1199020F 119902011986011198602

= F11986011198602

theKallianpur andBromleyrsquos class introduced in Section 1

Theorem 9 Let 1199020be a positive real number and let 119865 be an

element ofF 119902011986011198602

Then for any nonzero real numbers 1199021and

1199022with |119902

119895| gt 1199020 119895 isin 1 2 the 119871

1analytic GFFT of 119865 119879(1)

119902(119865)

exists and is given by the following formula

119879(1)

119902(119865) (119910

1 1199102)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119910119895)

sim

120595(minus119894 119902 119908) 119889119891 (119908)

(40)

for s-ae (1199101 1199102) isin 1198622

119886119887[0 119879] where 120595 is given by (32)

Proof We first note that for 119895 isin 1 2 the PWZ stochasticintegral (11986012

119895119908 119909)sim is a Gaussian random variable withmean

(11986012

119895119908 119886)119887and variance 11986012

119895119908

2

119887

= (119860119895119908119908)119887

Hence using(30) the Fubini theorem the change of variables theorem and(14) we have that for all 120582

1gt 0 and 120582

2gt 0

119869 (1199101 1199102 1205821 1205822)

equiv 119864119909[119865 (1199101+ 120582minus12

11199091 1199102+ 120582minus12

21199092)]

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119910119895)

sim

times(

2

prod

119895=1

119864119909119895

[exp 119894120582minus12119895(11986012

119895119908 119909119895)

sim

])119889119891 (119908)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119910119895)

sim

times[

[

[

2

prod

119895=1

(2120587(119860119895119908119908)

119887

)

minus12

times int

R

exp

119894120582minus12

119895119906119895

minus

[119906119895minus (11986012

119895119908 119886)119887

]

2

2(119860119895119908119908)

119887

119889119906119895

]

]

]

119889119891(119908)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119910119895)

sim

120595(120582 119908) 119889119891 (119908)

(41)

Let

119879 120582(119865) (119910

1 1199102)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119910119895)

sim

120595(120582 119908) 119889119891 (119908)

(42)

for each 120582 isin C2+ Clearly

119879 120582(119865) (119910

1 1199102) = 119869 (119910

1 1199102 1205821 1205822) (43)

for all 1205821gt 0 and 120582

2gt 0 Let Γ

1199020

be given by (35)Then for all120582 isin Int(Γ

1199020

)

1003816100381610038161003816119879 120582(119865) (119910

1 1199102)1003816100381610038161003816lt int

1198621015840

119886119887[0119879]

119896 (1199020 119908) 119889

10038161003816100381610038161198911003816100381610038161003816(119908) lt +infin

(44)

Using this fact and the dominated convergence theoremwe see that 119879

120582(119865)(1199101 1199102) is a continuous function of 120582 =

(1205821 1205822) on Int(Γ

1199020

) For each 119908 isin 1198621015840119886119887[0 119879] 120595( 120582 119908) is an

analytic function of 120582 throughout the domain Int(Γ1199020

) so thatintΔ

120595(120582 119908)119889

120582 = 0 for every rectifiable simple closed curve

Δ in Int(Γ1199020

) By (42) the Fubini theorem and the Moreratheorem we see that 119879

120582(119865)(1199101 1199102) is an analytic function of

120582 throughout the domain Int(Γ

1199020

) Finally using (28) withthe dominated convergence theorem we obtain the desiredresult

Theorem 10 Let 1199020and 119865 be as inTheorem 9Then for all 119901 isin

(1 2] and all nonzero real numbers 1199021and 119902

2with |119902

119895| gt 1199020

119895 isin 1 2 the119871119901analytic GFFT of119865119879(119901)

119902(119865) exists and is given

by the right hand side of (40) for s-ae (1199101 1199102) isin 1198622

119886119887[0 119879]

Journal of Function Spaces and Applications 7

Proof Let Γ1199020

be given by (35) It was shown in the proofof Theorem 9 that 119879

120582(119865)(1199101 1199102) is an analytic function of 120582

throughout the domain Int(Γ1199020

) In viewofDefinition 4 it willsuffice to show that for each 120588

1gt 0 and 120588

2gt 0

lim120582rarrminus119894 119902

int

1198622

119886119887[0119879]

100381610038161003816100381610038161003816

119879 120582(119865) (120588

11199101 12058821199102)

minus119879(119901)

119902(119865) (120588

11199101 12058821199102)

100381610038161003816100381610038161003816

1199011015840

times 119889 (120583 times 120583) (1199101 1199102) = 0

(45)

Fixing 119901 isin (1 2] and using the inequalities (37) and (39)we obtain that for all 120588

119895gt 0 119895 isin 1 2 and all 120582 isin Γ

1199020

100381610038161003816100381610038161003816

119879 120582(119865) (120588

11199101 12058821199102) minus 119879(119901)

119902(119865) (120588

11199101 12058821199102)

100381610038161003816100381610038161003816

1199011015840

le

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894120588119895(11986012

119895119908 119910119895)

sim

times[120595 (120582 119908) minus 120595 (minus119894 119902 119908)] 119889119891 (119908)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1199011015840

le (int

1198621015840

119886119887[0119879]

[

10038161003816100381610038161003816120595 (120582 119908)

10038161003816100381610038161003816+

10038161003816100381610038161003816120595 (minus119894 119902 119908)

10038161003816100381610038161003816] 11988910038161003816100381610038161198911003816100381610038161003816(119908))

1199011015840

le (2int

1198621015840

119886119887[0119879]

119896 (1199020 119908) 119889

10038161003816100381610038161198911003816100381610038161003816(119908))

1199011015840

lt +infin

(46)

Hence by the dominated convergence theorem we see thatfor each 119901 isin (1 2] and each 120588

1gt 0 and 120588

2gt 0

lim120582rarrminus119894 119902

int

1198622

119886119887[0119879]

100381610038161003816100381610038161003816

119879 120582(119865) (120588

11199101 12058821199102)

minus119879(119901)

119902(119865) (120588

11199101 12058821199102)

100381610038161003816100381610038161003816

1199011015840

119889 (120583 times 120583) (1199101 1199102)

= lim120582rarrminus119894 119902

int

1198622

119886119887[0119879]

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 120588119895119910119895)

sim

times 120595(120582 119908) 119889119891 (119908)

minus int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 120588119895119910119895)

sim

times120595(minus119894 119902 119908) 119889119891 (119908)

10038161003816100381610038161003816100381610038161003816100381610038161003816

1199011015840

times 119889 (120583 times 120583) (1199101 1199102)

= int

1198622

119886119887[0119879]

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 120588119895119910119895)

sim

times lim120582rarrminus119894 119902

[120595 (120582 119908)

minus120595 (minus119894 119902 119908)] 119889119891 (119908)

10038161003816100381610038161003816100381610038161003816100381610038161003816

1199011015840

times 119889 (120583 times 120583) (1199101 1199102)

= 0

(47)

which concludes the proof of Theorem 10

Remark 11 (1) In view of Theorems 9 and 10 we see thatfor each 119901 isin [1 2] the 119871

119901analytic GFFT of 119865 119879(119901)

119902(119865) is

given by the right hand side of (40) for 1199020 1199021 1199022 and 119865 as

in Theorem 9 and for s-ae (1199101 1199102) isin 1198622

119886119887[0 119879]

119879(119901)

119902(119865) (119910

1 1199102) = 119864

anf 119902119909[119865 (1199101+ 1199091 1199102+ 1199092)] 119901 isin [1 2]

(48)

In particular using this fact and (29) we have that for all 119901 isin[1 2]

119879(119901)

119902(119865) (0 0) = 119864

anf 119902119909[119865 (1199091 1199092)] (49)

(2) For nonzero real numbers 1199021and 119902

2with |119902

119895| gt 119902

0

119895 isin 1 2 define a set function 119891 119860119902B(1198621015840

119886119887[0 119879]) rarr C by

119891

119860

119902(119861) = int

119861

120595 (minus119894 119902 119908) 119889119891 (119908) 119861 isinB (1198621015840

119886119887[0 119879])

(50)

where 119891 and 119865 are related by (30) and B(1198621015840119886119887[0 119879]) is the

Borel 120590-algebra of 1198621015840119886119887[0 119879] Then it is obvious that 119891 119860

119902

belongs to M(1198621015840119886119887[0 119879]) and for all 119901 isin [1 2] 119879(119901)

119902(119865) can

be expressed as

119879(119901)

119902(119865) (119910

1 1199102) = int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119910119895)

sim

119889119891

119860

119902(119908)

(51)

for s-ae (1199101 1199102) isin 119862

2

119886119887[0 119879] Hence 119879(119901)

119902(119865) belongs to

F 11988611988711986011198602

for all 119901 isin [1 2]

4 Relationships between the GFFT and theFunction Space Integral of Functionals inF11988611988711986011198602

In this section we establish a relationship between the GFFTand the function space integral of functionals in the Fresneltype classF119886119887

11986011198602

8 Journal of Function Spaces and Applications

Throughout this section for convenience we use thefollowing notation for given 120582 isin C

+and 119899 = 1 2 let

119866119899(120582 119909)

= exp[1 minus 1205822

]

119899

sum

119896=1

[(119890119896 119909)sim

]

2

+ (12058212

minus 1)

119899

sum

119896=1

(119890119896 119886)1198621015840

119886119887

(119890119896 119909)sim

(52)

where 119890119899infin

119899=1is a complete orthonormal set in (1198621015840

119886119887[0 119879]

sdot 119887)To obtain our main results Theorems 14 and 17 below

we state a fundamental integration formula for the functionspace 119862

119886119887[0 119879]

Let 1198901 119890

119899 be an orthonormal set in (1198621015840

119886119887[0 119879] sdot

119887)

let 119896 R119899 rarr C be a Lebesgue measurable function and let119870 119862119886119887[0 119879] rarr C be given by

119870 (119909) = 119896 ((1198901 119909)sim

(119890119899 119909)sim

) (53)

Then

119864 [119870] = int

119862119886119887[0119879]

119896 ((1198901 119909)sim

(119890119899 119909)sim

) 119889120583 (119909)

= (2120587)minus1198992

int

R119899119896 (1199061 119906

119899)

times exp

minus

119899

sum

119895=1

[119906119895minus (119890119895 119886)119887

]

2

2

1198891199061 119889119906

119899

(54)

in the sense that if either side of (54) exists both sides existand equality holds

We also need the following lemma to obtain our maintheorem in this section

Lemma 12 Let 1198901 119890

119899 be an orthonormal subset of

(1198621015840

119886119887[0 119879] sdot

119887) and let 119908 be an element of 1198621015840

119886119887[0 119879] Then

for each 120582 isin C+ the function space integral

119864119909[119866119899(120582 119909) exp 119894(119908 119909)sim] (55)

exists and is given by the formula

119864119909[119866119899(120582 119909) exp 119894(119908 119909)sim]

= 120582minus1198992 exp

[

120582 minus 1

2120582

]

119899

sum

119896=1

(119890119896 119908)2

119887minus

1

2

1199082

119887

+ 119894120582minus12

119899

sum

119896=1

(119890119896 119886)119887(119890119896 119908)119887

+ 119894(119890119899+1 119886)119887[1199082

119887minus

119899

sum

119896=1

(119890119896 119908)2

119887]

12

(56)

where 119866119899is given by (52) above and

119890119899+1=[

[

1199082

119887minus

119899

sum

119895=1

(119890119895 119908)

2

119887

]

]

minus12

119908 minus

119899

sum

119895=1

(119890119895 119908)119887

119890119895

(57)

Proof (Outline) Using the Gram-Schmidt process for any119908 isin 119862

1015840

119886119887[0 119879] we can write 119908 = sum

119899+1

119896=1119888119896119890119896 where

1198901 119890

119899 119890119899+1 is an orthonormal set in (1198621015840

119886119887[0 119879] sdot

119887)

and

119888119896=

(119890119896 119908)119887 119896 = 1 119899

[1199082

119887minus

119899

sum

119895=1

(119890119895 119908)

2

119887

]

12

119896 = 119899 + 1

(58)

Then using (52) (54) the Fubini theorem and (14) it followsthat (56) holds for all 120582 isin C

+

The following remark will be very useful in the proof ofour main theorem in this section

Remark 13 Let 1199020be a positive real number and let Γ

1199020

begiven by (35) For real numbers 119902

1and 1199022with |119902

119895| gt 1199020 119895 isin

1 2 let 120582119899infin

119899=1= (1205821119899 1205822119899)infin

119899=1be a sequence in C2

+such

that

120582119899= (1205821119899 1205822119899) 997888rarr minus119894 119902 = (minus119894119902

1 minus1198941199022) (59)

Let 120582119895119899= 120572119895119899+ 119894120573119895119899

for 119895 isin 1 2 and 119899 isin N Then for119895 isin 1 2 Re(120582

119895119899) = 120572119895119899gt 0 and

120582minus1

119895119899= (120572119895119899+ 119894120573119895119899)

minus1

=

120572119895119899minus 119894120573119895119899

1205722

119895119899+ 1205732

119895119899

(60)

for each 119899 isin N Since |Im ((minus119894119902119895)minus12

)| = 1radic2|119902119895| lt 1radic2119902

0

for 119895 isin 1 2 there exists a sufficiently large 119871 isin N such thatfor any 119899 ge 119871 120582

1119899and 120582

2119899are in Int(Γ

1199020

) and

120575 (1199021 1199022) equiv sup ( 1003816100381610038161003816

1003816Im (120582minus12

1119899)

10038161003816100381610038161003816 119899 ge 119871

cup

10038161003816100381610038161003816Im (120582minus12

2119899)

10038161003816100381610038161003816 119899 ge 119871

cup

100381610038161003816100381610038161003816

Im ((minus1198941199021)minus12

)

100381610038161003816100381610038161003816

100381610038161003816100381610038161003816

Im ((minus1198941199022)minus12

)

100381610038161003816100381610038161003816

)

lt

1

radic21199020

(61)

Thus there exists a positive real number 120576 gt 1 such that120575(1199021 1199022) lt 1(120576radic2119902

0)

Let 119890119899infin

119899=1be a complete orthonormal set in (1198621015840

119886119887[0 119879]

sdot 119887) Using Parsevalrsquos identity it follows that

(1198921 1198922)119887=

infin

sum

119899=1

(119890119899 1198921)119887(119890119899 1198922)119887

(62)

Journal of Function Spaces and Applications 9

for all 1198921 1198922isin 1198621015840

119886119887[0 119879] In addition for each 119892 isin 1198621015840

119886119887[0 119879]

10038171003817100381710038171198921003817100381710038171003817

2

119887minus

119899

sum

119896=1

(119890119896 119892)2

119887=

infin

sum

119896=119899+1

(119890119896 119892)2

119887ge 0 (63)

for every 119899 isin NSince

(119892 119886)119887=

infin

sum

119899=1

(119890119899 119892)119887(119890119899 119886)119887

(64)

and for 120576 gt 1

minus12057610038171003817100381710038171198921003817100381710038171003817119887119886119887lt minus10038171003817100381710038171198921003817100381710038171003817119887119886119887le (119892 119886)

119887

le10038171003817100381710038171198921003817100381710038171003817119887119886119887lt 12057610038171003817100381710038171198921003817100381710038171003817119887119886119887

(65)

there exists a sufficiently large119870119895isin N such that for any 119899 ge 119870

119895

1003816100381610038161003816100381610038161003816100381610038161003816

119899

sum

119896=1

(119890119896 11986012

119895119908)119887

(119890119896 119886)119887

1003816100381610038161003816100381610038161003816100381610038161003816

lt 120576

1003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817119887119886119887

(66)

for 119895 isin 1 2Using these and a long and tedious calculation we can

show that for every 119899 ge max119871 1198701 1198702

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

exp

2

sum

119895=1

([

120582119895119899minus 1

2120582119895119899

]

119899

sum

119896=1

(119890119896 11986012

119895119908)

2

119887

minus

1

2

1003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817

2

119887

+ 119894120582minus12

119895119899

119899

sum

119896=1

(119890119896 11986012

119895119908)119887

(119890119896 119886)119887+ 119894(119890119899+1 119886)119887

times [

1003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817

2

119887

minus

119899

sum

119896=1

(119890119896 11986012

119895119908)

2

119887

]

12

)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

lt 119896 (1199020 119908)

(67)

where 119896(1199020 119908) is given by (36)

In our next theorem for119865 isin F11988611988711986011198602

we express theGFFTof 119865 as the limit of a sequence of function space integrals on1198622

119886119887[0 119879]

Theorem 14 Let 1199020and 119865 be as in Theorem 10 Let 119890

119899infin

119899=1

be a complete orthonormal set in (1198621015840119886119887[0 119879] sdot

119887) and let

(1205821119899 1205822119899)infin

119899=1be a sequence in C2

+such that 120582

119895119899rarr minus119894119902

119895

where 119902119895is a real number with |119902

119895| gt 1199020 119895 isin 1 2 Then for

119901 isin [1 2] and for s-ae (1199101 1199102) isin 1198622

119886119887[0 119879]

119879(119901)

119902(119865) (119910

1 1199102)

= lim119899rarrinfin

1205821198992

11198991205821198992

2119899

times119864119909[119866119899(1205821119899 1199091) 119866119899(1205822119899 1199092) 119865 (119910

1+ 1199091 1199102+ 1199092)]

(68)

where 119866119899is given by (52)

Proof ByTheorems9 and 10we know that for each119901 isin [1 2]the 119871119901analytic GFFT of 119865 119879(119901)

119902(119865) exists and is given by the

right hand side of (40) Thus it suffices to show that

119879(1)

119902(119865) (119910

1 1199102) = 119864

anf 119902119909[119865 (1199101+ 1199091 1199102+ 1199092)]

= lim119899rarrinfin

1205821198992

11198991205821198992

2119899

times 119864119909[119866119899(1205821119899 1199091) 119866119899(1205822119899 1199092)

times 119865 (1199101+ 1199091 1199102+ 1199092)] sdot

(69)

Using (30) the Fubini theorem and (56) with 120582 and 119908replaced with 120582

119895119899and 11986012

119895119908 119895 isin 1 2 respectively we see

that

1205821198992

11198991205821198992

2119899119864119909[119866119899(1205821119899 1199091) 119866119899(1205822119899 1199092) 119865 (119910

1+ 1199091 1199102+ 1199092)]

= 1205821198992

11198991205821198992

2119899int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119910119895)

sim

times(

2

prod

119895=1

119864119909119895

[119866119899(120582minus12

119895119899 119909119895)

times exp 119894(11986012119895119908 119909119895)

sim

])119889119891 (119908)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

(119894(11986012

119895119908 119910119895)

sim

+ [

120582119895119899minus 1

2120582119895119899

]

119899

sum

119896=1

(119890119896 11986012

119895119908)

2

119887

minus

1

2

1003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817

2

119887

+ 119894120582minus12

119895119899

119899

sum

119896=1

(119890119896 119886)119887(119890119896 11986012

119895119908)119887

+ 119894(119890119899+1 119886)119887[

1003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817

2

119887

minus

119899

sum

119896=1

(119890119896 11986012

119895119908)

2

119887

]

12

)

119889119891 (119908)

(70)

But by Remark 13 we see that the last expression of (70) isdominated by (39) on the region Γ

1199020

given by (35) for allbut a finite number of values of 119899 Next using the dominatedconvergence theorem Parsevalrsquos relation and (40) we obtainthe desired result

Corollary 15 Let 1199020 119865 119890

119899infin

119899=1 (1205821119899 1205822119899)infin

119899=1and (119902

1 1199022)

be as in Theorem 14 Then

119864

anf119902

119909[119865 (1199091 1199092)]

= lim119899rarrinfin

1205821198992

11198991205821198992

2119899

times 119864119909[119866119899(1205821119899 1199091) 119866119899(1205822119899 1199092) 119865 (119909

1 1199092)]

(71)

where 119866119899is given by (52)

10 Journal of Function Spaces and Applications

Corollary 16 Let 1199020 119865 and 119890

119899infin

119899=1be as in Theorem 14 and

let Γ1199020

be given by (35) Let 120582 = (1205821 1205822) isin Int (Γ

1199020

) and(1205821119899 1205822119899)infin

119899=1be a sequence in C2

+such that 120582

119895119899rarr 120582

119895

119895 isin 1 2 Then

119864

an

119909[119865 (1199091 1199092)] = lim119899rarrinfin

1205821198992

11198991205821198992

2119899

times119864119909[119866119899(1205821119899 1199091) 119866119899(1205822119899 1199092) 119865(1199091 1199092)]

(72)

where 119866119899is given by (52)

Our another result namely a change of scale formula forfunction space integrals now follows fromCorollary 16 above

Theorem 17 Let 119865 isin F11988611988711986011198602

and let 119890119899infin

119899=1be a complete

orthonormal set in (1198621015840119886119887[0 119879] sdot

119887) Then for any 120588

1gt 0 and

1205882gt 0

119864119909[119865 (12058811199091 12058821199092)]

= lim119899rarrinfin

120588minus119899

1120588minus119899

2

times 119864119909[119866119899(120588minus2

1 1199091)119866119899(120588minus2

2 1199092) 119865 (119909

1 1199092)]

(73)

where 119866119899is given by (52)

Proof Simply choose 120582119895= 120588minus2

119895for 119895 isin 1 2 and 120582

119895119899= 120588minus2

119895

for 119895 isin 1 2 and 119899 isin N in (72)

Remark 18 Of course if we choose 119886(119905) equiv 0 119887(119905) = 1199051198601= 119868 (identity operator) and 119860

2= 0 (zero operator) then

the function space 119862119886119887[0 119879] reduces to the classical Wiener

space 1198620[0 119879] and the generalized Fresnel type class F 119886119887

11986011198602

reduces to the Fresnel class F(1198620[0 119879]) It is known that

F(1198620[0 119879]) forms a Banach algebra over the complex field

In this case we have the relationships between the analyticFeynman integral and theWiener integral on classicalWienerspace as discussed in [14 15]

In recent paper [19] Yoo et al have studied a change ofscale formula for function space integral of the functionalsin the Banach algebra S(1198712

119886119887[0 119879]) the Banach algebra

S(1198712119886119887[0 119879]) is introduced in [12]

5 Functionals in F11988611988711986011198602

In this section we prove a theorem ensuring that variousfunctionals are inF119886119887

11986011198602

Theorem 19 Let 1198601and 119860

2be bounded nonnegative and

self-adjoint operators on 1198621015840119886119887[0 119879] Let (119884Y 120574) be a 120590-finite

measure space and let 120593119897 119884 rarr 119862

1015840

119886119887[0 119879] beYndashB(1198621015840

119886119887[0 119879])

measurable for 119897 isin 1 119889 Let 120579 119884 times R119889 rarr C be given by120579(120578 sdot) = ]

120578(sdot) where ]

120578isin M(R119889) for every 120578 isin 119884 and where

the family ]120578 120578 isin 119884 satisfies

(i) ]120578(119864) is a Y-measurable function of 120578 for every 119864 isin

B(R119889)(ii) ]

120578 isin 1198711

(119884Y 120574)

Under these hypothesis the functional 119865 1198622119886119887[0 119879] rarr C

given by

119865 (1199091 1199092) = int

119884

120579(120578

2

sum

119895=1

(11986012

1198951205931(120578) 119909

119895)

sim

2

sum

119895=1

(11986012

119895120593119889(120578) 119909

119895)

sim

)119889120574 (120578)

(74)

belongs toF11988611988711986011198602

and satisfies the inequality

119865 le int

119884

10038171003817100381710038171003817]120578

10038171003817100381710038171003817119889120574 (120578) (75)

Proof Using the techniques similar to those used in [20] wecan show that ]

120578 is measurable as a function of 120578 that 120579 is

Y-measurable and that the integrand in (74) is a measurablefunction of 120578 for every (119909

1 1199092) isin 1198622

119886119887[0 119879]

We define a measure 120591 onY timesB(R119889) by

120591 (119864) = int

119884

]120578(119864(120578)

) 119889120574 (120578) for 119864 isin Y timesB (R119889) (76)

Then by the first assertion of Theorem 31 in [17] 120591 satisfies120591 le int

119884

]120578119889120574(120578) Now let Φ 119884 times R119889 rarr 119862

1015840

119886119887[0 119879] be

defined by Φ(120578 V1 V

119889) = sum

119889

119897=1V119897120593119897(120578) Then Φ is Y times

B(R119889) ndashB(1198621015840119886119887[0 119879])-measurable on the hypothesis for 120593

119897

119897 isin 1 119889 Let 120590 = 120591 ∘Φminus1 Then clearly 120590 isinM(1198621015840119886119887[0 119879])

and satisfies 120590 le 120591From the change of variables theorem and the second

assertion of Theorem 31 in [17] it follows that for ae(1199091 1199092) isin 1198622

119886119887[0 119879] and for every 120588

1gt 0 and 120588

2gt 0

119865 (12058811199091 12058821199092)

= int

119884

]120578(

2

sum

119895=1

(11986012

1198951205931(120578) 120588

119895119909119895)

sim

2

sum

119895=1

(11986012

119895120593119889(120578) 120588

119895119909119895)

sim

)119889120574 (120578)

= int

119884

[

[

int

R119889exp

119894

119889

sum

119897=1

V119897

[

[

2

sum

119895=1

(11986012

119895120593119897(120578)

120588119895119909119895)

sim

]

]

119889]120578

times (V1 V

119889)]

]

119889120574 (120578)

= int

119884timesR119889exp

119894

119889

sum

119897=1

V119897

[

[

2

sum

119895=1

(11986012

119895120593119897(120578) 120588

119895119909119895)

sim

]

]

119889120591

times (120578 V1 V

119889)

Journal of Function Spaces and Applications 11

= int

119884timesR119889exp

2

sum

119895=1

119894(11986012

119895Φ(120578 V

1 V

119889) 120588119895119909119895)

sim

119889120591

times (120578 V1 V

119889)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 120588119895119909119895)

sim

119889120591 ∘ Φminus1

(119908)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 120588119895119909119895)

sim

119889120590 (119908)

(77)

Thus the functional 119865 given by (74) belongs to F11988611988711986011198602

andsatisfies the inequality

119865 = 120590 le 120591 le int

119884

10038171003817100381710038171003817]120578

10038171003817100381710038171003817119889120574 (120578) (78)

As mentioned in (2) of Remark 6 F 11988611988711986011198602

is a Banachalgebra if Ran(119860

1+ 1198602) is dense in 1198621015840

119886119887[0 119879] In this case

many analytic functionals of 119865 can be formed The followingcorollary is relevant to Feynman integration theories andquantum mechanics where exponential functions play animportant role

Corollary 20 Let 1198601and 119860

2be bounded nonnegative and

self-adjoint operators on 1198621015840119886119887[0 119879] such that Ran(119860

1+ 1198602)

is dense in 1198621015840119886119887[0 119879] Let 119865 be given by (74) with 120579 as in

Theorem 19 and let 120573 C rarr C be an entire function Then(120573 ∘ 119865)(119909

1 1199092) is in F119886119887

11986011198602

In particular exp119865(1199091 1199092) isin

F11988611988711986011198602

Corollary 21 Let 1198601and 119860

2be bounded nonnegative and

self-adjoint operators on 1198621015840119886119887[0 119879] and let 119892

1 119892

119889 be a

finite subset of 1198621015840119886119887[0 119879] Given 120573 = ] where ] isin M(R119889)

define 119865 1198622119886119887[0 119879] rarr C by

119865 (1199091 1199092) = 120573(

2

sum

119895=1

(11986012

1198951198921 119909119895)

sim

2

sum

119895=1

(11986012

119895119892119889 119909119895)

sim

)

(79)

Then 119865 is an element ofF11988611988711986011198602

Proof Let (119884Y 120574) be a probability space and for 119897 isin1 119889 let 120593

119897(120578) equiv 119892

119897 Take 120579(120578 sdot) = 120573(sdot) = ](sdot) Then for

all 1205881gt 0 and 120588

2gt 0 and for ae (119909

1 1199092) isin 1198622

119886119887[0 119879]

int

119884

120579(120578

2

sum

119895=1

(11986012

1198951205931(120578) 120588

119895119909119895)

sim

2

sum

119895=1

(11986012

119895120593119889(120578) 120588

119895119909119895)

sim

)119889120574 (120578)

= int

119884

120573(

2

sum

119895=1

(11986012

1198951198921 120588119895119909119895)

sim

2

sum

119895=1

(11986012

119895119892119889 120588119895119909119895)

sim

)119889120574 (120578)

= 120573(

2

sum

119895=1

(11986012

1198951198921 120588119895119909119895)

sim

2

sum

119895=1

(11986012

119895119892119889 120588119895119909119895)

sim

)

= 119865 (12058811199091 12058821199092)

(80)

Hence 119865 isin F11988611988711986011198602

Remark 22 Let 119889 = 1 and let (119884Y 120574) = ([0 119879]B([0 119879])119898119871) in Theorem 19 where 119898

119871denotes the Lebesgue measure

on [0 119879] ThenTheorems 46 47 and 49 in [18] follow fromthe results in this section by letting119860

1be the identity operator

and letting 1198602equiv 0 on 1198621015840

119886119887[0 119879] The function 120579 studied in

[18] (and mentioned in Remark 2 above) is interpreted as thepotential energy in quantum mechanics

Acknowledgments

The authors would like to express their gratitude to the refer-ees for their valuable comments and suggestions which haveimproved the original paper This research was supported bythe Basic Science Research Program through the NationalResearch Foundation of Korea (NRF) funded by theMinistryof Education (2011-0014552)

References

[1] G Kallianpur and C Bromley ldquoGeneralized Feynman integralsusing analytic continuation in several complex variablesrdquo inStochastic Analysis and Applications M A Pinsky Ed vol 7pp 217ndash267 Marcel Dekker New York NY USA 1984

[2] G Kallianpur D Kannan and R L Karandikar ldquoAnalytic andsequential Feynman integrals on abstract Wiener and Hilbertspaces and a Cameron-Martin formulardquo Annales de lrsquoInstitutHenri Poincare vol 21 no 4 pp 323ndash361 1985

[3] G W Johnson and M L Lapidus The Feynman Integral andFeynmanrsquos Operational Calculus Clarendon Press Oxford UK2000

[4] J Yeh ldquoSingularity of Gaussian measures on function spacesinduced by Brownian motion processes with non-stationaryincrementsrdquo Illinois Journal of Mathematics vol 15 pp 37ndash461971

[5] J Yeh Stochastic Processes and the Wiener Integral MarcelDekker New York NY USA 1973

[6] S J Chang J G Choi and D Skoug ldquoIntegration by partsformulas involving generalized Fourier-Feynman transformson function spacerdquo Transactions of the American MathematicalSociety vol 355 no 7 pp 2925ndash2948 2003

[7] S J Chang J G Choi and D Skoug ldquoParts formulas involvingconditional generalized Feynman integrals and conditionalgeneralized Fourier-Feynman transforms on function spacerdquo

12 Journal of Function Spaces and Applications

Integral Transforms and Special Functions vol 15 no 6 pp 491ndash512 2004

[8] S J Chang J G Choi and D Skoug ldquoEvaluation formulas forconditional function space integralsmdashIrdquo Stochastic Analysis andApplications vol 25 no 1 pp 141ndash168 2007

[9] S J Chang J G Choi and D Skoug ldquoGeneralized Fourier-Feynman transforms convolution products and first variationson function spacerdquoTheRockyMountain Journal ofMathematicsvol 40 no 3 pp 761ndash788 2010

[10] S J Chang and D M Chung ldquoConditional function spaceintegrals with applicationsrdquo The Rocky Mountain Journal ofMathematics vol 26 no 1 pp 37ndash62 1996

[11] S J Chang H S Chung and D Skoug ldquoIntegral transformsof functionals in 119871

2(119862119886119887[0 119879])rdquoThe Journal of Fourier Analysis

and Applications vol 15 no 4 pp 441ndash462 2009[12] S J Chang and D Skoug ldquoGeneralized Fourier-Feynman

transforms and a first variation on function spacerdquo IntegralTransforms and Special Functions vol 14 pp 375ndash393 2003

[13] J G Choi and S J Chang ldquoGeneralized Fourier-Feynmantransform and sequential transforms on function spacerdquo Jour-nal of the Korean Mathematical Society vol 49 pp 1065ndash10822012

[14] R H Cameron and D A Storvick ldquoRelationships between theWiener integral and the analytic Feynman integralrdquo Rendicontidel Circolo Matematico di Palermo no 17 supplement pp 117ndash133 1987

[15] RHCameron andDA Storvick ldquoChange of scale formulas forWiener integralrdquo Rendiconti del Circolo Matematico di Palermono 17 pp 105ndash115 1987

[16] G W Johnson ldquoThe equivalence of two approaches to theFeynman integralrdquo Journal of Mathematical Physics vol 23 pp2090ndash2096 1982

[17] G W Johnson and D L Skoug ldquoNotes on the FeynmanintegralmdashIII the Schroedinger equationrdquo Pacific Journal ofMathematics vol 105 pp 321ndash358 1983

[18] S J Chang J G Choi and S D Lee ldquoA Fresnel type class onfunction spacerdquo Journal of the Korean Society of MathematicalEducation Series B vol 16 no 1 pp 107ndash119 2009

[19] I Yoo B J Kim and B S Kim ldquoA change of scale formulafor a function space integral on 119862

119886119887[0 119879]rdquo Proceedings of the

American Mathematical Society vol 141 no 8 pp 2729ndash27392013

[20] K S Chang G W Johnson and D L Skoug ldquoFunctions inthe Fresnel classrdquo Proceedings of the American MathematicalSociety vol 100 no 2 pp 309ndash318 1987

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 6: Research Article Generalized Analytic Fourier-Feynman ...downloads.hindawi.com/journals/jfs/2013/954098.pdf · Journal of Function Spaces and Applications Volume , Article ID , pages

6 Journal of Function Spaces and Applications

We note that for all real 119902119895with |119902

119895| gt 1199020 119895 isin 1 2

(minus119894119902119895)

minus12

=

1

radic

100381610038161003816100381610038162119902119895

10038161003816100381610038161003816

+ sign (119902119895)

119894

radic

100381610038161003816100381610038162119902119895

10038161003816100381610038161003816

(38)

and (minus1198941199021 minus1198941199022) isin Γ1199020

For the existence of the GFFT of 119865 we define a subclass

F1199020

11986011198602

ofF 11988611988711986011198602

by 119865 isin F 119902011986011198602

if and only if

int

1198621015840

119886119887[0119879]

119896 (1199020 119908) 119889

10038161003816100381610038161198911003816100381610038161003816(119908) lt +infin (39)

where 119891 and 119865 are related by (30) and 119896 is given by (36)

Remark 8 Note that in case 119886(119905) equiv 0 and 119887(119905) = 119905 on [0 119879]the function space 119862

119886119887[0 119879] reduces to the classical Wiener

space 1198620[0 119879] and (119908 119886)

119887= 0 for all 119908 isin 1198621015840

119886119887[0 119879] =

1198621015840

0[0 119879] Hence for all 120582 isin C2

+ |120595( 120582 119908)| le 1 and for any

positive real number 1199020F 119902011986011198602

= F11986011198602

theKallianpur andBromleyrsquos class introduced in Section 1

Theorem 9 Let 1199020be a positive real number and let 119865 be an

element ofF 119902011986011198602

Then for any nonzero real numbers 1199021and

1199022with |119902

119895| gt 1199020 119895 isin 1 2 the 119871

1analytic GFFT of 119865 119879(1)

119902(119865)

exists and is given by the following formula

119879(1)

119902(119865) (119910

1 1199102)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119910119895)

sim

120595(minus119894 119902 119908) 119889119891 (119908)

(40)

for s-ae (1199101 1199102) isin 1198622

119886119887[0 119879] where 120595 is given by (32)

Proof We first note that for 119895 isin 1 2 the PWZ stochasticintegral (11986012

119895119908 119909)sim is a Gaussian random variable withmean

(11986012

119895119908 119886)119887and variance 11986012

119895119908

2

119887

= (119860119895119908119908)119887

Hence using(30) the Fubini theorem the change of variables theorem and(14) we have that for all 120582

1gt 0 and 120582

2gt 0

119869 (1199101 1199102 1205821 1205822)

equiv 119864119909[119865 (1199101+ 120582minus12

11199091 1199102+ 120582minus12

21199092)]

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119910119895)

sim

times(

2

prod

119895=1

119864119909119895

[exp 119894120582minus12119895(11986012

119895119908 119909119895)

sim

])119889119891 (119908)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119910119895)

sim

times[

[

[

2

prod

119895=1

(2120587(119860119895119908119908)

119887

)

minus12

times int

R

exp

119894120582minus12

119895119906119895

minus

[119906119895minus (11986012

119895119908 119886)119887

]

2

2(119860119895119908119908)

119887

119889119906119895

]

]

]

119889119891(119908)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119910119895)

sim

120595(120582 119908) 119889119891 (119908)

(41)

Let

119879 120582(119865) (119910

1 1199102)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119910119895)

sim

120595(120582 119908) 119889119891 (119908)

(42)

for each 120582 isin C2+ Clearly

119879 120582(119865) (119910

1 1199102) = 119869 (119910

1 1199102 1205821 1205822) (43)

for all 1205821gt 0 and 120582

2gt 0 Let Γ

1199020

be given by (35)Then for all120582 isin Int(Γ

1199020

)

1003816100381610038161003816119879 120582(119865) (119910

1 1199102)1003816100381610038161003816lt int

1198621015840

119886119887[0119879]

119896 (1199020 119908) 119889

10038161003816100381610038161198911003816100381610038161003816(119908) lt +infin

(44)

Using this fact and the dominated convergence theoremwe see that 119879

120582(119865)(1199101 1199102) is a continuous function of 120582 =

(1205821 1205822) on Int(Γ

1199020

) For each 119908 isin 1198621015840119886119887[0 119879] 120595( 120582 119908) is an

analytic function of 120582 throughout the domain Int(Γ1199020

) so thatintΔ

120595(120582 119908)119889

120582 = 0 for every rectifiable simple closed curve

Δ in Int(Γ1199020

) By (42) the Fubini theorem and the Moreratheorem we see that 119879

120582(119865)(1199101 1199102) is an analytic function of

120582 throughout the domain Int(Γ

1199020

) Finally using (28) withthe dominated convergence theorem we obtain the desiredresult

Theorem 10 Let 1199020and 119865 be as inTheorem 9Then for all 119901 isin

(1 2] and all nonzero real numbers 1199021and 119902

2with |119902

119895| gt 1199020

119895 isin 1 2 the119871119901analytic GFFT of119865119879(119901)

119902(119865) exists and is given

by the right hand side of (40) for s-ae (1199101 1199102) isin 1198622

119886119887[0 119879]

Journal of Function Spaces and Applications 7

Proof Let Γ1199020

be given by (35) It was shown in the proofof Theorem 9 that 119879

120582(119865)(1199101 1199102) is an analytic function of 120582

throughout the domain Int(Γ1199020

) In viewofDefinition 4 it willsuffice to show that for each 120588

1gt 0 and 120588

2gt 0

lim120582rarrminus119894 119902

int

1198622

119886119887[0119879]

100381610038161003816100381610038161003816

119879 120582(119865) (120588

11199101 12058821199102)

minus119879(119901)

119902(119865) (120588

11199101 12058821199102)

100381610038161003816100381610038161003816

1199011015840

times 119889 (120583 times 120583) (1199101 1199102) = 0

(45)

Fixing 119901 isin (1 2] and using the inequalities (37) and (39)we obtain that for all 120588

119895gt 0 119895 isin 1 2 and all 120582 isin Γ

1199020

100381610038161003816100381610038161003816

119879 120582(119865) (120588

11199101 12058821199102) minus 119879(119901)

119902(119865) (120588

11199101 12058821199102)

100381610038161003816100381610038161003816

1199011015840

le

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894120588119895(11986012

119895119908 119910119895)

sim

times[120595 (120582 119908) minus 120595 (minus119894 119902 119908)] 119889119891 (119908)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1199011015840

le (int

1198621015840

119886119887[0119879]

[

10038161003816100381610038161003816120595 (120582 119908)

10038161003816100381610038161003816+

10038161003816100381610038161003816120595 (minus119894 119902 119908)

10038161003816100381610038161003816] 11988910038161003816100381610038161198911003816100381610038161003816(119908))

1199011015840

le (2int

1198621015840

119886119887[0119879]

119896 (1199020 119908) 119889

10038161003816100381610038161198911003816100381610038161003816(119908))

1199011015840

lt +infin

(46)

Hence by the dominated convergence theorem we see thatfor each 119901 isin (1 2] and each 120588

1gt 0 and 120588

2gt 0

lim120582rarrminus119894 119902

int

1198622

119886119887[0119879]

100381610038161003816100381610038161003816

119879 120582(119865) (120588

11199101 12058821199102)

minus119879(119901)

119902(119865) (120588

11199101 12058821199102)

100381610038161003816100381610038161003816

1199011015840

119889 (120583 times 120583) (1199101 1199102)

= lim120582rarrminus119894 119902

int

1198622

119886119887[0119879]

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 120588119895119910119895)

sim

times 120595(120582 119908) 119889119891 (119908)

minus int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 120588119895119910119895)

sim

times120595(minus119894 119902 119908) 119889119891 (119908)

10038161003816100381610038161003816100381610038161003816100381610038161003816

1199011015840

times 119889 (120583 times 120583) (1199101 1199102)

= int

1198622

119886119887[0119879]

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 120588119895119910119895)

sim

times lim120582rarrminus119894 119902

[120595 (120582 119908)

minus120595 (minus119894 119902 119908)] 119889119891 (119908)

10038161003816100381610038161003816100381610038161003816100381610038161003816

1199011015840

times 119889 (120583 times 120583) (1199101 1199102)

= 0

(47)

which concludes the proof of Theorem 10

Remark 11 (1) In view of Theorems 9 and 10 we see thatfor each 119901 isin [1 2] the 119871

119901analytic GFFT of 119865 119879(119901)

119902(119865) is

given by the right hand side of (40) for 1199020 1199021 1199022 and 119865 as

in Theorem 9 and for s-ae (1199101 1199102) isin 1198622

119886119887[0 119879]

119879(119901)

119902(119865) (119910

1 1199102) = 119864

anf 119902119909[119865 (1199101+ 1199091 1199102+ 1199092)] 119901 isin [1 2]

(48)

In particular using this fact and (29) we have that for all 119901 isin[1 2]

119879(119901)

119902(119865) (0 0) = 119864

anf 119902119909[119865 (1199091 1199092)] (49)

(2) For nonzero real numbers 1199021and 119902

2with |119902

119895| gt 119902

0

119895 isin 1 2 define a set function 119891 119860119902B(1198621015840

119886119887[0 119879]) rarr C by

119891

119860

119902(119861) = int

119861

120595 (minus119894 119902 119908) 119889119891 (119908) 119861 isinB (1198621015840

119886119887[0 119879])

(50)

where 119891 and 119865 are related by (30) and B(1198621015840119886119887[0 119879]) is the

Borel 120590-algebra of 1198621015840119886119887[0 119879] Then it is obvious that 119891 119860

119902

belongs to M(1198621015840119886119887[0 119879]) and for all 119901 isin [1 2] 119879(119901)

119902(119865) can

be expressed as

119879(119901)

119902(119865) (119910

1 1199102) = int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119910119895)

sim

119889119891

119860

119902(119908)

(51)

for s-ae (1199101 1199102) isin 119862

2

119886119887[0 119879] Hence 119879(119901)

119902(119865) belongs to

F 11988611988711986011198602

for all 119901 isin [1 2]

4 Relationships between the GFFT and theFunction Space Integral of Functionals inF11988611988711986011198602

In this section we establish a relationship between the GFFTand the function space integral of functionals in the Fresneltype classF119886119887

11986011198602

8 Journal of Function Spaces and Applications

Throughout this section for convenience we use thefollowing notation for given 120582 isin C

+and 119899 = 1 2 let

119866119899(120582 119909)

= exp[1 minus 1205822

]

119899

sum

119896=1

[(119890119896 119909)sim

]

2

+ (12058212

minus 1)

119899

sum

119896=1

(119890119896 119886)1198621015840

119886119887

(119890119896 119909)sim

(52)

where 119890119899infin

119899=1is a complete orthonormal set in (1198621015840

119886119887[0 119879]

sdot 119887)To obtain our main results Theorems 14 and 17 below

we state a fundamental integration formula for the functionspace 119862

119886119887[0 119879]

Let 1198901 119890

119899 be an orthonormal set in (1198621015840

119886119887[0 119879] sdot

119887)

let 119896 R119899 rarr C be a Lebesgue measurable function and let119870 119862119886119887[0 119879] rarr C be given by

119870 (119909) = 119896 ((1198901 119909)sim

(119890119899 119909)sim

) (53)

Then

119864 [119870] = int

119862119886119887[0119879]

119896 ((1198901 119909)sim

(119890119899 119909)sim

) 119889120583 (119909)

= (2120587)minus1198992

int

R119899119896 (1199061 119906

119899)

times exp

minus

119899

sum

119895=1

[119906119895minus (119890119895 119886)119887

]

2

2

1198891199061 119889119906

119899

(54)

in the sense that if either side of (54) exists both sides existand equality holds

We also need the following lemma to obtain our maintheorem in this section

Lemma 12 Let 1198901 119890

119899 be an orthonormal subset of

(1198621015840

119886119887[0 119879] sdot

119887) and let 119908 be an element of 1198621015840

119886119887[0 119879] Then

for each 120582 isin C+ the function space integral

119864119909[119866119899(120582 119909) exp 119894(119908 119909)sim] (55)

exists and is given by the formula

119864119909[119866119899(120582 119909) exp 119894(119908 119909)sim]

= 120582minus1198992 exp

[

120582 minus 1

2120582

]

119899

sum

119896=1

(119890119896 119908)2

119887minus

1

2

1199082

119887

+ 119894120582minus12

119899

sum

119896=1

(119890119896 119886)119887(119890119896 119908)119887

+ 119894(119890119899+1 119886)119887[1199082

119887minus

119899

sum

119896=1

(119890119896 119908)2

119887]

12

(56)

where 119866119899is given by (52) above and

119890119899+1=[

[

1199082

119887minus

119899

sum

119895=1

(119890119895 119908)

2

119887

]

]

minus12

119908 minus

119899

sum

119895=1

(119890119895 119908)119887

119890119895

(57)

Proof (Outline) Using the Gram-Schmidt process for any119908 isin 119862

1015840

119886119887[0 119879] we can write 119908 = sum

119899+1

119896=1119888119896119890119896 where

1198901 119890

119899 119890119899+1 is an orthonormal set in (1198621015840

119886119887[0 119879] sdot

119887)

and

119888119896=

(119890119896 119908)119887 119896 = 1 119899

[1199082

119887minus

119899

sum

119895=1

(119890119895 119908)

2

119887

]

12

119896 = 119899 + 1

(58)

Then using (52) (54) the Fubini theorem and (14) it followsthat (56) holds for all 120582 isin C

+

The following remark will be very useful in the proof ofour main theorem in this section

Remark 13 Let 1199020be a positive real number and let Γ

1199020

begiven by (35) For real numbers 119902

1and 1199022with |119902

119895| gt 1199020 119895 isin

1 2 let 120582119899infin

119899=1= (1205821119899 1205822119899)infin

119899=1be a sequence in C2

+such

that

120582119899= (1205821119899 1205822119899) 997888rarr minus119894 119902 = (minus119894119902

1 minus1198941199022) (59)

Let 120582119895119899= 120572119895119899+ 119894120573119895119899

for 119895 isin 1 2 and 119899 isin N Then for119895 isin 1 2 Re(120582

119895119899) = 120572119895119899gt 0 and

120582minus1

119895119899= (120572119895119899+ 119894120573119895119899)

minus1

=

120572119895119899minus 119894120573119895119899

1205722

119895119899+ 1205732

119895119899

(60)

for each 119899 isin N Since |Im ((minus119894119902119895)minus12

)| = 1radic2|119902119895| lt 1radic2119902

0

for 119895 isin 1 2 there exists a sufficiently large 119871 isin N such thatfor any 119899 ge 119871 120582

1119899and 120582

2119899are in Int(Γ

1199020

) and

120575 (1199021 1199022) equiv sup ( 1003816100381610038161003816

1003816Im (120582minus12

1119899)

10038161003816100381610038161003816 119899 ge 119871

cup

10038161003816100381610038161003816Im (120582minus12

2119899)

10038161003816100381610038161003816 119899 ge 119871

cup

100381610038161003816100381610038161003816

Im ((minus1198941199021)minus12

)

100381610038161003816100381610038161003816

100381610038161003816100381610038161003816

Im ((minus1198941199022)minus12

)

100381610038161003816100381610038161003816

)

lt

1

radic21199020

(61)

Thus there exists a positive real number 120576 gt 1 such that120575(1199021 1199022) lt 1(120576radic2119902

0)

Let 119890119899infin

119899=1be a complete orthonormal set in (1198621015840

119886119887[0 119879]

sdot 119887) Using Parsevalrsquos identity it follows that

(1198921 1198922)119887=

infin

sum

119899=1

(119890119899 1198921)119887(119890119899 1198922)119887

(62)

Journal of Function Spaces and Applications 9

for all 1198921 1198922isin 1198621015840

119886119887[0 119879] In addition for each 119892 isin 1198621015840

119886119887[0 119879]

10038171003817100381710038171198921003817100381710038171003817

2

119887minus

119899

sum

119896=1

(119890119896 119892)2

119887=

infin

sum

119896=119899+1

(119890119896 119892)2

119887ge 0 (63)

for every 119899 isin NSince

(119892 119886)119887=

infin

sum

119899=1

(119890119899 119892)119887(119890119899 119886)119887

(64)

and for 120576 gt 1

minus12057610038171003817100381710038171198921003817100381710038171003817119887119886119887lt minus10038171003817100381710038171198921003817100381710038171003817119887119886119887le (119892 119886)

119887

le10038171003817100381710038171198921003817100381710038171003817119887119886119887lt 12057610038171003817100381710038171198921003817100381710038171003817119887119886119887

(65)

there exists a sufficiently large119870119895isin N such that for any 119899 ge 119870

119895

1003816100381610038161003816100381610038161003816100381610038161003816

119899

sum

119896=1

(119890119896 11986012

119895119908)119887

(119890119896 119886)119887

1003816100381610038161003816100381610038161003816100381610038161003816

lt 120576

1003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817119887119886119887

(66)

for 119895 isin 1 2Using these and a long and tedious calculation we can

show that for every 119899 ge max119871 1198701 1198702

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

exp

2

sum

119895=1

([

120582119895119899minus 1

2120582119895119899

]

119899

sum

119896=1

(119890119896 11986012

119895119908)

2

119887

minus

1

2

1003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817

2

119887

+ 119894120582minus12

119895119899

119899

sum

119896=1

(119890119896 11986012

119895119908)119887

(119890119896 119886)119887+ 119894(119890119899+1 119886)119887

times [

1003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817

2

119887

minus

119899

sum

119896=1

(119890119896 11986012

119895119908)

2

119887

]

12

)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

lt 119896 (1199020 119908)

(67)

where 119896(1199020 119908) is given by (36)

In our next theorem for119865 isin F11988611988711986011198602

we express theGFFTof 119865 as the limit of a sequence of function space integrals on1198622

119886119887[0 119879]

Theorem 14 Let 1199020and 119865 be as in Theorem 10 Let 119890

119899infin

119899=1

be a complete orthonormal set in (1198621015840119886119887[0 119879] sdot

119887) and let

(1205821119899 1205822119899)infin

119899=1be a sequence in C2

+such that 120582

119895119899rarr minus119894119902

119895

where 119902119895is a real number with |119902

119895| gt 1199020 119895 isin 1 2 Then for

119901 isin [1 2] and for s-ae (1199101 1199102) isin 1198622

119886119887[0 119879]

119879(119901)

119902(119865) (119910

1 1199102)

= lim119899rarrinfin

1205821198992

11198991205821198992

2119899

times119864119909[119866119899(1205821119899 1199091) 119866119899(1205822119899 1199092) 119865 (119910

1+ 1199091 1199102+ 1199092)]

(68)

where 119866119899is given by (52)

Proof ByTheorems9 and 10we know that for each119901 isin [1 2]the 119871119901analytic GFFT of 119865 119879(119901)

119902(119865) exists and is given by the

right hand side of (40) Thus it suffices to show that

119879(1)

119902(119865) (119910

1 1199102) = 119864

anf 119902119909[119865 (1199101+ 1199091 1199102+ 1199092)]

= lim119899rarrinfin

1205821198992

11198991205821198992

2119899

times 119864119909[119866119899(1205821119899 1199091) 119866119899(1205822119899 1199092)

times 119865 (1199101+ 1199091 1199102+ 1199092)] sdot

(69)

Using (30) the Fubini theorem and (56) with 120582 and 119908replaced with 120582

119895119899and 11986012

119895119908 119895 isin 1 2 respectively we see

that

1205821198992

11198991205821198992

2119899119864119909[119866119899(1205821119899 1199091) 119866119899(1205822119899 1199092) 119865 (119910

1+ 1199091 1199102+ 1199092)]

= 1205821198992

11198991205821198992

2119899int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119910119895)

sim

times(

2

prod

119895=1

119864119909119895

[119866119899(120582minus12

119895119899 119909119895)

times exp 119894(11986012119895119908 119909119895)

sim

])119889119891 (119908)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

(119894(11986012

119895119908 119910119895)

sim

+ [

120582119895119899minus 1

2120582119895119899

]

119899

sum

119896=1

(119890119896 11986012

119895119908)

2

119887

minus

1

2

1003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817

2

119887

+ 119894120582minus12

119895119899

119899

sum

119896=1

(119890119896 119886)119887(119890119896 11986012

119895119908)119887

+ 119894(119890119899+1 119886)119887[

1003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817

2

119887

minus

119899

sum

119896=1

(119890119896 11986012

119895119908)

2

119887

]

12

)

119889119891 (119908)

(70)

But by Remark 13 we see that the last expression of (70) isdominated by (39) on the region Γ

1199020

given by (35) for allbut a finite number of values of 119899 Next using the dominatedconvergence theorem Parsevalrsquos relation and (40) we obtainthe desired result

Corollary 15 Let 1199020 119865 119890

119899infin

119899=1 (1205821119899 1205822119899)infin

119899=1and (119902

1 1199022)

be as in Theorem 14 Then

119864

anf119902

119909[119865 (1199091 1199092)]

= lim119899rarrinfin

1205821198992

11198991205821198992

2119899

times 119864119909[119866119899(1205821119899 1199091) 119866119899(1205822119899 1199092) 119865 (119909

1 1199092)]

(71)

where 119866119899is given by (52)

10 Journal of Function Spaces and Applications

Corollary 16 Let 1199020 119865 and 119890

119899infin

119899=1be as in Theorem 14 and

let Γ1199020

be given by (35) Let 120582 = (1205821 1205822) isin Int (Γ

1199020

) and(1205821119899 1205822119899)infin

119899=1be a sequence in C2

+such that 120582

119895119899rarr 120582

119895

119895 isin 1 2 Then

119864

an

119909[119865 (1199091 1199092)] = lim119899rarrinfin

1205821198992

11198991205821198992

2119899

times119864119909[119866119899(1205821119899 1199091) 119866119899(1205822119899 1199092) 119865(1199091 1199092)]

(72)

where 119866119899is given by (52)

Our another result namely a change of scale formula forfunction space integrals now follows fromCorollary 16 above

Theorem 17 Let 119865 isin F11988611988711986011198602

and let 119890119899infin

119899=1be a complete

orthonormal set in (1198621015840119886119887[0 119879] sdot

119887) Then for any 120588

1gt 0 and

1205882gt 0

119864119909[119865 (12058811199091 12058821199092)]

= lim119899rarrinfin

120588minus119899

1120588minus119899

2

times 119864119909[119866119899(120588minus2

1 1199091)119866119899(120588minus2

2 1199092) 119865 (119909

1 1199092)]

(73)

where 119866119899is given by (52)

Proof Simply choose 120582119895= 120588minus2

119895for 119895 isin 1 2 and 120582

119895119899= 120588minus2

119895

for 119895 isin 1 2 and 119899 isin N in (72)

Remark 18 Of course if we choose 119886(119905) equiv 0 119887(119905) = 1199051198601= 119868 (identity operator) and 119860

2= 0 (zero operator) then

the function space 119862119886119887[0 119879] reduces to the classical Wiener

space 1198620[0 119879] and the generalized Fresnel type class F 119886119887

11986011198602

reduces to the Fresnel class F(1198620[0 119879]) It is known that

F(1198620[0 119879]) forms a Banach algebra over the complex field

In this case we have the relationships between the analyticFeynman integral and theWiener integral on classicalWienerspace as discussed in [14 15]

In recent paper [19] Yoo et al have studied a change ofscale formula for function space integral of the functionalsin the Banach algebra S(1198712

119886119887[0 119879]) the Banach algebra

S(1198712119886119887[0 119879]) is introduced in [12]

5 Functionals in F11988611988711986011198602

In this section we prove a theorem ensuring that variousfunctionals are inF119886119887

11986011198602

Theorem 19 Let 1198601and 119860

2be bounded nonnegative and

self-adjoint operators on 1198621015840119886119887[0 119879] Let (119884Y 120574) be a 120590-finite

measure space and let 120593119897 119884 rarr 119862

1015840

119886119887[0 119879] beYndashB(1198621015840

119886119887[0 119879])

measurable for 119897 isin 1 119889 Let 120579 119884 times R119889 rarr C be given by120579(120578 sdot) = ]

120578(sdot) where ]

120578isin M(R119889) for every 120578 isin 119884 and where

the family ]120578 120578 isin 119884 satisfies

(i) ]120578(119864) is a Y-measurable function of 120578 for every 119864 isin

B(R119889)(ii) ]

120578 isin 1198711

(119884Y 120574)

Under these hypothesis the functional 119865 1198622119886119887[0 119879] rarr C

given by

119865 (1199091 1199092) = int

119884

120579(120578

2

sum

119895=1

(11986012

1198951205931(120578) 119909

119895)

sim

2

sum

119895=1

(11986012

119895120593119889(120578) 119909

119895)

sim

)119889120574 (120578)

(74)

belongs toF11988611988711986011198602

and satisfies the inequality

119865 le int

119884

10038171003817100381710038171003817]120578

10038171003817100381710038171003817119889120574 (120578) (75)

Proof Using the techniques similar to those used in [20] wecan show that ]

120578 is measurable as a function of 120578 that 120579 is

Y-measurable and that the integrand in (74) is a measurablefunction of 120578 for every (119909

1 1199092) isin 1198622

119886119887[0 119879]

We define a measure 120591 onY timesB(R119889) by

120591 (119864) = int

119884

]120578(119864(120578)

) 119889120574 (120578) for 119864 isin Y timesB (R119889) (76)

Then by the first assertion of Theorem 31 in [17] 120591 satisfies120591 le int

119884

]120578119889120574(120578) Now let Φ 119884 times R119889 rarr 119862

1015840

119886119887[0 119879] be

defined by Φ(120578 V1 V

119889) = sum

119889

119897=1V119897120593119897(120578) Then Φ is Y times

B(R119889) ndashB(1198621015840119886119887[0 119879])-measurable on the hypothesis for 120593

119897

119897 isin 1 119889 Let 120590 = 120591 ∘Φminus1 Then clearly 120590 isinM(1198621015840119886119887[0 119879])

and satisfies 120590 le 120591From the change of variables theorem and the second

assertion of Theorem 31 in [17] it follows that for ae(1199091 1199092) isin 1198622

119886119887[0 119879] and for every 120588

1gt 0 and 120588

2gt 0

119865 (12058811199091 12058821199092)

= int

119884

]120578(

2

sum

119895=1

(11986012

1198951205931(120578) 120588

119895119909119895)

sim

2

sum

119895=1

(11986012

119895120593119889(120578) 120588

119895119909119895)

sim

)119889120574 (120578)

= int

119884

[

[

int

R119889exp

119894

119889

sum

119897=1

V119897

[

[

2

sum

119895=1

(11986012

119895120593119897(120578)

120588119895119909119895)

sim

]

]

119889]120578

times (V1 V

119889)]

]

119889120574 (120578)

= int

119884timesR119889exp

119894

119889

sum

119897=1

V119897

[

[

2

sum

119895=1

(11986012

119895120593119897(120578) 120588

119895119909119895)

sim

]

]

119889120591

times (120578 V1 V

119889)

Journal of Function Spaces and Applications 11

= int

119884timesR119889exp

2

sum

119895=1

119894(11986012

119895Φ(120578 V

1 V

119889) 120588119895119909119895)

sim

119889120591

times (120578 V1 V

119889)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 120588119895119909119895)

sim

119889120591 ∘ Φminus1

(119908)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 120588119895119909119895)

sim

119889120590 (119908)

(77)

Thus the functional 119865 given by (74) belongs to F11988611988711986011198602

andsatisfies the inequality

119865 = 120590 le 120591 le int

119884

10038171003817100381710038171003817]120578

10038171003817100381710038171003817119889120574 (120578) (78)

As mentioned in (2) of Remark 6 F 11988611988711986011198602

is a Banachalgebra if Ran(119860

1+ 1198602) is dense in 1198621015840

119886119887[0 119879] In this case

many analytic functionals of 119865 can be formed The followingcorollary is relevant to Feynman integration theories andquantum mechanics where exponential functions play animportant role

Corollary 20 Let 1198601and 119860

2be bounded nonnegative and

self-adjoint operators on 1198621015840119886119887[0 119879] such that Ran(119860

1+ 1198602)

is dense in 1198621015840119886119887[0 119879] Let 119865 be given by (74) with 120579 as in

Theorem 19 and let 120573 C rarr C be an entire function Then(120573 ∘ 119865)(119909

1 1199092) is in F119886119887

11986011198602

In particular exp119865(1199091 1199092) isin

F11988611988711986011198602

Corollary 21 Let 1198601and 119860

2be bounded nonnegative and

self-adjoint operators on 1198621015840119886119887[0 119879] and let 119892

1 119892

119889 be a

finite subset of 1198621015840119886119887[0 119879] Given 120573 = ] where ] isin M(R119889)

define 119865 1198622119886119887[0 119879] rarr C by

119865 (1199091 1199092) = 120573(

2

sum

119895=1

(11986012

1198951198921 119909119895)

sim

2

sum

119895=1

(11986012

119895119892119889 119909119895)

sim

)

(79)

Then 119865 is an element ofF11988611988711986011198602

Proof Let (119884Y 120574) be a probability space and for 119897 isin1 119889 let 120593

119897(120578) equiv 119892

119897 Take 120579(120578 sdot) = 120573(sdot) = ](sdot) Then for

all 1205881gt 0 and 120588

2gt 0 and for ae (119909

1 1199092) isin 1198622

119886119887[0 119879]

int

119884

120579(120578

2

sum

119895=1

(11986012

1198951205931(120578) 120588

119895119909119895)

sim

2

sum

119895=1

(11986012

119895120593119889(120578) 120588

119895119909119895)

sim

)119889120574 (120578)

= int

119884

120573(

2

sum

119895=1

(11986012

1198951198921 120588119895119909119895)

sim

2

sum

119895=1

(11986012

119895119892119889 120588119895119909119895)

sim

)119889120574 (120578)

= 120573(

2

sum

119895=1

(11986012

1198951198921 120588119895119909119895)

sim

2

sum

119895=1

(11986012

119895119892119889 120588119895119909119895)

sim

)

= 119865 (12058811199091 12058821199092)

(80)

Hence 119865 isin F11988611988711986011198602

Remark 22 Let 119889 = 1 and let (119884Y 120574) = ([0 119879]B([0 119879])119898119871) in Theorem 19 where 119898

119871denotes the Lebesgue measure

on [0 119879] ThenTheorems 46 47 and 49 in [18] follow fromthe results in this section by letting119860

1be the identity operator

and letting 1198602equiv 0 on 1198621015840

119886119887[0 119879] The function 120579 studied in

[18] (and mentioned in Remark 2 above) is interpreted as thepotential energy in quantum mechanics

Acknowledgments

The authors would like to express their gratitude to the refer-ees for their valuable comments and suggestions which haveimproved the original paper This research was supported bythe Basic Science Research Program through the NationalResearch Foundation of Korea (NRF) funded by theMinistryof Education (2011-0014552)

References

[1] G Kallianpur and C Bromley ldquoGeneralized Feynman integralsusing analytic continuation in several complex variablesrdquo inStochastic Analysis and Applications M A Pinsky Ed vol 7pp 217ndash267 Marcel Dekker New York NY USA 1984

[2] G Kallianpur D Kannan and R L Karandikar ldquoAnalytic andsequential Feynman integrals on abstract Wiener and Hilbertspaces and a Cameron-Martin formulardquo Annales de lrsquoInstitutHenri Poincare vol 21 no 4 pp 323ndash361 1985

[3] G W Johnson and M L Lapidus The Feynman Integral andFeynmanrsquos Operational Calculus Clarendon Press Oxford UK2000

[4] J Yeh ldquoSingularity of Gaussian measures on function spacesinduced by Brownian motion processes with non-stationaryincrementsrdquo Illinois Journal of Mathematics vol 15 pp 37ndash461971

[5] J Yeh Stochastic Processes and the Wiener Integral MarcelDekker New York NY USA 1973

[6] S J Chang J G Choi and D Skoug ldquoIntegration by partsformulas involving generalized Fourier-Feynman transformson function spacerdquo Transactions of the American MathematicalSociety vol 355 no 7 pp 2925ndash2948 2003

[7] S J Chang J G Choi and D Skoug ldquoParts formulas involvingconditional generalized Feynman integrals and conditionalgeneralized Fourier-Feynman transforms on function spacerdquo

12 Journal of Function Spaces and Applications

Integral Transforms and Special Functions vol 15 no 6 pp 491ndash512 2004

[8] S J Chang J G Choi and D Skoug ldquoEvaluation formulas forconditional function space integralsmdashIrdquo Stochastic Analysis andApplications vol 25 no 1 pp 141ndash168 2007

[9] S J Chang J G Choi and D Skoug ldquoGeneralized Fourier-Feynman transforms convolution products and first variationson function spacerdquoTheRockyMountain Journal ofMathematicsvol 40 no 3 pp 761ndash788 2010

[10] S J Chang and D M Chung ldquoConditional function spaceintegrals with applicationsrdquo The Rocky Mountain Journal ofMathematics vol 26 no 1 pp 37ndash62 1996

[11] S J Chang H S Chung and D Skoug ldquoIntegral transformsof functionals in 119871

2(119862119886119887[0 119879])rdquoThe Journal of Fourier Analysis

and Applications vol 15 no 4 pp 441ndash462 2009[12] S J Chang and D Skoug ldquoGeneralized Fourier-Feynman

transforms and a first variation on function spacerdquo IntegralTransforms and Special Functions vol 14 pp 375ndash393 2003

[13] J G Choi and S J Chang ldquoGeneralized Fourier-Feynmantransform and sequential transforms on function spacerdquo Jour-nal of the Korean Mathematical Society vol 49 pp 1065ndash10822012

[14] R H Cameron and D A Storvick ldquoRelationships between theWiener integral and the analytic Feynman integralrdquo Rendicontidel Circolo Matematico di Palermo no 17 supplement pp 117ndash133 1987

[15] RHCameron andDA Storvick ldquoChange of scale formulas forWiener integralrdquo Rendiconti del Circolo Matematico di Palermono 17 pp 105ndash115 1987

[16] G W Johnson ldquoThe equivalence of two approaches to theFeynman integralrdquo Journal of Mathematical Physics vol 23 pp2090ndash2096 1982

[17] G W Johnson and D L Skoug ldquoNotes on the FeynmanintegralmdashIII the Schroedinger equationrdquo Pacific Journal ofMathematics vol 105 pp 321ndash358 1983

[18] S J Chang J G Choi and S D Lee ldquoA Fresnel type class onfunction spacerdquo Journal of the Korean Society of MathematicalEducation Series B vol 16 no 1 pp 107ndash119 2009

[19] I Yoo B J Kim and B S Kim ldquoA change of scale formulafor a function space integral on 119862

119886119887[0 119879]rdquo Proceedings of the

American Mathematical Society vol 141 no 8 pp 2729ndash27392013

[20] K S Chang G W Johnson and D L Skoug ldquoFunctions inthe Fresnel classrdquo Proceedings of the American MathematicalSociety vol 100 no 2 pp 309ndash318 1987

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 7: Research Article Generalized Analytic Fourier-Feynman ...downloads.hindawi.com/journals/jfs/2013/954098.pdf · Journal of Function Spaces and Applications Volume , Article ID , pages

Journal of Function Spaces and Applications 7

Proof Let Γ1199020

be given by (35) It was shown in the proofof Theorem 9 that 119879

120582(119865)(1199101 1199102) is an analytic function of 120582

throughout the domain Int(Γ1199020

) In viewofDefinition 4 it willsuffice to show that for each 120588

1gt 0 and 120588

2gt 0

lim120582rarrminus119894 119902

int

1198622

119886119887[0119879]

100381610038161003816100381610038161003816

119879 120582(119865) (120588

11199101 12058821199102)

minus119879(119901)

119902(119865) (120588

11199101 12058821199102)

100381610038161003816100381610038161003816

1199011015840

times 119889 (120583 times 120583) (1199101 1199102) = 0

(45)

Fixing 119901 isin (1 2] and using the inequalities (37) and (39)we obtain that for all 120588

119895gt 0 119895 isin 1 2 and all 120582 isin Γ

1199020

100381610038161003816100381610038161003816

119879 120582(119865) (120588

11199101 12058821199102) minus 119879(119901)

119902(119865) (120588

11199101 12058821199102)

100381610038161003816100381610038161003816

1199011015840

le

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894120588119895(11986012

119895119908 119910119895)

sim

times[120595 (120582 119908) minus 120595 (minus119894 119902 119908)] 119889119891 (119908)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1199011015840

le (int

1198621015840

119886119887[0119879]

[

10038161003816100381610038161003816120595 (120582 119908)

10038161003816100381610038161003816+

10038161003816100381610038161003816120595 (minus119894 119902 119908)

10038161003816100381610038161003816] 11988910038161003816100381610038161198911003816100381610038161003816(119908))

1199011015840

le (2int

1198621015840

119886119887[0119879]

119896 (1199020 119908) 119889

10038161003816100381610038161198911003816100381610038161003816(119908))

1199011015840

lt +infin

(46)

Hence by the dominated convergence theorem we see thatfor each 119901 isin (1 2] and each 120588

1gt 0 and 120588

2gt 0

lim120582rarrminus119894 119902

int

1198622

119886119887[0119879]

100381610038161003816100381610038161003816

119879 120582(119865) (120588

11199101 12058821199102)

minus119879(119901)

119902(119865) (120588

11199101 12058821199102)

100381610038161003816100381610038161003816

1199011015840

119889 (120583 times 120583) (1199101 1199102)

= lim120582rarrminus119894 119902

int

1198622

119886119887[0119879]

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 120588119895119910119895)

sim

times 120595(120582 119908) 119889119891 (119908)

minus int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 120588119895119910119895)

sim

times120595(minus119894 119902 119908) 119889119891 (119908)

10038161003816100381610038161003816100381610038161003816100381610038161003816

1199011015840

times 119889 (120583 times 120583) (1199101 1199102)

= int

1198622

119886119887[0119879]

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 120588119895119910119895)

sim

times lim120582rarrminus119894 119902

[120595 (120582 119908)

minus120595 (minus119894 119902 119908)] 119889119891 (119908)

10038161003816100381610038161003816100381610038161003816100381610038161003816

1199011015840

times 119889 (120583 times 120583) (1199101 1199102)

= 0

(47)

which concludes the proof of Theorem 10

Remark 11 (1) In view of Theorems 9 and 10 we see thatfor each 119901 isin [1 2] the 119871

119901analytic GFFT of 119865 119879(119901)

119902(119865) is

given by the right hand side of (40) for 1199020 1199021 1199022 and 119865 as

in Theorem 9 and for s-ae (1199101 1199102) isin 1198622

119886119887[0 119879]

119879(119901)

119902(119865) (119910

1 1199102) = 119864

anf 119902119909[119865 (1199101+ 1199091 1199102+ 1199092)] 119901 isin [1 2]

(48)

In particular using this fact and (29) we have that for all 119901 isin[1 2]

119879(119901)

119902(119865) (0 0) = 119864

anf 119902119909[119865 (1199091 1199092)] (49)

(2) For nonzero real numbers 1199021and 119902

2with |119902

119895| gt 119902

0

119895 isin 1 2 define a set function 119891 119860119902B(1198621015840

119886119887[0 119879]) rarr C by

119891

119860

119902(119861) = int

119861

120595 (minus119894 119902 119908) 119889119891 (119908) 119861 isinB (1198621015840

119886119887[0 119879])

(50)

where 119891 and 119865 are related by (30) and B(1198621015840119886119887[0 119879]) is the

Borel 120590-algebra of 1198621015840119886119887[0 119879] Then it is obvious that 119891 119860

119902

belongs to M(1198621015840119886119887[0 119879]) and for all 119901 isin [1 2] 119879(119901)

119902(119865) can

be expressed as

119879(119901)

119902(119865) (119910

1 1199102) = int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119910119895)

sim

119889119891

119860

119902(119908)

(51)

for s-ae (1199101 1199102) isin 119862

2

119886119887[0 119879] Hence 119879(119901)

119902(119865) belongs to

F 11988611988711986011198602

for all 119901 isin [1 2]

4 Relationships between the GFFT and theFunction Space Integral of Functionals inF11988611988711986011198602

In this section we establish a relationship between the GFFTand the function space integral of functionals in the Fresneltype classF119886119887

11986011198602

8 Journal of Function Spaces and Applications

Throughout this section for convenience we use thefollowing notation for given 120582 isin C

+and 119899 = 1 2 let

119866119899(120582 119909)

= exp[1 minus 1205822

]

119899

sum

119896=1

[(119890119896 119909)sim

]

2

+ (12058212

minus 1)

119899

sum

119896=1

(119890119896 119886)1198621015840

119886119887

(119890119896 119909)sim

(52)

where 119890119899infin

119899=1is a complete orthonormal set in (1198621015840

119886119887[0 119879]

sdot 119887)To obtain our main results Theorems 14 and 17 below

we state a fundamental integration formula for the functionspace 119862

119886119887[0 119879]

Let 1198901 119890

119899 be an orthonormal set in (1198621015840

119886119887[0 119879] sdot

119887)

let 119896 R119899 rarr C be a Lebesgue measurable function and let119870 119862119886119887[0 119879] rarr C be given by

119870 (119909) = 119896 ((1198901 119909)sim

(119890119899 119909)sim

) (53)

Then

119864 [119870] = int

119862119886119887[0119879]

119896 ((1198901 119909)sim

(119890119899 119909)sim

) 119889120583 (119909)

= (2120587)minus1198992

int

R119899119896 (1199061 119906

119899)

times exp

minus

119899

sum

119895=1

[119906119895minus (119890119895 119886)119887

]

2

2

1198891199061 119889119906

119899

(54)

in the sense that if either side of (54) exists both sides existand equality holds

We also need the following lemma to obtain our maintheorem in this section

Lemma 12 Let 1198901 119890

119899 be an orthonormal subset of

(1198621015840

119886119887[0 119879] sdot

119887) and let 119908 be an element of 1198621015840

119886119887[0 119879] Then

for each 120582 isin C+ the function space integral

119864119909[119866119899(120582 119909) exp 119894(119908 119909)sim] (55)

exists and is given by the formula

119864119909[119866119899(120582 119909) exp 119894(119908 119909)sim]

= 120582minus1198992 exp

[

120582 minus 1

2120582

]

119899

sum

119896=1

(119890119896 119908)2

119887minus

1

2

1199082

119887

+ 119894120582minus12

119899

sum

119896=1

(119890119896 119886)119887(119890119896 119908)119887

+ 119894(119890119899+1 119886)119887[1199082

119887minus

119899

sum

119896=1

(119890119896 119908)2

119887]

12

(56)

where 119866119899is given by (52) above and

119890119899+1=[

[

1199082

119887minus

119899

sum

119895=1

(119890119895 119908)

2

119887

]

]

minus12

119908 minus

119899

sum

119895=1

(119890119895 119908)119887

119890119895

(57)

Proof (Outline) Using the Gram-Schmidt process for any119908 isin 119862

1015840

119886119887[0 119879] we can write 119908 = sum

119899+1

119896=1119888119896119890119896 where

1198901 119890

119899 119890119899+1 is an orthonormal set in (1198621015840

119886119887[0 119879] sdot

119887)

and

119888119896=

(119890119896 119908)119887 119896 = 1 119899

[1199082

119887minus

119899

sum

119895=1

(119890119895 119908)

2

119887

]

12

119896 = 119899 + 1

(58)

Then using (52) (54) the Fubini theorem and (14) it followsthat (56) holds for all 120582 isin C

+

The following remark will be very useful in the proof ofour main theorem in this section

Remark 13 Let 1199020be a positive real number and let Γ

1199020

begiven by (35) For real numbers 119902

1and 1199022with |119902

119895| gt 1199020 119895 isin

1 2 let 120582119899infin

119899=1= (1205821119899 1205822119899)infin

119899=1be a sequence in C2

+such

that

120582119899= (1205821119899 1205822119899) 997888rarr minus119894 119902 = (minus119894119902

1 minus1198941199022) (59)

Let 120582119895119899= 120572119895119899+ 119894120573119895119899

for 119895 isin 1 2 and 119899 isin N Then for119895 isin 1 2 Re(120582

119895119899) = 120572119895119899gt 0 and

120582minus1

119895119899= (120572119895119899+ 119894120573119895119899)

minus1

=

120572119895119899minus 119894120573119895119899

1205722

119895119899+ 1205732

119895119899

(60)

for each 119899 isin N Since |Im ((minus119894119902119895)minus12

)| = 1radic2|119902119895| lt 1radic2119902

0

for 119895 isin 1 2 there exists a sufficiently large 119871 isin N such thatfor any 119899 ge 119871 120582

1119899and 120582

2119899are in Int(Γ

1199020

) and

120575 (1199021 1199022) equiv sup ( 1003816100381610038161003816

1003816Im (120582minus12

1119899)

10038161003816100381610038161003816 119899 ge 119871

cup

10038161003816100381610038161003816Im (120582minus12

2119899)

10038161003816100381610038161003816 119899 ge 119871

cup

100381610038161003816100381610038161003816

Im ((minus1198941199021)minus12

)

100381610038161003816100381610038161003816

100381610038161003816100381610038161003816

Im ((minus1198941199022)minus12

)

100381610038161003816100381610038161003816

)

lt

1

radic21199020

(61)

Thus there exists a positive real number 120576 gt 1 such that120575(1199021 1199022) lt 1(120576radic2119902

0)

Let 119890119899infin

119899=1be a complete orthonormal set in (1198621015840

119886119887[0 119879]

sdot 119887) Using Parsevalrsquos identity it follows that

(1198921 1198922)119887=

infin

sum

119899=1

(119890119899 1198921)119887(119890119899 1198922)119887

(62)

Journal of Function Spaces and Applications 9

for all 1198921 1198922isin 1198621015840

119886119887[0 119879] In addition for each 119892 isin 1198621015840

119886119887[0 119879]

10038171003817100381710038171198921003817100381710038171003817

2

119887minus

119899

sum

119896=1

(119890119896 119892)2

119887=

infin

sum

119896=119899+1

(119890119896 119892)2

119887ge 0 (63)

for every 119899 isin NSince

(119892 119886)119887=

infin

sum

119899=1

(119890119899 119892)119887(119890119899 119886)119887

(64)

and for 120576 gt 1

minus12057610038171003817100381710038171198921003817100381710038171003817119887119886119887lt minus10038171003817100381710038171198921003817100381710038171003817119887119886119887le (119892 119886)

119887

le10038171003817100381710038171198921003817100381710038171003817119887119886119887lt 12057610038171003817100381710038171198921003817100381710038171003817119887119886119887

(65)

there exists a sufficiently large119870119895isin N such that for any 119899 ge 119870

119895

1003816100381610038161003816100381610038161003816100381610038161003816

119899

sum

119896=1

(119890119896 11986012

119895119908)119887

(119890119896 119886)119887

1003816100381610038161003816100381610038161003816100381610038161003816

lt 120576

1003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817119887119886119887

(66)

for 119895 isin 1 2Using these and a long and tedious calculation we can

show that for every 119899 ge max119871 1198701 1198702

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

exp

2

sum

119895=1

([

120582119895119899minus 1

2120582119895119899

]

119899

sum

119896=1

(119890119896 11986012

119895119908)

2

119887

minus

1

2

1003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817

2

119887

+ 119894120582minus12

119895119899

119899

sum

119896=1

(119890119896 11986012

119895119908)119887

(119890119896 119886)119887+ 119894(119890119899+1 119886)119887

times [

1003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817

2

119887

minus

119899

sum

119896=1

(119890119896 11986012

119895119908)

2

119887

]

12

)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

lt 119896 (1199020 119908)

(67)

where 119896(1199020 119908) is given by (36)

In our next theorem for119865 isin F11988611988711986011198602

we express theGFFTof 119865 as the limit of a sequence of function space integrals on1198622

119886119887[0 119879]

Theorem 14 Let 1199020and 119865 be as in Theorem 10 Let 119890

119899infin

119899=1

be a complete orthonormal set in (1198621015840119886119887[0 119879] sdot

119887) and let

(1205821119899 1205822119899)infin

119899=1be a sequence in C2

+such that 120582

119895119899rarr minus119894119902

119895

where 119902119895is a real number with |119902

119895| gt 1199020 119895 isin 1 2 Then for

119901 isin [1 2] and for s-ae (1199101 1199102) isin 1198622

119886119887[0 119879]

119879(119901)

119902(119865) (119910

1 1199102)

= lim119899rarrinfin

1205821198992

11198991205821198992

2119899

times119864119909[119866119899(1205821119899 1199091) 119866119899(1205822119899 1199092) 119865 (119910

1+ 1199091 1199102+ 1199092)]

(68)

where 119866119899is given by (52)

Proof ByTheorems9 and 10we know that for each119901 isin [1 2]the 119871119901analytic GFFT of 119865 119879(119901)

119902(119865) exists and is given by the

right hand side of (40) Thus it suffices to show that

119879(1)

119902(119865) (119910

1 1199102) = 119864

anf 119902119909[119865 (1199101+ 1199091 1199102+ 1199092)]

= lim119899rarrinfin

1205821198992

11198991205821198992

2119899

times 119864119909[119866119899(1205821119899 1199091) 119866119899(1205822119899 1199092)

times 119865 (1199101+ 1199091 1199102+ 1199092)] sdot

(69)

Using (30) the Fubini theorem and (56) with 120582 and 119908replaced with 120582

119895119899and 11986012

119895119908 119895 isin 1 2 respectively we see

that

1205821198992

11198991205821198992

2119899119864119909[119866119899(1205821119899 1199091) 119866119899(1205822119899 1199092) 119865 (119910

1+ 1199091 1199102+ 1199092)]

= 1205821198992

11198991205821198992

2119899int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119910119895)

sim

times(

2

prod

119895=1

119864119909119895

[119866119899(120582minus12

119895119899 119909119895)

times exp 119894(11986012119895119908 119909119895)

sim

])119889119891 (119908)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

(119894(11986012

119895119908 119910119895)

sim

+ [

120582119895119899minus 1

2120582119895119899

]

119899

sum

119896=1

(119890119896 11986012

119895119908)

2

119887

minus

1

2

1003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817

2

119887

+ 119894120582minus12

119895119899

119899

sum

119896=1

(119890119896 119886)119887(119890119896 11986012

119895119908)119887

+ 119894(119890119899+1 119886)119887[

1003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817

2

119887

minus

119899

sum

119896=1

(119890119896 11986012

119895119908)

2

119887

]

12

)

119889119891 (119908)

(70)

But by Remark 13 we see that the last expression of (70) isdominated by (39) on the region Γ

1199020

given by (35) for allbut a finite number of values of 119899 Next using the dominatedconvergence theorem Parsevalrsquos relation and (40) we obtainthe desired result

Corollary 15 Let 1199020 119865 119890

119899infin

119899=1 (1205821119899 1205822119899)infin

119899=1and (119902

1 1199022)

be as in Theorem 14 Then

119864

anf119902

119909[119865 (1199091 1199092)]

= lim119899rarrinfin

1205821198992

11198991205821198992

2119899

times 119864119909[119866119899(1205821119899 1199091) 119866119899(1205822119899 1199092) 119865 (119909

1 1199092)]

(71)

where 119866119899is given by (52)

10 Journal of Function Spaces and Applications

Corollary 16 Let 1199020 119865 and 119890

119899infin

119899=1be as in Theorem 14 and

let Γ1199020

be given by (35) Let 120582 = (1205821 1205822) isin Int (Γ

1199020

) and(1205821119899 1205822119899)infin

119899=1be a sequence in C2

+such that 120582

119895119899rarr 120582

119895

119895 isin 1 2 Then

119864

an

119909[119865 (1199091 1199092)] = lim119899rarrinfin

1205821198992

11198991205821198992

2119899

times119864119909[119866119899(1205821119899 1199091) 119866119899(1205822119899 1199092) 119865(1199091 1199092)]

(72)

where 119866119899is given by (52)

Our another result namely a change of scale formula forfunction space integrals now follows fromCorollary 16 above

Theorem 17 Let 119865 isin F11988611988711986011198602

and let 119890119899infin

119899=1be a complete

orthonormal set in (1198621015840119886119887[0 119879] sdot

119887) Then for any 120588

1gt 0 and

1205882gt 0

119864119909[119865 (12058811199091 12058821199092)]

= lim119899rarrinfin

120588minus119899

1120588minus119899

2

times 119864119909[119866119899(120588minus2

1 1199091)119866119899(120588minus2

2 1199092) 119865 (119909

1 1199092)]

(73)

where 119866119899is given by (52)

Proof Simply choose 120582119895= 120588minus2

119895for 119895 isin 1 2 and 120582

119895119899= 120588minus2

119895

for 119895 isin 1 2 and 119899 isin N in (72)

Remark 18 Of course if we choose 119886(119905) equiv 0 119887(119905) = 1199051198601= 119868 (identity operator) and 119860

2= 0 (zero operator) then

the function space 119862119886119887[0 119879] reduces to the classical Wiener

space 1198620[0 119879] and the generalized Fresnel type class F 119886119887

11986011198602

reduces to the Fresnel class F(1198620[0 119879]) It is known that

F(1198620[0 119879]) forms a Banach algebra over the complex field

In this case we have the relationships between the analyticFeynman integral and theWiener integral on classicalWienerspace as discussed in [14 15]

In recent paper [19] Yoo et al have studied a change ofscale formula for function space integral of the functionalsin the Banach algebra S(1198712

119886119887[0 119879]) the Banach algebra

S(1198712119886119887[0 119879]) is introduced in [12]

5 Functionals in F11988611988711986011198602

In this section we prove a theorem ensuring that variousfunctionals are inF119886119887

11986011198602

Theorem 19 Let 1198601and 119860

2be bounded nonnegative and

self-adjoint operators on 1198621015840119886119887[0 119879] Let (119884Y 120574) be a 120590-finite

measure space and let 120593119897 119884 rarr 119862

1015840

119886119887[0 119879] beYndashB(1198621015840

119886119887[0 119879])

measurable for 119897 isin 1 119889 Let 120579 119884 times R119889 rarr C be given by120579(120578 sdot) = ]

120578(sdot) where ]

120578isin M(R119889) for every 120578 isin 119884 and where

the family ]120578 120578 isin 119884 satisfies

(i) ]120578(119864) is a Y-measurable function of 120578 for every 119864 isin

B(R119889)(ii) ]

120578 isin 1198711

(119884Y 120574)

Under these hypothesis the functional 119865 1198622119886119887[0 119879] rarr C

given by

119865 (1199091 1199092) = int

119884

120579(120578

2

sum

119895=1

(11986012

1198951205931(120578) 119909

119895)

sim

2

sum

119895=1

(11986012

119895120593119889(120578) 119909

119895)

sim

)119889120574 (120578)

(74)

belongs toF11988611988711986011198602

and satisfies the inequality

119865 le int

119884

10038171003817100381710038171003817]120578

10038171003817100381710038171003817119889120574 (120578) (75)

Proof Using the techniques similar to those used in [20] wecan show that ]

120578 is measurable as a function of 120578 that 120579 is

Y-measurable and that the integrand in (74) is a measurablefunction of 120578 for every (119909

1 1199092) isin 1198622

119886119887[0 119879]

We define a measure 120591 onY timesB(R119889) by

120591 (119864) = int

119884

]120578(119864(120578)

) 119889120574 (120578) for 119864 isin Y timesB (R119889) (76)

Then by the first assertion of Theorem 31 in [17] 120591 satisfies120591 le int

119884

]120578119889120574(120578) Now let Φ 119884 times R119889 rarr 119862

1015840

119886119887[0 119879] be

defined by Φ(120578 V1 V

119889) = sum

119889

119897=1V119897120593119897(120578) Then Φ is Y times

B(R119889) ndashB(1198621015840119886119887[0 119879])-measurable on the hypothesis for 120593

119897

119897 isin 1 119889 Let 120590 = 120591 ∘Φminus1 Then clearly 120590 isinM(1198621015840119886119887[0 119879])

and satisfies 120590 le 120591From the change of variables theorem and the second

assertion of Theorem 31 in [17] it follows that for ae(1199091 1199092) isin 1198622

119886119887[0 119879] and for every 120588

1gt 0 and 120588

2gt 0

119865 (12058811199091 12058821199092)

= int

119884

]120578(

2

sum

119895=1

(11986012

1198951205931(120578) 120588

119895119909119895)

sim

2

sum

119895=1

(11986012

119895120593119889(120578) 120588

119895119909119895)

sim

)119889120574 (120578)

= int

119884

[

[

int

R119889exp

119894

119889

sum

119897=1

V119897

[

[

2

sum

119895=1

(11986012

119895120593119897(120578)

120588119895119909119895)

sim

]

]

119889]120578

times (V1 V

119889)]

]

119889120574 (120578)

= int

119884timesR119889exp

119894

119889

sum

119897=1

V119897

[

[

2

sum

119895=1

(11986012

119895120593119897(120578) 120588

119895119909119895)

sim

]

]

119889120591

times (120578 V1 V

119889)

Journal of Function Spaces and Applications 11

= int

119884timesR119889exp

2

sum

119895=1

119894(11986012

119895Φ(120578 V

1 V

119889) 120588119895119909119895)

sim

119889120591

times (120578 V1 V

119889)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 120588119895119909119895)

sim

119889120591 ∘ Φminus1

(119908)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 120588119895119909119895)

sim

119889120590 (119908)

(77)

Thus the functional 119865 given by (74) belongs to F11988611988711986011198602

andsatisfies the inequality

119865 = 120590 le 120591 le int

119884

10038171003817100381710038171003817]120578

10038171003817100381710038171003817119889120574 (120578) (78)

As mentioned in (2) of Remark 6 F 11988611988711986011198602

is a Banachalgebra if Ran(119860

1+ 1198602) is dense in 1198621015840

119886119887[0 119879] In this case

many analytic functionals of 119865 can be formed The followingcorollary is relevant to Feynman integration theories andquantum mechanics where exponential functions play animportant role

Corollary 20 Let 1198601and 119860

2be bounded nonnegative and

self-adjoint operators on 1198621015840119886119887[0 119879] such that Ran(119860

1+ 1198602)

is dense in 1198621015840119886119887[0 119879] Let 119865 be given by (74) with 120579 as in

Theorem 19 and let 120573 C rarr C be an entire function Then(120573 ∘ 119865)(119909

1 1199092) is in F119886119887

11986011198602

In particular exp119865(1199091 1199092) isin

F11988611988711986011198602

Corollary 21 Let 1198601and 119860

2be bounded nonnegative and

self-adjoint operators on 1198621015840119886119887[0 119879] and let 119892

1 119892

119889 be a

finite subset of 1198621015840119886119887[0 119879] Given 120573 = ] where ] isin M(R119889)

define 119865 1198622119886119887[0 119879] rarr C by

119865 (1199091 1199092) = 120573(

2

sum

119895=1

(11986012

1198951198921 119909119895)

sim

2

sum

119895=1

(11986012

119895119892119889 119909119895)

sim

)

(79)

Then 119865 is an element ofF11988611988711986011198602

Proof Let (119884Y 120574) be a probability space and for 119897 isin1 119889 let 120593

119897(120578) equiv 119892

119897 Take 120579(120578 sdot) = 120573(sdot) = ](sdot) Then for

all 1205881gt 0 and 120588

2gt 0 and for ae (119909

1 1199092) isin 1198622

119886119887[0 119879]

int

119884

120579(120578

2

sum

119895=1

(11986012

1198951205931(120578) 120588

119895119909119895)

sim

2

sum

119895=1

(11986012

119895120593119889(120578) 120588

119895119909119895)

sim

)119889120574 (120578)

= int

119884

120573(

2

sum

119895=1

(11986012

1198951198921 120588119895119909119895)

sim

2

sum

119895=1

(11986012

119895119892119889 120588119895119909119895)

sim

)119889120574 (120578)

= 120573(

2

sum

119895=1

(11986012

1198951198921 120588119895119909119895)

sim

2

sum

119895=1

(11986012

119895119892119889 120588119895119909119895)

sim

)

= 119865 (12058811199091 12058821199092)

(80)

Hence 119865 isin F11988611988711986011198602

Remark 22 Let 119889 = 1 and let (119884Y 120574) = ([0 119879]B([0 119879])119898119871) in Theorem 19 where 119898

119871denotes the Lebesgue measure

on [0 119879] ThenTheorems 46 47 and 49 in [18] follow fromthe results in this section by letting119860

1be the identity operator

and letting 1198602equiv 0 on 1198621015840

119886119887[0 119879] The function 120579 studied in

[18] (and mentioned in Remark 2 above) is interpreted as thepotential energy in quantum mechanics

Acknowledgments

The authors would like to express their gratitude to the refer-ees for their valuable comments and suggestions which haveimproved the original paper This research was supported bythe Basic Science Research Program through the NationalResearch Foundation of Korea (NRF) funded by theMinistryof Education (2011-0014552)

References

[1] G Kallianpur and C Bromley ldquoGeneralized Feynman integralsusing analytic continuation in several complex variablesrdquo inStochastic Analysis and Applications M A Pinsky Ed vol 7pp 217ndash267 Marcel Dekker New York NY USA 1984

[2] G Kallianpur D Kannan and R L Karandikar ldquoAnalytic andsequential Feynman integrals on abstract Wiener and Hilbertspaces and a Cameron-Martin formulardquo Annales de lrsquoInstitutHenri Poincare vol 21 no 4 pp 323ndash361 1985

[3] G W Johnson and M L Lapidus The Feynman Integral andFeynmanrsquos Operational Calculus Clarendon Press Oxford UK2000

[4] J Yeh ldquoSingularity of Gaussian measures on function spacesinduced by Brownian motion processes with non-stationaryincrementsrdquo Illinois Journal of Mathematics vol 15 pp 37ndash461971

[5] J Yeh Stochastic Processes and the Wiener Integral MarcelDekker New York NY USA 1973

[6] S J Chang J G Choi and D Skoug ldquoIntegration by partsformulas involving generalized Fourier-Feynman transformson function spacerdquo Transactions of the American MathematicalSociety vol 355 no 7 pp 2925ndash2948 2003

[7] S J Chang J G Choi and D Skoug ldquoParts formulas involvingconditional generalized Feynman integrals and conditionalgeneralized Fourier-Feynman transforms on function spacerdquo

12 Journal of Function Spaces and Applications

Integral Transforms and Special Functions vol 15 no 6 pp 491ndash512 2004

[8] S J Chang J G Choi and D Skoug ldquoEvaluation formulas forconditional function space integralsmdashIrdquo Stochastic Analysis andApplications vol 25 no 1 pp 141ndash168 2007

[9] S J Chang J G Choi and D Skoug ldquoGeneralized Fourier-Feynman transforms convolution products and first variationson function spacerdquoTheRockyMountain Journal ofMathematicsvol 40 no 3 pp 761ndash788 2010

[10] S J Chang and D M Chung ldquoConditional function spaceintegrals with applicationsrdquo The Rocky Mountain Journal ofMathematics vol 26 no 1 pp 37ndash62 1996

[11] S J Chang H S Chung and D Skoug ldquoIntegral transformsof functionals in 119871

2(119862119886119887[0 119879])rdquoThe Journal of Fourier Analysis

and Applications vol 15 no 4 pp 441ndash462 2009[12] S J Chang and D Skoug ldquoGeneralized Fourier-Feynman

transforms and a first variation on function spacerdquo IntegralTransforms and Special Functions vol 14 pp 375ndash393 2003

[13] J G Choi and S J Chang ldquoGeneralized Fourier-Feynmantransform and sequential transforms on function spacerdquo Jour-nal of the Korean Mathematical Society vol 49 pp 1065ndash10822012

[14] R H Cameron and D A Storvick ldquoRelationships between theWiener integral and the analytic Feynman integralrdquo Rendicontidel Circolo Matematico di Palermo no 17 supplement pp 117ndash133 1987

[15] RHCameron andDA Storvick ldquoChange of scale formulas forWiener integralrdquo Rendiconti del Circolo Matematico di Palermono 17 pp 105ndash115 1987

[16] G W Johnson ldquoThe equivalence of two approaches to theFeynman integralrdquo Journal of Mathematical Physics vol 23 pp2090ndash2096 1982

[17] G W Johnson and D L Skoug ldquoNotes on the FeynmanintegralmdashIII the Schroedinger equationrdquo Pacific Journal ofMathematics vol 105 pp 321ndash358 1983

[18] S J Chang J G Choi and S D Lee ldquoA Fresnel type class onfunction spacerdquo Journal of the Korean Society of MathematicalEducation Series B vol 16 no 1 pp 107ndash119 2009

[19] I Yoo B J Kim and B S Kim ldquoA change of scale formulafor a function space integral on 119862

119886119887[0 119879]rdquo Proceedings of the

American Mathematical Society vol 141 no 8 pp 2729ndash27392013

[20] K S Chang G W Johnson and D L Skoug ldquoFunctions inthe Fresnel classrdquo Proceedings of the American MathematicalSociety vol 100 no 2 pp 309ndash318 1987

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 8: Research Article Generalized Analytic Fourier-Feynman ...downloads.hindawi.com/journals/jfs/2013/954098.pdf · Journal of Function Spaces and Applications Volume , Article ID , pages

8 Journal of Function Spaces and Applications

Throughout this section for convenience we use thefollowing notation for given 120582 isin C

+and 119899 = 1 2 let

119866119899(120582 119909)

= exp[1 minus 1205822

]

119899

sum

119896=1

[(119890119896 119909)sim

]

2

+ (12058212

minus 1)

119899

sum

119896=1

(119890119896 119886)1198621015840

119886119887

(119890119896 119909)sim

(52)

where 119890119899infin

119899=1is a complete orthonormal set in (1198621015840

119886119887[0 119879]

sdot 119887)To obtain our main results Theorems 14 and 17 below

we state a fundamental integration formula for the functionspace 119862

119886119887[0 119879]

Let 1198901 119890

119899 be an orthonormal set in (1198621015840

119886119887[0 119879] sdot

119887)

let 119896 R119899 rarr C be a Lebesgue measurable function and let119870 119862119886119887[0 119879] rarr C be given by

119870 (119909) = 119896 ((1198901 119909)sim

(119890119899 119909)sim

) (53)

Then

119864 [119870] = int

119862119886119887[0119879]

119896 ((1198901 119909)sim

(119890119899 119909)sim

) 119889120583 (119909)

= (2120587)minus1198992

int

R119899119896 (1199061 119906

119899)

times exp

minus

119899

sum

119895=1

[119906119895minus (119890119895 119886)119887

]

2

2

1198891199061 119889119906

119899

(54)

in the sense that if either side of (54) exists both sides existand equality holds

We also need the following lemma to obtain our maintheorem in this section

Lemma 12 Let 1198901 119890

119899 be an orthonormal subset of

(1198621015840

119886119887[0 119879] sdot

119887) and let 119908 be an element of 1198621015840

119886119887[0 119879] Then

for each 120582 isin C+ the function space integral

119864119909[119866119899(120582 119909) exp 119894(119908 119909)sim] (55)

exists and is given by the formula

119864119909[119866119899(120582 119909) exp 119894(119908 119909)sim]

= 120582minus1198992 exp

[

120582 minus 1

2120582

]

119899

sum

119896=1

(119890119896 119908)2

119887minus

1

2

1199082

119887

+ 119894120582minus12

119899

sum

119896=1

(119890119896 119886)119887(119890119896 119908)119887

+ 119894(119890119899+1 119886)119887[1199082

119887minus

119899

sum

119896=1

(119890119896 119908)2

119887]

12

(56)

where 119866119899is given by (52) above and

119890119899+1=[

[

1199082

119887minus

119899

sum

119895=1

(119890119895 119908)

2

119887

]

]

minus12

119908 minus

119899

sum

119895=1

(119890119895 119908)119887

119890119895

(57)

Proof (Outline) Using the Gram-Schmidt process for any119908 isin 119862

1015840

119886119887[0 119879] we can write 119908 = sum

119899+1

119896=1119888119896119890119896 where

1198901 119890

119899 119890119899+1 is an orthonormal set in (1198621015840

119886119887[0 119879] sdot

119887)

and

119888119896=

(119890119896 119908)119887 119896 = 1 119899

[1199082

119887minus

119899

sum

119895=1

(119890119895 119908)

2

119887

]

12

119896 = 119899 + 1

(58)

Then using (52) (54) the Fubini theorem and (14) it followsthat (56) holds for all 120582 isin C

+

The following remark will be very useful in the proof ofour main theorem in this section

Remark 13 Let 1199020be a positive real number and let Γ

1199020

begiven by (35) For real numbers 119902

1and 1199022with |119902

119895| gt 1199020 119895 isin

1 2 let 120582119899infin

119899=1= (1205821119899 1205822119899)infin

119899=1be a sequence in C2

+such

that

120582119899= (1205821119899 1205822119899) 997888rarr minus119894 119902 = (minus119894119902

1 minus1198941199022) (59)

Let 120582119895119899= 120572119895119899+ 119894120573119895119899

for 119895 isin 1 2 and 119899 isin N Then for119895 isin 1 2 Re(120582

119895119899) = 120572119895119899gt 0 and

120582minus1

119895119899= (120572119895119899+ 119894120573119895119899)

minus1

=

120572119895119899minus 119894120573119895119899

1205722

119895119899+ 1205732

119895119899

(60)

for each 119899 isin N Since |Im ((minus119894119902119895)minus12

)| = 1radic2|119902119895| lt 1radic2119902

0

for 119895 isin 1 2 there exists a sufficiently large 119871 isin N such thatfor any 119899 ge 119871 120582

1119899and 120582

2119899are in Int(Γ

1199020

) and

120575 (1199021 1199022) equiv sup ( 1003816100381610038161003816

1003816Im (120582minus12

1119899)

10038161003816100381610038161003816 119899 ge 119871

cup

10038161003816100381610038161003816Im (120582minus12

2119899)

10038161003816100381610038161003816 119899 ge 119871

cup

100381610038161003816100381610038161003816

Im ((minus1198941199021)minus12

)

100381610038161003816100381610038161003816

100381610038161003816100381610038161003816

Im ((minus1198941199022)minus12

)

100381610038161003816100381610038161003816

)

lt

1

radic21199020

(61)

Thus there exists a positive real number 120576 gt 1 such that120575(1199021 1199022) lt 1(120576radic2119902

0)

Let 119890119899infin

119899=1be a complete orthonormal set in (1198621015840

119886119887[0 119879]

sdot 119887) Using Parsevalrsquos identity it follows that

(1198921 1198922)119887=

infin

sum

119899=1

(119890119899 1198921)119887(119890119899 1198922)119887

(62)

Journal of Function Spaces and Applications 9

for all 1198921 1198922isin 1198621015840

119886119887[0 119879] In addition for each 119892 isin 1198621015840

119886119887[0 119879]

10038171003817100381710038171198921003817100381710038171003817

2

119887minus

119899

sum

119896=1

(119890119896 119892)2

119887=

infin

sum

119896=119899+1

(119890119896 119892)2

119887ge 0 (63)

for every 119899 isin NSince

(119892 119886)119887=

infin

sum

119899=1

(119890119899 119892)119887(119890119899 119886)119887

(64)

and for 120576 gt 1

minus12057610038171003817100381710038171198921003817100381710038171003817119887119886119887lt minus10038171003817100381710038171198921003817100381710038171003817119887119886119887le (119892 119886)

119887

le10038171003817100381710038171198921003817100381710038171003817119887119886119887lt 12057610038171003817100381710038171198921003817100381710038171003817119887119886119887

(65)

there exists a sufficiently large119870119895isin N such that for any 119899 ge 119870

119895

1003816100381610038161003816100381610038161003816100381610038161003816

119899

sum

119896=1

(119890119896 11986012

119895119908)119887

(119890119896 119886)119887

1003816100381610038161003816100381610038161003816100381610038161003816

lt 120576

1003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817119887119886119887

(66)

for 119895 isin 1 2Using these and a long and tedious calculation we can

show that for every 119899 ge max119871 1198701 1198702

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

exp

2

sum

119895=1

([

120582119895119899minus 1

2120582119895119899

]

119899

sum

119896=1

(119890119896 11986012

119895119908)

2

119887

minus

1

2

1003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817

2

119887

+ 119894120582minus12

119895119899

119899

sum

119896=1

(119890119896 11986012

119895119908)119887

(119890119896 119886)119887+ 119894(119890119899+1 119886)119887

times [

1003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817

2

119887

minus

119899

sum

119896=1

(119890119896 11986012

119895119908)

2

119887

]

12

)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

lt 119896 (1199020 119908)

(67)

where 119896(1199020 119908) is given by (36)

In our next theorem for119865 isin F11988611988711986011198602

we express theGFFTof 119865 as the limit of a sequence of function space integrals on1198622

119886119887[0 119879]

Theorem 14 Let 1199020and 119865 be as in Theorem 10 Let 119890

119899infin

119899=1

be a complete orthonormal set in (1198621015840119886119887[0 119879] sdot

119887) and let

(1205821119899 1205822119899)infin

119899=1be a sequence in C2

+such that 120582

119895119899rarr minus119894119902

119895

where 119902119895is a real number with |119902

119895| gt 1199020 119895 isin 1 2 Then for

119901 isin [1 2] and for s-ae (1199101 1199102) isin 1198622

119886119887[0 119879]

119879(119901)

119902(119865) (119910

1 1199102)

= lim119899rarrinfin

1205821198992

11198991205821198992

2119899

times119864119909[119866119899(1205821119899 1199091) 119866119899(1205822119899 1199092) 119865 (119910

1+ 1199091 1199102+ 1199092)]

(68)

where 119866119899is given by (52)

Proof ByTheorems9 and 10we know that for each119901 isin [1 2]the 119871119901analytic GFFT of 119865 119879(119901)

119902(119865) exists and is given by the

right hand side of (40) Thus it suffices to show that

119879(1)

119902(119865) (119910

1 1199102) = 119864

anf 119902119909[119865 (1199101+ 1199091 1199102+ 1199092)]

= lim119899rarrinfin

1205821198992

11198991205821198992

2119899

times 119864119909[119866119899(1205821119899 1199091) 119866119899(1205822119899 1199092)

times 119865 (1199101+ 1199091 1199102+ 1199092)] sdot

(69)

Using (30) the Fubini theorem and (56) with 120582 and 119908replaced with 120582

119895119899and 11986012

119895119908 119895 isin 1 2 respectively we see

that

1205821198992

11198991205821198992

2119899119864119909[119866119899(1205821119899 1199091) 119866119899(1205822119899 1199092) 119865 (119910

1+ 1199091 1199102+ 1199092)]

= 1205821198992

11198991205821198992

2119899int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119910119895)

sim

times(

2

prod

119895=1

119864119909119895

[119866119899(120582minus12

119895119899 119909119895)

times exp 119894(11986012119895119908 119909119895)

sim

])119889119891 (119908)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

(119894(11986012

119895119908 119910119895)

sim

+ [

120582119895119899minus 1

2120582119895119899

]

119899

sum

119896=1

(119890119896 11986012

119895119908)

2

119887

minus

1

2

1003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817

2

119887

+ 119894120582minus12

119895119899

119899

sum

119896=1

(119890119896 119886)119887(119890119896 11986012

119895119908)119887

+ 119894(119890119899+1 119886)119887[

1003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817

2

119887

minus

119899

sum

119896=1

(119890119896 11986012

119895119908)

2

119887

]

12

)

119889119891 (119908)

(70)

But by Remark 13 we see that the last expression of (70) isdominated by (39) on the region Γ

1199020

given by (35) for allbut a finite number of values of 119899 Next using the dominatedconvergence theorem Parsevalrsquos relation and (40) we obtainthe desired result

Corollary 15 Let 1199020 119865 119890

119899infin

119899=1 (1205821119899 1205822119899)infin

119899=1and (119902

1 1199022)

be as in Theorem 14 Then

119864

anf119902

119909[119865 (1199091 1199092)]

= lim119899rarrinfin

1205821198992

11198991205821198992

2119899

times 119864119909[119866119899(1205821119899 1199091) 119866119899(1205822119899 1199092) 119865 (119909

1 1199092)]

(71)

where 119866119899is given by (52)

10 Journal of Function Spaces and Applications

Corollary 16 Let 1199020 119865 and 119890

119899infin

119899=1be as in Theorem 14 and

let Γ1199020

be given by (35) Let 120582 = (1205821 1205822) isin Int (Γ

1199020

) and(1205821119899 1205822119899)infin

119899=1be a sequence in C2

+such that 120582

119895119899rarr 120582

119895

119895 isin 1 2 Then

119864

an

119909[119865 (1199091 1199092)] = lim119899rarrinfin

1205821198992

11198991205821198992

2119899

times119864119909[119866119899(1205821119899 1199091) 119866119899(1205822119899 1199092) 119865(1199091 1199092)]

(72)

where 119866119899is given by (52)

Our another result namely a change of scale formula forfunction space integrals now follows fromCorollary 16 above

Theorem 17 Let 119865 isin F11988611988711986011198602

and let 119890119899infin

119899=1be a complete

orthonormal set in (1198621015840119886119887[0 119879] sdot

119887) Then for any 120588

1gt 0 and

1205882gt 0

119864119909[119865 (12058811199091 12058821199092)]

= lim119899rarrinfin

120588minus119899

1120588minus119899

2

times 119864119909[119866119899(120588minus2

1 1199091)119866119899(120588minus2

2 1199092) 119865 (119909

1 1199092)]

(73)

where 119866119899is given by (52)

Proof Simply choose 120582119895= 120588minus2

119895for 119895 isin 1 2 and 120582

119895119899= 120588minus2

119895

for 119895 isin 1 2 and 119899 isin N in (72)

Remark 18 Of course if we choose 119886(119905) equiv 0 119887(119905) = 1199051198601= 119868 (identity operator) and 119860

2= 0 (zero operator) then

the function space 119862119886119887[0 119879] reduces to the classical Wiener

space 1198620[0 119879] and the generalized Fresnel type class F 119886119887

11986011198602

reduces to the Fresnel class F(1198620[0 119879]) It is known that

F(1198620[0 119879]) forms a Banach algebra over the complex field

In this case we have the relationships between the analyticFeynman integral and theWiener integral on classicalWienerspace as discussed in [14 15]

In recent paper [19] Yoo et al have studied a change ofscale formula for function space integral of the functionalsin the Banach algebra S(1198712

119886119887[0 119879]) the Banach algebra

S(1198712119886119887[0 119879]) is introduced in [12]

5 Functionals in F11988611988711986011198602

In this section we prove a theorem ensuring that variousfunctionals are inF119886119887

11986011198602

Theorem 19 Let 1198601and 119860

2be bounded nonnegative and

self-adjoint operators on 1198621015840119886119887[0 119879] Let (119884Y 120574) be a 120590-finite

measure space and let 120593119897 119884 rarr 119862

1015840

119886119887[0 119879] beYndashB(1198621015840

119886119887[0 119879])

measurable for 119897 isin 1 119889 Let 120579 119884 times R119889 rarr C be given by120579(120578 sdot) = ]

120578(sdot) where ]

120578isin M(R119889) for every 120578 isin 119884 and where

the family ]120578 120578 isin 119884 satisfies

(i) ]120578(119864) is a Y-measurable function of 120578 for every 119864 isin

B(R119889)(ii) ]

120578 isin 1198711

(119884Y 120574)

Under these hypothesis the functional 119865 1198622119886119887[0 119879] rarr C

given by

119865 (1199091 1199092) = int

119884

120579(120578

2

sum

119895=1

(11986012

1198951205931(120578) 119909

119895)

sim

2

sum

119895=1

(11986012

119895120593119889(120578) 119909

119895)

sim

)119889120574 (120578)

(74)

belongs toF11988611988711986011198602

and satisfies the inequality

119865 le int

119884

10038171003817100381710038171003817]120578

10038171003817100381710038171003817119889120574 (120578) (75)

Proof Using the techniques similar to those used in [20] wecan show that ]

120578 is measurable as a function of 120578 that 120579 is

Y-measurable and that the integrand in (74) is a measurablefunction of 120578 for every (119909

1 1199092) isin 1198622

119886119887[0 119879]

We define a measure 120591 onY timesB(R119889) by

120591 (119864) = int

119884

]120578(119864(120578)

) 119889120574 (120578) for 119864 isin Y timesB (R119889) (76)

Then by the first assertion of Theorem 31 in [17] 120591 satisfies120591 le int

119884

]120578119889120574(120578) Now let Φ 119884 times R119889 rarr 119862

1015840

119886119887[0 119879] be

defined by Φ(120578 V1 V

119889) = sum

119889

119897=1V119897120593119897(120578) Then Φ is Y times

B(R119889) ndashB(1198621015840119886119887[0 119879])-measurable on the hypothesis for 120593

119897

119897 isin 1 119889 Let 120590 = 120591 ∘Φminus1 Then clearly 120590 isinM(1198621015840119886119887[0 119879])

and satisfies 120590 le 120591From the change of variables theorem and the second

assertion of Theorem 31 in [17] it follows that for ae(1199091 1199092) isin 1198622

119886119887[0 119879] and for every 120588

1gt 0 and 120588

2gt 0

119865 (12058811199091 12058821199092)

= int

119884

]120578(

2

sum

119895=1

(11986012

1198951205931(120578) 120588

119895119909119895)

sim

2

sum

119895=1

(11986012

119895120593119889(120578) 120588

119895119909119895)

sim

)119889120574 (120578)

= int

119884

[

[

int

R119889exp

119894

119889

sum

119897=1

V119897

[

[

2

sum

119895=1

(11986012

119895120593119897(120578)

120588119895119909119895)

sim

]

]

119889]120578

times (V1 V

119889)]

]

119889120574 (120578)

= int

119884timesR119889exp

119894

119889

sum

119897=1

V119897

[

[

2

sum

119895=1

(11986012

119895120593119897(120578) 120588

119895119909119895)

sim

]

]

119889120591

times (120578 V1 V

119889)

Journal of Function Spaces and Applications 11

= int

119884timesR119889exp

2

sum

119895=1

119894(11986012

119895Φ(120578 V

1 V

119889) 120588119895119909119895)

sim

119889120591

times (120578 V1 V

119889)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 120588119895119909119895)

sim

119889120591 ∘ Φminus1

(119908)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 120588119895119909119895)

sim

119889120590 (119908)

(77)

Thus the functional 119865 given by (74) belongs to F11988611988711986011198602

andsatisfies the inequality

119865 = 120590 le 120591 le int

119884

10038171003817100381710038171003817]120578

10038171003817100381710038171003817119889120574 (120578) (78)

As mentioned in (2) of Remark 6 F 11988611988711986011198602

is a Banachalgebra if Ran(119860

1+ 1198602) is dense in 1198621015840

119886119887[0 119879] In this case

many analytic functionals of 119865 can be formed The followingcorollary is relevant to Feynman integration theories andquantum mechanics where exponential functions play animportant role

Corollary 20 Let 1198601and 119860

2be bounded nonnegative and

self-adjoint operators on 1198621015840119886119887[0 119879] such that Ran(119860

1+ 1198602)

is dense in 1198621015840119886119887[0 119879] Let 119865 be given by (74) with 120579 as in

Theorem 19 and let 120573 C rarr C be an entire function Then(120573 ∘ 119865)(119909

1 1199092) is in F119886119887

11986011198602

In particular exp119865(1199091 1199092) isin

F11988611988711986011198602

Corollary 21 Let 1198601and 119860

2be bounded nonnegative and

self-adjoint operators on 1198621015840119886119887[0 119879] and let 119892

1 119892

119889 be a

finite subset of 1198621015840119886119887[0 119879] Given 120573 = ] where ] isin M(R119889)

define 119865 1198622119886119887[0 119879] rarr C by

119865 (1199091 1199092) = 120573(

2

sum

119895=1

(11986012

1198951198921 119909119895)

sim

2

sum

119895=1

(11986012

119895119892119889 119909119895)

sim

)

(79)

Then 119865 is an element ofF11988611988711986011198602

Proof Let (119884Y 120574) be a probability space and for 119897 isin1 119889 let 120593

119897(120578) equiv 119892

119897 Take 120579(120578 sdot) = 120573(sdot) = ](sdot) Then for

all 1205881gt 0 and 120588

2gt 0 and for ae (119909

1 1199092) isin 1198622

119886119887[0 119879]

int

119884

120579(120578

2

sum

119895=1

(11986012

1198951205931(120578) 120588

119895119909119895)

sim

2

sum

119895=1

(11986012

119895120593119889(120578) 120588

119895119909119895)

sim

)119889120574 (120578)

= int

119884

120573(

2

sum

119895=1

(11986012

1198951198921 120588119895119909119895)

sim

2

sum

119895=1

(11986012

119895119892119889 120588119895119909119895)

sim

)119889120574 (120578)

= 120573(

2

sum

119895=1

(11986012

1198951198921 120588119895119909119895)

sim

2

sum

119895=1

(11986012

119895119892119889 120588119895119909119895)

sim

)

= 119865 (12058811199091 12058821199092)

(80)

Hence 119865 isin F11988611988711986011198602

Remark 22 Let 119889 = 1 and let (119884Y 120574) = ([0 119879]B([0 119879])119898119871) in Theorem 19 where 119898

119871denotes the Lebesgue measure

on [0 119879] ThenTheorems 46 47 and 49 in [18] follow fromthe results in this section by letting119860

1be the identity operator

and letting 1198602equiv 0 on 1198621015840

119886119887[0 119879] The function 120579 studied in

[18] (and mentioned in Remark 2 above) is interpreted as thepotential energy in quantum mechanics

Acknowledgments

The authors would like to express their gratitude to the refer-ees for their valuable comments and suggestions which haveimproved the original paper This research was supported bythe Basic Science Research Program through the NationalResearch Foundation of Korea (NRF) funded by theMinistryof Education (2011-0014552)

References

[1] G Kallianpur and C Bromley ldquoGeneralized Feynman integralsusing analytic continuation in several complex variablesrdquo inStochastic Analysis and Applications M A Pinsky Ed vol 7pp 217ndash267 Marcel Dekker New York NY USA 1984

[2] G Kallianpur D Kannan and R L Karandikar ldquoAnalytic andsequential Feynman integrals on abstract Wiener and Hilbertspaces and a Cameron-Martin formulardquo Annales de lrsquoInstitutHenri Poincare vol 21 no 4 pp 323ndash361 1985

[3] G W Johnson and M L Lapidus The Feynman Integral andFeynmanrsquos Operational Calculus Clarendon Press Oxford UK2000

[4] J Yeh ldquoSingularity of Gaussian measures on function spacesinduced by Brownian motion processes with non-stationaryincrementsrdquo Illinois Journal of Mathematics vol 15 pp 37ndash461971

[5] J Yeh Stochastic Processes and the Wiener Integral MarcelDekker New York NY USA 1973

[6] S J Chang J G Choi and D Skoug ldquoIntegration by partsformulas involving generalized Fourier-Feynman transformson function spacerdquo Transactions of the American MathematicalSociety vol 355 no 7 pp 2925ndash2948 2003

[7] S J Chang J G Choi and D Skoug ldquoParts formulas involvingconditional generalized Feynman integrals and conditionalgeneralized Fourier-Feynman transforms on function spacerdquo

12 Journal of Function Spaces and Applications

Integral Transforms and Special Functions vol 15 no 6 pp 491ndash512 2004

[8] S J Chang J G Choi and D Skoug ldquoEvaluation formulas forconditional function space integralsmdashIrdquo Stochastic Analysis andApplications vol 25 no 1 pp 141ndash168 2007

[9] S J Chang J G Choi and D Skoug ldquoGeneralized Fourier-Feynman transforms convolution products and first variationson function spacerdquoTheRockyMountain Journal ofMathematicsvol 40 no 3 pp 761ndash788 2010

[10] S J Chang and D M Chung ldquoConditional function spaceintegrals with applicationsrdquo The Rocky Mountain Journal ofMathematics vol 26 no 1 pp 37ndash62 1996

[11] S J Chang H S Chung and D Skoug ldquoIntegral transformsof functionals in 119871

2(119862119886119887[0 119879])rdquoThe Journal of Fourier Analysis

and Applications vol 15 no 4 pp 441ndash462 2009[12] S J Chang and D Skoug ldquoGeneralized Fourier-Feynman

transforms and a first variation on function spacerdquo IntegralTransforms and Special Functions vol 14 pp 375ndash393 2003

[13] J G Choi and S J Chang ldquoGeneralized Fourier-Feynmantransform and sequential transforms on function spacerdquo Jour-nal of the Korean Mathematical Society vol 49 pp 1065ndash10822012

[14] R H Cameron and D A Storvick ldquoRelationships between theWiener integral and the analytic Feynman integralrdquo Rendicontidel Circolo Matematico di Palermo no 17 supplement pp 117ndash133 1987

[15] RHCameron andDA Storvick ldquoChange of scale formulas forWiener integralrdquo Rendiconti del Circolo Matematico di Palermono 17 pp 105ndash115 1987

[16] G W Johnson ldquoThe equivalence of two approaches to theFeynman integralrdquo Journal of Mathematical Physics vol 23 pp2090ndash2096 1982

[17] G W Johnson and D L Skoug ldquoNotes on the FeynmanintegralmdashIII the Schroedinger equationrdquo Pacific Journal ofMathematics vol 105 pp 321ndash358 1983

[18] S J Chang J G Choi and S D Lee ldquoA Fresnel type class onfunction spacerdquo Journal of the Korean Society of MathematicalEducation Series B vol 16 no 1 pp 107ndash119 2009

[19] I Yoo B J Kim and B S Kim ldquoA change of scale formulafor a function space integral on 119862

119886119887[0 119879]rdquo Proceedings of the

American Mathematical Society vol 141 no 8 pp 2729ndash27392013

[20] K S Chang G W Johnson and D L Skoug ldquoFunctions inthe Fresnel classrdquo Proceedings of the American MathematicalSociety vol 100 no 2 pp 309ndash318 1987

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 9: Research Article Generalized Analytic Fourier-Feynman ...downloads.hindawi.com/journals/jfs/2013/954098.pdf · Journal of Function Spaces and Applications Volume , Article ID , pages

Journal of Function Spaces and Applications 9

for all 1198921 1198922isin 1198621015840

119886119887[0 119879] In addition for each 119892 isin 1198621015840

119886119887[0 119879]

10038171003817100381710038171198921003817100381710038171003817

2

119887minus

119899

sum

119896=1

(119890119896 119892)2

119887=

infin

sum

119896=119899+1

(119890119896 119892)2

119887ge 0 (63)

for every 119899 isin NSince

(119892 119886)119887=

infin

sum

119899=1

(119890119899 119892)119887(119890119899 119886)119887

(64)

and for 120576 gt 1

minus12057610038171003817100381710038171198921003817100381710038171003817119887119886119887lt minus10038171003817100381710038171198921003817100381710038171003817119887119886119887le (119892 119886)

119887

le10038171003817100381710038171198921003817100381710038171003817119887119886119887lt 12057610038171003817100381710038171198921003817100381710038171003817119887119886119887

(65)

there exists a sufficiently large119870119895isin N such that for any 119899 ge 119870

119895

1003816100381610038161003816100381610038161003816100381610038161003816

119899

sum

119896=1

(119890119896 11986012

119895119908)119887

(119890119896 119886)119887

1003816100381610038161003816100381610038161003816100381610038161003816

lt 120576

1003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817119887119886119887

(66)

for 119895 isin 1 2Using these and a long and tedious calculation we can

show that for every 119899 ge max119871 1198701 1198702

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

exp

2

sum

119895=1

([

120582119895119899minus 1

2120582119895119899

]

119899

sum

119896=1

(119890119896 11986012

119895119908)

2

119887

minus

1

2

1003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817

2

119887

+ 119894120582minus12

119895119899

119899

sum

119896=1

(119890119896 11986012

119895119908)119887

(119890119896 119886)119887+ 119894(119890119899+1 119886)119887

times [

1003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817

2

119887

minus

119899

sum

119896=1

(119890119896 11986012

119895119908)

2

119887

]

12

)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

lt 119896 (1199020 119908)

(67)

where 119896(1199020 119908) is given by (36)

In our next theorem for119865 isin F11988611988711986011198602

we express theGFFTof 119865 as the limit of a sequence of function space integrals on1198622

119886119887[0 119879]

Theorem 14 Let 1199020and 119865 be as in Theorem 10 Let 119890

119899infin

119899=1

be a complete orthonormal set in (1198621015840119886119887[0 119879] sdot

119887) and let

(1205821119899 1205822119899)infin

119899=1be a sequence in C2

+such that 120582

119895119899rarr minus119894119902

119895

where 119902119895is a real number with |119902

119895| gt 1199020 119895 isin 1 2 Then for

119901 isin [1 2] and for s-ae (1199101 1199102) isin 1198622

119886119887[0 119879]

119879(119901)

119902(119865) (119910

1 1199102)

= lim119899rarrinfin

1205821198992

11198991205821198992

2119899

times119864119909[119866119899(1205821119899 1199091) 119866119899(1205822119899 1199092) 119865 (119910

1+ 1199091 1199102+ 1199092)]

(68)

where 119866119899is given by (52)

Proof ByTheorems9 and 10we know that for each119901 isin [1 2]the 119871119901analytic GFFT of 119865 119879(119901)

119902(119865) exists and is given by the

right hand side of (40) Thus it suffices to show that

119879(1)

119902(119865) (119910

1 1199102) = 119864

anf 119902119909[119865 (1199101+ 1199091 1199102+ 1199092)]

= lim119899rarrinfin

1205821198992

11198991205821198992

2119899

times 119864119909[119866119899(1205821119899 1199091) 119866119899(1205822119899 1199092)

times 119865 (1199101+ 1199091 1199102+ 1199092)] sdot

(69)

Using (30) the Fubini theorem and (56) with 120582 and 119908replaced with 120582

119895119899and 11986012

119895119908 119895 isin 1 2 respectively we see

that

1205821198992

11198991205821198992

2119899119864119909[119866119899(1205821119899 1199091) 119866119899(1205822119899 1199092) 119865 (119910

1+ 1199091 1199102+ 1199092)]

= 1205821198992

11198991205821198992

2119899int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 119910119895)

sim

times(

2

prod

119895=1

119864119909119895

[119866119899(120582minus12

119895119899 119909119895)

times exp 119894(11986012119895119908 119909119895)

sim

])119889119891 (119908)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

(119894(11986012

119895119908 119910119895)

sim

+ [

120582119895119899minus 1

2120582119895119899

]

119899

sum

119896=1

(119890119896 11986012

119895119908)

2

119887

minus

1

2

1003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817

2

119887

+ 119894120582minus12

119895119899

119899

sum

119896=1

(119890119896 119886)119887(119890119896 11986012

119895119908)119887

+ 119894(119890119899+1 119886)119887[

1003817100381710038171003817100381711986012

119895119908

10038171003817100381710038171003817

2

119887

minus

119899

sum

119896=1

(119890119896 11986012

119895119908)

2

119887

]

12

)

119889119891 (119908)

(70)

But by Remark 13 we see that the last expression of (70) isdominated by (39) on the region Γ

1199020

given by (35) for allbut a finite number of values of 119899 Next using the dominatedconvergence theorem Parsevalrsquos relation and (40) we obtainthe desired result

Corollary 15 Let 1199020 119865 119890

119899infin

119899=1 (1205821119899 1205822119899)infin

119899=1and (119902

1 1199022)

be as in Theorem 14 Then

119864

anf119902

119909[119865 (1199091 1199092)]

= lim119899rarrinfin

1205821198992

11198991205821198992

2119899

times 119864119909[119866119899(1205821119899 1199091) 119866119899(1205822119899 1199092) 119865 (119909

1 1199092)]

(71)

where 119866119899is given by (52)

10 Journal of Function Spaces and Applications

Corollary 16 Let 1199020 119865 and 119890

119899infin

119899=1be as in Theorem 14 and

let Γ1199020

be given by (35) Let 120582 = (1205821 1205822) isin Int (Γ

1199020

) and(1205821119899 1205822119899)infin

119899=1be a sequence in C2

+such that 120582

119895119899rarr 120582

119895

119895 isin 1 2 Then

119864

an

119909[119865 (1199091 1199092)] = lim119899rarrinfin

1205821198992

11198991205821198992

2119899

times119864119909[119866119899(1205821119899 1199091) 119866119899(1205822119899 1199092) 119865(1199091 1199092)]

(72)

where 119866119899is given by (52)

Our another result namely a change of scale formula forfunction space integrals now follows fromCorollary 16 above

Theorem 17 Let 119865 isin F11988611988711986011198602

and let 119890119899infin

119899=1be a complete

orthonormal set in (1198621015840119886119887[0 119879] sdot

119887) Then for any 120588

1gt 0 and

1205882gt 0

119864119909[119865 (12058811199091 12058821199092)]

= lim119899rarrinfin

120588minus119899

1120588minus119899

2

times 119864119909[119866119899(120588minus2

1 1199091)119866119899(120588minus2

2 1199092) 119865 (119909

1 1199092)]

(73)

where 119866119899is given by (52)

Proof Simply choose 120582119895= 120588minus2

119895for 119895 isin 1 2 and 120582

119895119899= 120588minus2

119895

for 119895 isin 1 2 and 119899 isin N in (72)

Remark 18 Of course if we choose 119886(119905) equiv 0 119887(119905) = 1199051198601= 119868 (identity operator) and 119860

2= 0 (zero operator) then

the function space 119862119886119887[0 119879] reduces to the classical Wiener

space 1198620[0 119879] and the generalized Fresnel type class F 119886119887

11986011198602

reduces to the Fresnel class F(1198620[0 119879]) It is known that

F(1198620[0 119879]) forms a Banach algebra over the complex field

In this case we have the relationships between the analyticFeynman integral and theWiener integral on classicalWienerspace as discussed in [14 15]

In recent paper [19] Yoo et al have studied a change ofscale formula for function space integral of the functionalsin the Banach algebra S(1198712

119886119887[0 119879]) the Banach algebra

S(1198712119886119887[0 119879]) is introduced in [12]

5 Functionals in F11988611988711986011198602

In this section we prove a theorem ensuring that variousfunctionals are inF119886119887

11986011198602

Theorem 19 Let 1198601and 119860

2be bounded nonnegative and

self-adjoint operators on 1198621015840119886119887[0 119879] Let (119884Y 120574) be a 120590-finite

measure space and let 120593119897 119884 rarr 119862

1015840

119886119887[0 119879] beYndashB(1198621015840

119886119887[0 119879])

measurable for 119897 isin 1 119889 Let 120579 119884 times R119889 rarr C be given by120579(120578 sdot) = ]

120578(sdot) where ]

120578isin M(R119889) for every 120578 isin 119884 and where

the family ]120578 120578 isin 119884 satisfies

(i) ]120578(119864) is a Y-measurable function of 120578 for every 119864 isin

B(R119889)(ii) ]

120578 isin 1198711

(119884Y 120574)

Under these hypothesis the functional 119865 1198622119886119887[0 119879] rarr C

given by

119865 (1199091 1199092) = int

119884

120579(120578

2

sum

119895=1

(11986012

1198951205931(120578) 119909

119895)

sim

2

sum

119895=1

(11986012

119895120593119889(120578) 119909

119895)

sim

)119889120574 (120578)

(74)

belongs toF11988611988711986011198602

and satisfies the inequality

119865 le int

119884

10038171003817100381710038171003817]120578

10038171003817100381710038171003817119889120574 (120578) (75)

Proof Using the techniques similar to those used in [20] wecan show that ]

120578 is measurable as a function of 120578 that 120579 is

Y-measurable and that the integrand in (74) is a measurablefunction of 120578 for every (119909

1 1199092) isin 1198622

119886119887[0 119879]

We define a measure 120591 onY timesB(R119889) by

120591 (119864) = int

119884

]120578(119864(120578)

) 119889120574 (120578) for 119864 isin Y timesB (R119889) (76)

Then by the first assertion of Theorem 31 in [17] 120591 satisfies120591 le int

119884

]120578119889120574(120578) Now let Φ 119884 times R119889 rarr 119862

1015840

119886119887[0 119879] be

defined by Φ(120578 V1 V

119889) = sum

119889

119897=1V119897120593119897(120578) Then Φ is Y times

B(R119889) ndashB(1198621015840119886119887[0 119879])-measurable on the hypothesis for 120593

119897

119897 isin 1 119889 Let 120590 = 120591 ∘Φminus1 Then clearly 120590 isinM(1198621015840119886119887[0 119879])

and satisfies 120590 le 120591From the change of variables theorem and the second

assertion of Theorem 31 in [17] it follows that for ae(1199091 1199092) isin 1198622

119886119887[0 119879] and for every 120588

1gt 0 and 120588

2gt 0

119865 (12058811199091 12058821199092)

= int

119884

]120578(

2

sum

119895=1

(11986012

1198951205931(120578) 120588

119895119909119895)

sim

2

sum

119895=1

(11986012

119895120593119889(120578) 120588

119895119909119895)

sim

)119889120574 (120578)

= int

119884

[

[

int

R119889exp

119894

119889

sum

119897=1

V119897

[

[

2

sum

119895=1

(11986012

119895120593119897(120578)

120588119895119909119895)

sim

]

]

119889]120578

times (V1 V

119889)]

]

119889120574 (120578)

= int

119884timesR119889exp

119894

119889

sum

119897=1

V119897

[

[

2

sum

119895=1

(11986012

119895120593119897(120578) 120588

119895119909119895)

sim

]

]

119889120591

times (120578 V1 V

119889)

Journal of Function Spaces and Applications 11

= int

119884timesR119889exp

2

sum

119895=1

119894(11986012

119895Φ(120578 V

1 V

119889) 120588119895119909119895)

sim

119889120591

times (120578 V1 V

119889)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 120588119895119909119895)

sim

119889120591 ∘ Φminus1

(119908)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 120588119895119909119895)

sim

119889120590 (119908)

(77)

Thus the functional 119865 given by (74) belongs to F11988611988711986011198602

andsatisfies the inequality

119865 = 120590 le 120591 le int

119884

10038171003817100381710038171003817]120578

10038171003817100381710038171003817119889120574 (120578) (78)

As mentioned in (2) of Remark 6 F 11988611988711986011198602

is a Banachalgebra if Ran(119860

1+ 1198602) is dense in 1198621015840

119886119887[0 119879] In this case

many analytic functionals of 119865 can be formed The followingcorollary is relevant to Feynman integration theories andquantum mechanics where exponential functions play animportant role

Corollary 20 Let 1198601and 119860

2be bounded nonnegative and

self-adjoint operators on 1198621015840119886119887[0 119879] such that Ran(119860

1+ 1198602)

is dense in 1198621015840119886119887[0 119879] Let 119865 be given by (74) with 120579 as in

Theorem 19 and let 120573 C rarr C be an entire function Then(120573 ∘ 119865)(119909

1 1199092) is in F119886119887

11986011198602

In particular exp119865(1199091 1199092) isin

F11988611988711986011198602

Corollary 21 Let 1198601and 119860

2be bounded nonnegative and

self-adjoint operators on 1198621015840119886119887[0 119879] and let 119892

1 119892

119889 be a

finite subset of 1198621015840119886119887[0 119879] Given 120573 = ] where ] isin M(R119889)

define 119865 1198622119886119887[0 119879] rarr C by

119865 (1199091 1199092) = 120573(

2

sum

119895=1

(11986012

1198951198921 119909119895)

sim

2

sum

119895=1

(11986012

119895119892119889 119909119895)

sim

)

(79)

Then 119865 is an element ofF11988611988711986011198602

Proof Let (119884Y 120574) be a probability space and for 119897 isin1 119889 let 120593

119897(120578) equiv 119892

119897 Take 120579(120578 sdot) = 120573(sdot) = ](sdot) Then for

all 1205881gt 0 and 120588

2gt 0 and for ae (119909

1 1199092) isin 1198622

119886119887[0 119879]

int

119884

120579(120578

2

sum

119895=1

(11986012

1198951205931(120578) 120588

119895119909119895)

sim

2

sum

119895=1

(11986012

119895120593119889(120578) 120588

119895119909119895)

sim

)119889120574 (120578)

= int

119884

120573(

2

sum

119895=1

(11986012

1198951198921 120588119895119909119895)

sim

2

sum

119895=1

(11986012

119895119892119889 120588119895119909119895)

sim

)119889120574 (120578)

= 120573(

2

sum

119895=1

(11986012

1198951198921 120588119895119909119895)

sim

2

sum

119895=1

(11986012

119895119892119889 120588119895119909119895)

sim

)

= 119865 (12058811199091 12058821199092)

(80)

Hence 119865 isin F11988611988711986011198602

Remark 22 Let 119889 = 1 and let (119884Y 120574) = ([0 119879]B([0 119879])119898119871) in Theorem 19 where 119898

119871denotes the Lebesgue measure

on [0 119879] ThenTheorems 46 47 and 49 in [18] follow fromthe results in this section by letting119860

1be the identity operator

and letting 1198602equiv 0 on 1198621015840

119886119887[0 119879] The function 120579 studied in

[18] (and mentioned in Remark 2 above) is interpreted as thepotential energy in quantum mechanics

Acknowledgments

The authors would like to express their gratitude to the refer-ees for their valuable comments and suggestions which haveimproved the original paper This research was supported bythe Basic Science Research Program through the NationalResearch Foundation of Korea (NRF) funded by theMinistryof Education (2011-0014552)

References

[1] G Kallianpur and C Bromley ldquoGeneralized Feynman integralsusing analytic continuation in several complex variablesrdquo inStochastic Analysis and Applications M A Pinsky Ed vol 7pp 217ndash267 Marcel Dekker New York NY USA 1984

[2] G Kallianpur D Kannan and R L Karandikar ldquoAnalytic andsequential Feynman integrals on abstract Wiener and Hilbertspaces and a Cameron-Martin formulardquo Annales de lrsquoInstitutHenri Poincare vol 21 no 4 pp 323ndash361 1985

[3] G W Johnson and M L Lapidus The Feynman Integral andFeynmanrsquos Operational Calculus Clarendon Press Oxford UK2000

[4] J Yeh ldquoSingularity of Gaussian measures on function spacesinduced by Brownian motion processes with non-stationaryincrementsrdquo Illinois Journal of Mathematics vol 15 pp 37ndash461971

[5] J Yeh Stochastic Processes and the Wiener Integral MarcelDekker New York NY USA 1973

[6] S J Chang J G Choi and D Skoug ldquoIntegration by partsformulas involving generalized Fourier-Feynman transformson function spacerdquo Transactions of the American MathematicalSociety vol 355 no 7 pp 2925ndash2948 2003

[7] S J Chang J G Choi and D Skoug ldquoParts formulas involvingconditional generalized Feynman integrals and conditionalgeneralized Fourier-Feynman transforms on function spacerdquo

12 Journal of Function Spaces and Applications

Integral Transforms and Special Functions vol 15 no 6 pp 491ndash512 2004

[8] S J Chang J G Choi and D Skoug ldquoEvaluation formulas forconditional function space integralsmdashIrdquo Stochastic Analysis andApplications vol 25 no 1 pp 141ndash168 2007

[9] S J Chang J G Choi and D Skoug ldquoGeneralized Fourier-Feynman transforms convolution products and first variationson function spacerdquoTheRockyMountain Journal ofMathematicsvol 40 no 3 pp 761ndash788 2010

[10] S J Chang and D M Chung ldquoConditional function spaceintegrals with applicationsrdquo The Rocky Mountain Journal ofMathematics vol 26 no 1 pp 37ndash62 1996

[11] S J Chang H S Chung and D Skoug ldquoIntegral transformsof functionals in 119871

2(119862119886119887[0 119879])rdquoThe Journal of Fourier Analysis

and Applications vol 15 no 4 pp 441ndash462 2009[12] S J Chang and D Skoug ldquoGeneralized Fourier-Feynman

transforms and a first variation on function spacerdquo IntegralTransforms and Special Functions vol 14 pp 375ndash393 2003

[13] J G Choi and S J Chang ldquoGeneralized Fourier-Feynmantransform and sequential transforms on function spacerdquo Jour-nal of the Korean Mathematical Society vol 49 pp 1065ndash10822012

[14] R H Cameron and D A Storvick ldquoRelationships between theWiener integral and the analytic Feynman integralrdquo Rendicontidel Circolo Matematico di Palermo no 17 supplement pp 117ndash133 1987

[15] RHCameron andDA Storvick ldquoChange of scale formulas forWiener integralrdquo Rendiconti del Circolo Matematico di Palermono 17 pp 105ndash115 1987

[16] G W Johnson ldquoThe equivalence of two approaches to theFeynman integralrdquo Journal of Mathematical Physics vol 23 pp2090ndash2096 1982

[17] G W Johnson and D L Skoug ldquoNotes on the FeynmanintegralmdashIII the Schroedinger equationrdquo Pacific Journal ofMathematics vol 105 pp 321ndash358 1983

[18] S J Chang J G Choi and S D Lee ldquoA Fresnel type class onfunction spacerdquo Journal of the Korean Society of MathematicalEducation Series B vol 16 no 1 pp 107ndash119 2009

[19] I Yoo B J Kim and B S Kim ldquoA change of scale formulafor a function space integral on 119862

119886119887[0 119879]rdquo Proceedings of the

American Mathematical Society vol 141 no 8 pp 2729ndash27392013

[20] K S Chang G W Johnson and D L Skoug ldquoFunctions inthe Fresnel classrdquo Proceedings of the American MathematicalSociety vol 100 no 2 pp 309ndash318 1987

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 10: Research Article Generalized Analytic Fourier-Feynman ...downloads.hindawi.com/journals/jfs/2013/954098.pdf · Journal of Function Spaces and Applications Volume , Article ID , pages

10 Journal of Function Spaces and Applications

Corollary 16 Let 1199020 119865 and 119890

119899infin

119899=1be as in Theorem 14 and

let Γ1199020

be given by (35) Let 120582 = (1205821 1205822) isin Int (Γ

1199020

) and(1205821119899 1205822119899)infin

119899=1be a sequence in C2

+such that 120582

119895119899rarr 120582

119895

119895 isin 1 2 Then

119864

an

119909[119865 (1199091 1199092)] = lim119899rarrinfin

1205821198992

11198991205821198992

2119899

times119864119909[119866119899(1205821119899 1199091) 119866119899(1205822119899 1199092) 119865(1199091 1199092)]

(72)

where 119866119899is given by (52)

Our another result namely a change of scale formula forfunction space integrals now follows fromCorollary 16 above

Theorem 17 Let 119865 isin F11988611988711986011198602

and let 119890119899infin

119899=1be a complete

orthonormal set in (1198621015840119886119887[0 119879] sdot

119887) Then for any 120588

1gt 0 and

1205882gt 0

119864119909[119865 (12058811199091 12058821199092)]

= lim119899rarrinfin

120588minus119899

1120588minus119899

2

times 119864119909[119866119899(120588minus2

1 1199091)119866119899(120588minus2

2 1199092) 119865 (119909

1 1199092)]

(73)

where 119866119899is given by (52)

Proof Simply choose 120582119895= 120588minus2

119895for 119895 isin 1 2 and 120582

119895119899= 120588minus2

119895

for 119895 isin 1 2 and 119899 isin N in (72)

Remark 18 Of course if we choose 119886(119905) equiv 0 119887(119905) = 1199051198601= 119868 (identity operator) and 119860

2= 0 (zero operator) then

the function space 119862119886119887[0 119879] reduces to the classical Wiener

space 1198620[0 119879] and the generalized Fresnel type class F 119886119887

11986011198602

reduces to the Fresnel class F(1198620[0 119879]) It is known that

F(1198620[0 119879]) forms a Banach algebra over the complex field

In this case we have the relationships between the analyticFeynman integral and theWiener integral on classicalWienerspace as discussed in [14 15]

In recent paper [19] Yoo et al have studied a change ofscale formula for function space integral of the functionalsin the Banach algebra S(1198712

119886119887[0 119879]) the Banach algebra

S(1198712119886119887[0 119879]) is introduced in [12]

5 Functionals in F11988611988711986011198602

In this section we prove a theorem ensuring that variousfunctionals are inF119886119887

11986011198602

Theorem 19 Let 1198601and 119860

2be bounded nonnegative and

self-adjoint operators on 1198621015840119886119887[0 119879] Let (119884Y 120574) be a 120590-finite

measure space and let 120593119897 119884 rarr 119862

1015840

119886119887[0 119879] beYndashB(1198621015840

119886119887[0 119879])

measurable for 119897 isin 1 119889 Let 120579 119884 times R119889 rarr C be given by120579(120578 sdot) = ]

120578(sdot) where ]

120578isin M(R119889) for every 120578 isin 119884 and where

the family ]120578 120578 isin 119884 satisfies

(i) ]120578(119864) is a Y-measurable function of 120578 for every 119864 isin

B(R119889)(ii) ]

120578 isin 1198711

(119884Y 120574)

Under these hypothesis the functional 119865 1198622119886119887[0 119879] rarr C

given by

119865 (1199091 1199092) = int

119884

120579(120578

2

sum

119895=1

(11986012

1198951205931(120578) 119909

119895)

sim

2

sum

119895=1

(11986012

119895120593119889(120578) 119909

119895)

sim

)119889120574 (120578)

(74)

belongs toF11988611988711986011198602

and satisfies the inequality

119865 le int

119884

10038171003817100381710038171003817]120578

10038171003817100381710038171003817119889120574 (120578) (75)

Proof Using the techniques similar to those used in [20] wecan show that ]

120578 is measurable as a function of 120578 that 120579 is

Y-measurable and that the integrand in (74) is a measurablefunction of 120578 for every (119909

1 1199092) isin 1198622

119886119887[0 119879]

We define a measure 120591 onY timesB(R119889) by

120591 (119864) = int

119884

]120578(119864(120578)

) 119889120574 (120578) for 119864 isin Y timesB (R119889) (76)

Then by the first assertion of Theorem 31 in [17] 120591 satisfies120591 le int

119884

]120578119889120574(120578) Now let Φ 119884 times R119889 rarr 119862

1015840

119886119887[0 119879] be

defined by Φ(120578 V1 V

119889) = sum

119889

119897=1V119897120593119897(120578) Then Φ is Y times

B(R119889) ndashB(1198621015840119886119887[0 119879])-measurable on the hypothesis for 120593

119897

119897 isin 1 119889 Let 120590 = 120591 ∘Φminus1 Then clearly 120590 isinM(1198621015840119886119887[0 119879])

and satisfies 120590 le 120591From the change of variables theorem and the second

assertion of Theorem 31 in [17] it follows that for ae(1199091 1199092) isin 1198622

119886119887[0 119879] and for every 120588

1gt 0 and 120588

2gt 0

119865 (12058811199091 12058821199092)

= int

119884

]120578(

2

sum

119895=1

(11986012

1198951205931(120578) 120588

119895119909119895)

sim

2

sum

119895=1

(11986012

119895120593119889(120578) 120588

119895119909119895)

sim

)119889120574 (120578)

= int

119884

[

[

int

R119889exp

119894

119889

sum

119897=1

V119897

[

[

2

sum

119895=1

(11986012

119895120593119897(120578)

120588119895119909119895)

sim

]

]

119889]120578

times (V1 V

119889)]

]

119889120574 (120578)

= int

119884timesR119889exp

119894

119889

sum

119897=1

V119897

[

[

2

sum

119895=1

(11986012

119895120593119897(120578) 120588

119895119909119895)

sim

]

]

119889120591

times (120578 V1 V

119889)

Journal of Function Spaces and Applications 11

= int

119884timesR119889exp

2

sum

119895=1

119894(11986012

119895Φ(120578 V

1 V

119889) 120588119895119909119895)

sim

119889120591

times (120578 V1 V

119889)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 120588119895119909119895)

sim

119889120591 ∘ Φminus1

(119908)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 120588119895119909119895)

sim

119889120590 (119908)

(77)

Thus the functional 119865 given by (74) belongs to F11988611988711986011198602

andsatisfies the inequality

119865 = 120590 le 120591 le int

119884

10038171003817100381710038171003817]120578

10038171003817100381710038171003817119889120574 (120578) (78)

As mentioned in (2) of Remark 6 F 11988611988711986011198602

is a Banachalgebra if Ran(119860

1+ 1198602) is dense in 1198621015840

119886119887[0 119879] In this case

many analytic functionals of 119865 can be formed The followingcorollary is relevant to Feynman integration theories andquantum mechanics where exponential functions play animportant role

Corollary 20 Let 1198601and 119860

2be bounded nonnegative and

self-adjoint operators on 1198621015840119886119887[0 119879] such that Ran(119860

1+ 1198602)

is dense in 1198621015840119886119887[0 119879] Let 119865 be given by (74) with 120579 as in

Theorem 19 and let 120573 C rarr C be an entire function Then(120573 ∘ 119865)(119909

1 1199092) is in F119886119887

11986011198602

In particular exp119865(1199091 1199092) isin

F11988611988711986011198602

Corollary 21 Let 1198601and 119860

2be bounded nonnegative and

self-adjoint operators on 1198621015840119886119887[0 119879] and let 119892

1 119892

119889 be a

finite subset of 1198621015840119886119887[0 119879] Given 120573 = ] where ] isin M(R119889)

define 119865 1198622119886119887[0 119879] rarr C by

119865 (1199091 1199092) = 120573(

2

sum

119895=1

(11986012

1198951198921 119909119895)

sim

2

sum

119895=1

(11986012

119895119892119889 119909119895)

sim

)

(79)

Then 119865 is an element ofF11988611988711986011198602

Proof Let (119884Y 120574) be a probability space and for 119897 isin1 119889 let 120593

119897(120578) equiv 119892

119897 Take 120579(120578 sdot) = 120573(sdot) = ](sdot) Then for

all 1205881gt 0 and 120588

2gt 0 and for ae (119909

1 1199092) isin 1198622

119886119887[0 119879]

int

119884

120579(120578

2

sum

119895=1

(11986012

1198951205931(120578) 120588

119895119909119895)

sim

2

sum

119895=1

(11986012

119895120593119889(120578) 120588

119895119909119895)

sim

)119889120574 (120578)

= int

119884

120573(

2

sum

119895=1

(11986012

1198951198921 120588119895119909119895)

sim

2

sum

119895=1

(11986012

119895119892119889 120588119895119909119895)

sim

)119889120574 (120578)

= 120573(

2

sum

119895=1

(11986012

1198951198921 120588119895119909119895)

sim

2

sum

119895=1

(11986012

119895119892119889 120588119895119909119895)

sim

)

= 119865 (12058811199091 12058821199092)

(80)

Hence 119865 isin F11988611988711986011198602

Remark 22 Let 119889 = 1 and let (119884Y 120574) = ([0 119879]B([0 119879])119898119871) in Theorem 19 where 119898

119871denotes the Lebesgue measure

on [0 119879] ThenTheorems 46 47 and 49 in [18] follow fromthe results in this section by letting119860

1be the identity operator

and letting 1198602equiv 0 on 1198621015840

119886119887[0 119879] The function 120579 studied in

[18] (and mentioned in Remark 2 above) is interpreted as thepotential energy in quantum mechanics

Acknowledgments

The authors would like to express their gratitude to the refer-ees for their valuable comments and suggestions which haveimproved the original paper This research was supported bythe Basic Science Research Program through the NationalResearch Foundation of Korea (NRF) funded by theMinistryof Education (2011-0014552)

References

[1] G Kallianpur and C Bromley ldquoGeneralized Feynman integralsusing analytic continuation in several complex variablesrdquo inStochastic Analysis and Applications M A Pinsky Ed vol 7pp 217ndash267 Marcel Dekker New York NY USA 1984

[2] G Kallianpur D Kannan and R L Karandikar ldquoAnalytic andsequential Feynman integrals on abstract Wiener and Hilbertspaces and a Cameron-Martin formulardquo Annales de lrsquoInstitutHenri Poincare vol 21 no 4 pp 323ndash361 1985

[3] G W Johnson and M L Lapidus The Feynman Integral andFeynmanrsquos Operational Calculus Clarendon Press Oxford UK2000

[4] J Yeh ldquoSingularity of Gaussian measures on function spacesinduced by Brownian motion processes with non-stationaryincrementsrdquo Illinois Journal of Mathematics vol 15 pp 37ndash461971

[5] J Yeh Stochastic Processes and the Wiener Integral MarcelDekker New York NY USA 1973

[6] S J Chang J G Choi and D Skoug ldquoIntegration by partsformulas involving generalized Fourier-Feynman transformson function spacerdquo Transactions of the American MathematicalSociety vol 355 no 7 pp 2925ndash2948 2003

[7] S J Chang J G Choi and D Skoug ldquoParts formulas involvingconditional generalized Feynman integrals and conditionalgeneralized Fourier-Feynman transforms on function spacerdquo

12 Journal of Function Spaces and Applications

Integral Transforms and Special Functions vol 15 no 6 pp 491ndash512 2004

[8] S J Chang J G Choi and D Skoug ldquoEvaluation formulas forconditional function space integralsmdashIrdquo Stochastic Analysis andApplications vol 25 no 1 pp 141ndash168 2007

[9] S J Chang J G Choi and D Skoug ldquoGeneralized Fourier-Feynman transforms convolution products and first variationson function spacerdquoTheRockyMountain Journal ofMathematicsvol 40 no 3 pp 761ndash788 2010

[10] S J Chang and D M Chung ldquoConditional function spaceintegrals with applicationsrdquo The Rocky Mountain Journal ofMathematics vol 26 no 1 pp 37ndash62 1996

[11] S J Chang H S Chung and D Skoug ldquoIntegral transformsof functionals in 119871

2(119862119886119887[0 119879])rdquoThe Journal of Fourier Analysis

and Applications vol 15 no 4 pp 441ndash462 2009[12] S J Chang and D Skoug ldquoGeneralized Fourier-Feynman

transforms and a first variation on function spacerdquo IntegralTransforms and Special Functions vol 14 pp 375ndash393 2003

[13] J G Choi and S J Chang ldquoGeneralized Fourier-Feynmantransform and sequential transforms on function spacerdquo Jour-nal of the Korean Mathematical Society vol 49 pp 1065ndash10822012

[14] R H Cameron and D A Storvick ldquoRelationships between theWiener integral and the analytic Feynman integralrdquo Rendicontidel Circolo Matematico di Palermo no 17 supplement pp 117ndash133 1987

[15] RHCameron andDA Storvick ldquoChange of scale formulas forWiener integralrdquo Rendiconti del Circolo Matematico di Palermono 17 pp 105ndash115 1987

[16] G W Johnson ldquoThe equivalence of two approaches to theFeynman integralrdquo Journal of Mathematical Physics vol 23 pp2090ndash2096 1982

[17] G W Johnson and D L Skoug ldquoNotes on the FeynmanintegralmdashIII the Schroedinger equationrdquo Pacific Journal ofMathematics vol 105 pp 321ndash358 1983

[18] S J Chang J G Choi and S D Lee ldquoA Fresnel type class onfunction spacerdquo Journal of the Korean Society of MathematicalEducation Series B vol 16 no 1 pp 107ndash119 2009

[19] I Yoo B J Kim and B S Kim ldquoA change of scale formulafor a function space integral on 119862

119886119887[0 119879]rdquo Proceedings of the

American Mathematical Society vol 141 no 8 pp 2729ndash27392013

[20] K S Chang G W Johnson and D L Skoug ldquoFunctions inthe Fresnel classrdquo Proceedings of the American MathematicalSociety vol 100 no 2 pp 309ndash318 1987

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 11: Research Article Generalized Analytic Fourier-Feynman ...downloads.hindawi.com/journals/jfs/2013/954098.pdf · Journal of Function Spaces and Applications Volume , Article ID , pages

Journal of Function Spaces and Applications 11

= int

119884timesR119889exp

2

sum

119895=1

119894(11986012

119895Φ(120578 V

1 V

119889) 120588119895119909119895)

sim

119889120591

times (120578 V1 V

119889)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 120588119895119909119895)

sim

119889120591 ∘ Φminus1

(119908)

= int

1198621015840

119886119887[0119879]

exp

2

sum

119895=1

119894(11986012

119895119908 120588119895119909119895)

sim

119889120590 (119908)

(77)

Thus the functional 119865 given by (74) belongs to F11988611988711986011198602

andsatisfies the inequality

119865 = 120590 le 120591 le int

119884

10038171003817100381710038171003817]120578

10038171003817100381710038171003817119889120574 (120578) (78)

As mentioned in (2) of Remark 6 F 11988611988711986011198602

is a Banachalgebra if Ran(119860

1+ 1198602) is dense in 1198621015840

119886119887[0 119879] In this case

many analytic functionals of 119865 can be formed The followingcorollary is relevant to Feynman integration theories andquantum mechanics where exponential functions play animportant role

Corollary 20 Let 1198601and 119860

2be bounded nonnegative and

self-adjoint operators on 1198621015840119886119887[0 119879] such that Ran(119860

1+ 1198602)

is dense in 1198621015840119886119887[0 119879] Let 119865 be given by (74) with 120579 as in

Theorem 19 and let 120573 C rarr C be an entire function Then(120573 ∘ 119865)(119909

1 1199092) is in F119886119887

11986011198602

In particular exp119865(1199091 1199092) isin

F11988611988711986011198602

Corollary 21 Let 1198601and 119860

2be bounded nonnegative and

self-adjoint operators on 1198621015840119886119887[0 119879] and let 119892

1 119892

119889 be a

finite subset of 1198621015840119886119887[0 119879] Given 120573 = ] where ] isin M(R119889)

define 119865 1198622119886119887[0 119879] rarr C by

119865 (1199091 1199092) = 120573(

2

sum

119895=1

(11986012

1198951198921 119909119895)

sim

2

sum

119895=1

(11986012

119895119892119889 119909119895)

sim

)

(79)

Then 119865 is an element ofF11988611988711986011198602

Proof Let (119884Y 120574) be a probability space and for 119897 isin1 119889 let 120593

119897(120578) equiv 119892

119897 Take 120579(120578 sdot) = 120573(sdot) = ](sdot) Then for

all 1205881gt 0 and 120588

2gt 0 and for ae (119909

1 1199092) isin 1198622

119886119887[0 119879]

int

119884

120579(120578

2

sum

119895=1

(11986012

1198951205931(120578) 120588

119895119909119895)

sim

2

sum

119895=1

(11986012

119895120593119889(120578) 120588

119895119909119895)

sim

)119889120574 (120578)

= int

119884

120573(

2

sum

119895=1

(11986012

1198951198921 120588119895119909119895)

sim

2

sum

119895=1

(11986012

119895119892119889 120588119895119909119895)

sim

)119889120574 (120578)

= 120573(

2

sum

119895=1

(11986012

1198951198921 120588119895119909119895)

sim

2

sum

119895=1

(11986012

119895119892119889 120588119895119909119895)

sim

)

= 119865 (12058811199091 12058821199092)

(80)

Hence 119865 isin F11988611988711986011198602

Remark 22 Let 119889 = 1 and let (119884Y 120574) = ([0 119879]B([0 119879])119898119871) in Theorem 19 where 119898

119871denotes the Lebesgue measure

on [0 119879] ThenTheorems 46 47 and 49 in [18] follow fromthe results in this section by letting119860

1be the identity operator

and letting 1198602equiv 0 on 1198621015840

119886119887[0 119879] The function 120579 studied in

[18] (and mentioned in Remark 2 above) is interpreted as thepotential energy in quantum mechanics

Acknowledgments

The authors would like to express their gratitude to the refer-ees for their valuable comments and suggestions which haveimproved the original paper This research was supported bythe Basic Science Research Program through the NationalResearch Foundation of Korea (NRF) funded by theMinistryof Education (2011-0014552)

References

[1] G Kallianpur and C Bromley ldquoGeneralized Feynman integralsusing analytic continuation in several complex variablesrdquo inStochastic Analysis and Applications M A Pinsky Ed vol 7pp 217ndash267 Marcel Dekker New York NY USA 1984

[2] G Kallianpur D Kannan and R L Karandikar ldquoAnalytic andsequential Feynman integrals on abstract Wiener and Hilbertspaces and a Cameron-Martin formulardquo Annales de lrsquoInstitutHenri Poincare vol 21 no 4 pp 323ndash361 1985

[3] G W Johnson and M L Lapidus The Feynman Integral andFeynmanrsquos Operational Calculus Clarendon Press Oxford UK2000

[4] J Yeh ldquoSingularity of Gaussian measures on function spacesinduced by Brownian motion processes with non-stationaryincrementsrdquo Illinois Journal of Mathematics vol 15 pp 37ndash461971

[5] J Yeh Stochastic Processes and the Wiener Integral MarcelDekker New York NY USA 1973

[6] S J Chang J G Choi and D Skoug ldquoIntegration by partsformulas involving generalized Fourier-Feynman transformson function spacerdquo Transactions of the American MathematicalSociety vol 355 no 7 pp 2925ndash2948 2003

[7] S J Chang J G Choi and D Skoug ldquoParts formulas involvingconditional generalized Feynman integrals and conditionalgeneralized Fourier-Feynman transforms on function spacerdquo

12 Journal of Function Spaces and Applications

Integral Transforms and Special Functions vol 15 no 6 pp 491ndash512 2004

[8] S J Chang J G Choi and D Skoug ldquoEvaluation formulas forconditional function space integralsmdashIrdquo Stochastic Analysis andApplications vol 25 no 1 pp 141ndash168 2007

[9] S J Chang J G Choi and D Skoug ldquoGeneralized Fourier-Feynman transforms convolution products and first variationson function spacerdquoTheRockyMountain Journal ofMathematicsvol 40 no 3 pp 761ndash788 2010

[10] S J Chang and D M Chung ldquoConditional function spaceintegrals with applicationsrdquo The Rocky Mountain Journal ofMathematics vol 26 no 1 pp 37ndash62 1996

[11] S J Chang H S Chung and D Skoug ldquoIntegral transformsof functionals in 119871

2(119862119886119887[0 119879])rdquoThe Journal of Fourier Analysis

and Applications vol 15 no 4 pp 441ndash462 2009[12] S J Chang and D Skoug ldquoGeneralized Fourier-Feynman

transforms and a first variation on function spacerdquo IntegralTransforms and Special Functions vol 14 pp 375ndash393 2003

[13] J G Choi and S J Chang ldquoGeneralized Fourier-Feynmantransform and sequential transforms on function spacerdquo Jour-nal of the Korean Mathematical Society vol 49 pp 1065ndash10822012

[14] R H Cameron and D A Storvick ldquoRelationships between theWiener integral and the analytic Feynman integralrdquo Rendicontidel Circolo Matematico di Palermo no 17 supplement pp 117ndash133 1987

[15] RHCameron andDA Storvick ldquoChange of scale formulas forWiener integralrdquo Rendiconti del Circolo Matematico di Palermono 17 pp 105ndash115 1987

[16] G W Johnson ldquoThe equivalence of two approaches to theFeynman integralrdquo Journal of Mathematical Physics vol 23 pp2090ndash2096 1982

[17] G W Johnson and D L Skoug ldquoNotes on the FeynmanintegralmdashIII the Schroedinger equationrdquo Pacific Journal ofMathematics vol 105 pp 321ndash358 1983

[18] S J Chang J G Choi and S D Lee ldquoA Fresnel type class onfunction spacerdquo Journal of the Korean Society of MathematicalEducation Series B vol 16 no 1 pp 107ndash119 2009

[19] I Yoo B J Kim and B S Kim ldquoA change of scale formulafor a function space integral on 119862

119886119887[0 119879]rdquo Proceedings of the

American Mathematical Society vol 141 no 8 pp 2729ndash27392013

[20] K S Chang G W Johnson and D L Skoug ldquoFunctions inthe Fresnel classrdquo Proceedings of the American MathematicalSociety vol 100 no 2 pp 309ndash318 1987

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 12: Research Article Generalized Analytic Fourier-Feynman ...downloads.hindawi.com/journals/jfs/2013/954098.pdf · Journal of Function Spaces and Applications Volume , Article ID , pages

12 Journal of Function Spaces and Applications

Integral Transforms and Special Functions vol 15 no 6 pp 491ndash512 2004

[8] S J Chang J G Choi and D Skoug ldquoEvaluation formulas forconditional function space integralsmdashIrdquo Stochastic Analysis andApplications vol 25 no 1 pp 141ndash168 2007

[9] S J Chang J G Choi and D Skoug ldquoGeneralized Fourier-Feynman transforms convolution products and first variationson function spacerdquoTheRockyMountain Journal ofMathematicsvol 40 no 3 pp 761ndash788 2010

[10] S J Chang and D M Chung ldquoConditional function spaceintegrals with applicationsrdquo The Rocky Mountain Journal ofMathematics vol 26 no 1 pp 37ndash62 1996

[11] S J Chang H S Chung and D Skoug ldquoIntegral transformsof functionals in 119871

2(119862119886119887[0 119879])rdquoThe Journal of Fourier Analysis

and Applications vol 15 no 4 pp 441ndash462 2009[12] S J Chang and D Skoug ldquoGeneralized Fourier-Feynman

transforms and a first variation on function spacerdquo IntegralTransforms and Special Functions vol 14 pp 375ndash393 2003

[13] J G Choi and S J Chang ldquoGeneralized Fourier-Feynmantransform and sequential transforms on function spacerdquo Jour-nal of the Korean Mathematical Society vol 49 pp 1065ndash10822012

[14] R H Cameron and D A Storvick ldquoRelationships between theWiener integral and the analytic Feynman integralrdquo Rendicontidel Circolo Matematico di Palermo no 17 supplement pp 117ndash133 1987

[15] RHCameron andDA Storvick ldquoChange of scale formulas forWiener integralrdquo Rendiconti del Circolo Matematico di Palermono 17 pp 105ndash115 1987

[16] G W Johnson ldquoThe equivalence of two approaches to theFeynman integralrdquo Journal of Mathematical Physics vol 23 pp2090ndash2096 1982

[17] G W Johnson and D L Skoug ldquoNotes on the FeynmanintegralmdashIII the Schroedinger equationrdquo Pacific Journal ofMathematics vol 105 pp 321ndash358 1983

[18] S J Chang J G Choi and S D Lee ldquoA Fresnel type class onfunction spacerdquo Journal of the Korean Society of MathematicalEducation Series B vol 16 no 1 pp 107ndash119 2009

[19] I Yoo B J Kim and B S Kim ldquoA change of scale formulafor a function space integral on 119862

119886119887[0 119879]rdquo Proceedings of the

American Mathematical Society vol 141 no 8 pp 2729ndash27392013

[20] K S Chang G W Johnson and D L Skoug ldquoFunctions inthe Fresnel classrdquo Proceedings of the American MathematicalSociety vol 100 no 2 pp 309ndash318 1987

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 13: Research Article Generalized Analytic Fourier-Feynman ...downloads.hindawi.com/journals/jfs/2013/954098.pdf · Journal of Function Spaces and Applications Volume , Article ID , pages

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of