Top Banner
REPUBLIC OF RWANDA WESTERN PROVINCE. RUBAVU DISTRICT PROJECT: RESIDENTIAL BUILDING PROJECT OWNER: MUKAHIGIRO Marie Claire REINFORCED CONCRETE STRUCTURAL DESIGN DESIGN CODE:BS 8110 BS 8004 Computer Aided Design: ROBOT STRUCTURAL ANALYSIS STRUCTURSL DESIGNER: Eng. HAVUGIMANA Juvens
34

REPUBLIC OF RWANDA WESTERN PROVINCE. RUBAVU DISTRICT ...

Jan 05, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
RUBAVU DISTRICT
REINFORCED CONCRETE STRUCTURAL DESIGN
Computer Aided Design: ROBOT STRUCTURAL ANALYSIS
STRUCTURSL DESIGNER: Eng. HAVUGIMANA Juvens
1 | P a g e
Contents 1. DESIGN INFORMATION..................................................................................................2
3. 2. STAIRS DETAILING.............................................................................................11
4. 1. CONTINOUS RECTANGULAR BEAM ................................................................12
5. DESIGN OF COLUMNS ..................................................................................................17
5. 1. 1. RECTANGULAR COLUMN...........................................................................17
5. 1. 2. Column Definition............................................................................................17
2 | P a g e
REINFORCED CONCRETE STRUCTURAL DESIGN
Relevant Building Regulations and Design Code
Residential Building Intended use of the building
Roof –Imposed 1.5 kN/m2
Floor –Imposed loads 2kN/m2
Variable according to the site conditions: Average allowable bearing pressure =220kN/m2
Subsoil conditions
Concrete : C30 fcu = 30.00 (MPa)
Longitudinal reinforcement : T fy = 460.00 (MPa)
Transversal reinforcement : R fy = 250.00 (MPa)
Materials properties
Unity weight of masonry = 18kN/ m3
Other relevant information
Partial safety factor
2. SLAB DESIGN
1. Slab: Plate107 - Panel no. 107
1.1. Reinforcement:
· Type : RC floor · Main reinforcement direction : 0° · Main reinforcement grade : ; Characteristic strength = 460.00 MPa · Bar diameters bottom d1 = 1.2 (cm) d2 = 1.2 (cm)
top d1 = 1.2 (cm) d2 = 1.2 (cm) · Cover bottom c1 = 3.0 (cm)
top c2 = 3.0 (cm)
· Class : C25/30; Characteristic strength = 31.30 MPa · Density : 2501.36 (kG/m3) · Concrete creep coefficient : 2.10
1.3. Hypothesis
· Calculations according to : BS 8110 · Method of reinforcement area calculations : analytical · Allowable cracking width
- upper layer : 0.30 (mm) - lower layer : 0.30 (mm)
· Allowable deflection : 3.0 (cm) · Verification of punching : yes · Fire rating : 0 h · Exposure
- upper layer : mild
- lower layer : mild · Calculation type : simple bending
1.4. Slab geometry
Thickness 0.15 (m)
Contour: edge beginning end length
x1 y1 x2 y2 (m) 1 -0.00 -4.40 3.60 -4.40 3.60 2 3.60 -4.40 3.60 0.00 4.40 3 3.60 0.00 0.00 0.00 3.60 4 0.00 0.00 -0.00 -4.40 4.40
Support: n° Name dimensions coordinates edge
(m) x y 70 linear 0.20 / 1.80 2.70 0.00 — 71 point 0.20 / 0.20 -0.00 -4.40 — 71 linear 0.20 / 3.60 1.80 -4.40 — 71 linear 1.90 / 0.20 -0.00 -3.45 — 71 point 0.20 / 0.20 -0.00 -4.40 — 72 point 0.20 / 0.20 -0.00 -2.50 — 72 linear 2.50 / 0.20 -0.00 -1.25 — 72 point 0.20 / 0.20 -0.00 -2.50 — 74 point 0.20 / 0.20 0.00 0.00 — 74 linear 0.20 / 1.80 0.90 0.00 — 74 point 0.20 / 0.20 0.00 0.00 — 75 point 0.20 / 0.20 1.80 0.00 — 75 point 0.20 / 0.20 1.80 0.00 — 81 point 0.20 / 0.20 3.60 -1.70 — 81 linear 1.70 / 0.20 3.60 -0.85 — 81 linear 1.70 / 0.20 3.60 -2.55 — 81 point 0.20 / 0.20 3.60 -1.70 — 82 point 0.20 / 0.20 3.60 -3.40 — 82 linear 1.00 / 0.20 3.60 -3.90 — 82 point 0.20 / 0.20 3.60 -3.40 — 83 point 0.20 / 0.20 3.60 -4.40 — 83 point 0.20 / 0.20 3.60 -4.40 — 85 point 0.20 / 0.20 3.60 0.00 — 85 point 0.20 / 0.20 3.60 0.00 — * - head present
1.5. Calculation results:
Ax(+) Ax(-) Ay(+) Ay(-)
Modified required reinforcement (cm2/m): 3.19 1.95 2.33 1.95
Original required reinforcement (cm2/m):
3.19 1.95 2.33 1.95 Coordinates (m):
-0.00;-2.50 1.60;-3.60 1.80;0.00 0.80;- 3.60
1.5.2. Maximum moments + reinforcement for bending
Ax(+) Ax(-) Ay(+) Ay(-)
Symbol: required area/provided area Ax(+) (cm2/m) 3.19/3.90 1.95/3.90 1.95/3.90 1.95/3.90 Ax(-) (cm2/m) 1.95/2.45 1.95/2.45 0.00/2.45 1.95/2.45 Ay(+) (cm2/m) 2.12/2.38 0.00/2.38 2.33/2.38 0.00/2.38 Ay(-) (cm2/m) 1.95/2.12 1.95/2.12 0.00/0.00 1.95/2.12
ULS Mxx (kN*m/m) 13.23 -4.27 6.24 0.05 Myy (kN*m/m) 7.82 -1.24 9.86 -2.05 Mxy (kN*m/m) -1.43 -0.29 -0.58 -0.72
Nxx (kN/m) -0.29 -1.17 2.29 -1.05 Nyy (kN/m) 0.20 0.24 6.14 0.27 Nxy (kN/m) 1.31 0.69 0.18 1.00
Coordinates (m) -0.00;-2.50 1.60;-3.60 1.80;0.00 0.80;- 3.60 Coordinates* (m) 6.10;8.30;4.60 4.50;9.40;4.60 4.30;5.80;4.60
5.30;9.40;4.60 * - Coordinates in the structure global coordinate system
1.5.4. Deflection |f(+)| = 0.0 (cm) <= fdop(+) = 3.0 (cm) |f(-)| = 0.0 (cm) <= fdop(-) = 3.0 (cm)
1.5.5. Cracking upper layer ax = 0.00 (mm) <= adop = 0.30 (mm) ay = 0.00 (mm) <= adop = 0.30 (mm) lower layer ax = 0.00 (mm) <= adop = 0.30 (mm) ay = 0.00 (mm) <= adop = 0.30 (mm)
2. Loads:
Case Type List Value 2 uniform load PZ=-11.00(kN/m) 3 (FE) uniform 103to110 222to229 PZ=-5.00(kN/m2)
Combination/Component Definition ULS/4 (1+2)*1.35+3*1.50
3. Results - detailing
List of solutions: Reinforcement: bars Solution no. Reinforcement range Total weight
Diameter / Weight (kG)
6 | P a g e
1 - 135.05 2 - 135.38 3 - 143.46 4 - 148.48 5 - 155.42 6 - 160.43 7 - 168.51
Results for the solution no. 1 Reinforcement zones
Bottom reinforcement Name coordinates Provided reinforcementAt Ar
x1 y1 x2 y2 f (mm) / (cm) (cm2/m) (cm2/m) 1/1- Ax Main -0.00 -4.40 3.60 0.00 10.0 / 32.0 1.95 < 2.45 1/2- Ay Perpendicular -0.00 -4.40 3.60 0.00 10.0 / 37.0 1.95 < 2.12
Top reinforcement Name coordinates Provided reinforcementAt Ar
x1 y1 x2 y2 f (mm) / (cm) (cm2/m) (cm2/m) 1/1+ Ax Main -0.00 -4.40 3.60 0.00 12.0 / 29.0 3.19 < 3.90 1/2+ Ay Perpendicular -0.00 -4.40 3.60 0.00 10.0 / 33.0 2.33 < 2.38
4. Material survey
· Concrete volume = 2.38 (m3) · Formwork = 15.84 (m2) · Slab circumference = 16.00 (m) · Area of openings = 0.00 (m2)
· Steel · Total weight = 133.94 (kG) · Density = 56.37 (kG/m3) · Average diameter = 10.5 (mm) · Survey according to diameters:
Diameter Length Number: (m)
10.0 mm 3.54 14 10.0 mm 4.34 21 12.0 mm 3.54 15
7 | P a g e
3. DESIGN OF STAIRS
3. 1. STAIR SLAB SPANNING LONGITUDINALLY
The effective spanis 2.5m, the rise of stairis 1.35m, 300 mm treads, 150 mm risers, 125 mm waist, effective depth d=90mm and the characteristicmaterialstrengths are fcu= 30 N/mm2, fy=250 N/mm2
Slopelength of stair = √ (1.352+2.52) =2.84m width of stairs=1m Self-weight of waist plus steps =(2.84*0.125+1.5*0.3/2)*25=14.5KN Live load =3.0*2.5*1=7.5KN Ultimateload =1.4*14.5+1.6*7.5=32.3kN Our stairwillbeconstructedmonolithicallythus moment must becalculated by:
M= =
SEDR=
= .∗
∗ =0.99
For simplysupportedslab, basic ratio=20 from table 6.7, for fy=250N/mm2 the corresponding value of fs=156 N/mm2, therefore the spandepth modification factor is 1.98whichis the minimum value. Since the stairs flight occupies more than 60 per cent of the span a furtherincrease of 15 per cent ispermitted, thus
Limiting=
Actual =
=27.8
Thus d=90 mm isadequate and therewillbe no deflection, because27.8<30.88
K=
= .∗
∗∗ =0.033< K=0.156, therefore no compression reinforcementrequired.
Z=d(0.5+(0.25-k/0.9)^1/2
Transverse distribution steel= .
= .∗∗
=288mm2
Provide R10 bars@250mm centers, Asp=314 mm2/m Continuity bars at the top and bottom of the spanshouldbeprovided and about 50 per cent of the main steelwouldbereasonable, whilesatisfying maximum spacinglimits of 3d = 90*3=270mm.
8 | P a g e
STAIRCASE DESIGN: Main stair The main staircase have landing supported by two inclined beams; these beam has the same reinforcement as other normal beams: Flight design:
Landing:
As: use
Landing:
3. 2. STAIRS DETAILING
4. DESIGN OF REINFORCED CONCRETE BEAM
4. 1. CONTINOUS RECTANGULAR BEAM
1 Level:
· Name : Story 2 · Reference level : --- · Fire rating : 0 (h) · Maximum cracking : 0.30 (mm) · Environment class : moderate
· Concrete creep coefficient : jp = 2.00
2 Beam: Beam85 Number: 1
2.1 Material properties:
2.2 Geometry:
2.2.1 Span Position L.supp. L R.supp. (m) (m) (m)
P1 Span 0.20 3.00 0.20 Span length: Lo = 3.20 (m) Section from 0.00 to 3.00 (m)
20.0 x 30.0 (cm) without left slab without right slab
2.3 Calculation options:
· Regulation of combinations : BS8110 · Calculations according to : BS 8110 · Precast beam : no · Cover : bottom c = 3.0 (cm)
: side c1 = 3.0 (cm) : top c2 = 3.0 (cm)
2.4 Calculation results:
2.4.1 Internal forces in ULS
13 | P a g e
Span Mtmax. Mtmin. Ml Mr Ql Qr (kN*m) (kN*m) (kN*m) (kN*m) (kN) (kN)
P1 9.30 -0.00 -4.43 -10.70 20.19 -24.36
2.4.2 Internal forces in SLS
Span Mtmax. Mtmin. Ml Mr Ql Qr (kN*m) (kN*m) (kN*m) (kN*m) (kN) (kN)
P1 0.00 0.00 0.00 0.00 0.00 0.00
2.4.3 Required reinforcement area
Span Span (cm2) Left support (cm2) Right support (cm2) bottom top bottom top bottom top
P1 0.89 0.00 0.00 0.43 0.00 1.03
0 0.5 1 1.5 2 2.5 3 40
30
20
10
0
-10
-20
-30
-40
[m]
0 0.5 1 1.5 2 2.5 3 -80
-60
-40
-20
0
20
40
60
80
[m]
[kN]
14 | P a g e
2.4.4 Deflection and cracking
at(s-t) - initial deflection due to total load ap(s-t) - initial deflection due to long-term load ap(l-t) - long-term deflection due to long-term load a - total deflection aall - allowable deflection
Cw - width of perpendicular cracks
Span at(s-t) ap(s-t) ap(l-t) a aall Cw (cm) (cm) (cm) (cm) (cm) (mm)
P1 0.0 0.0 0.0 0.0=(L0/--) -1.3 0.0
0 0.5 1 1.5 2 2.5 3 4
3
2
1
0
1
2
3
4
[m]
[cm2]
0 0.5 1 1.5 2 2.5 3 6
4
2
0
2
4
6
[m]
[cm2/m]
15 | P a g e
2.5 Theoretical results - detailed results:
2.5.1 P1 : Span from 0.20 to 3.20 (m) ULS SLS
Abscissa M max. M min. M max. M min. A bottom A top (m) (kN*m) (kN*m) (kN*m) (kN*m) (cm2) (cm2) 0.20 0.00 -4.43 0.00 0.00 0.00 0.43 0.42 0.00 -0.19 0.00 0.00 0.00 0.02 0.74 4.47 -0.00 0.00 0.00 0.43 0.00 1.06 7.60 -0.00 0.00 0.00 0.73 0.00 1.38 9.21 -0.00 0.00 0.00 0.89 0.00 1.70 9.30 -0.00 0.00 0.00 0.89 0.00 2.02 7.87 -0.00 0.00 0.00 0.76 0.00 2.34 4.92 -0.00 0.00 0.00 0.47 0.00 2.66 0.45 -0.00 0.00 0.00 0.04 0.00 2.98 0.00 -5.54 0.00 0.00 0.00 0.53 3.20 0.00 -10.70 0.00 0.00 0.00 1.03
ULS SLS Abscissa Q max. Q max. Cw (m) (kN) (kN) (mm) 0.20 20.19 0.00 0.0 0.42 16.92 0.00 0.0 0.74 12.17 0.00 0.0 1.06 7.41 0.00 0.0 1.38 2.66 0.00 0.0 1.70 -2.09 0.00 0.0 2.02 -6.84 0.00 0.0 2.34 -11.59 0.00 0.0 2.66 -16.35 0.00 0.0 2.98 -21.10 0.00 0.0 3.20 -24.36 0.00 0.0
0 0.5 1 1.5 2 2.5 3 1.5
1
0.5
0
-0.5
-1
-1.5
[m]
[cm]
0 0.5 1 1.5 2 2.5 3 0.3
0.2
0.1
0
0.1
0.2
0.3
[m]
[mm]
2.6 Reinforcement:
2.6.1 P1 : Span from 0.20 to 3.20 (m) Longitudinal reinforcement: · bottom
2 14 l = 3.34 from 0.03 to 3.37 · assembling (top)
2 14 l = 3.10 from 0.15 to 3.25
· support () 2 14 l = 1.55 from 0.03 to 1.01 2 14 l = 1.55 from 2.39 to 3.37
Transversal reinforcement: · main
stirrups 17 8 l = 0.89 e = 1*0.06 + 16*0.18 (m)
pins 17 8 l = 0.89 e = 1*0.06 + 16*0.18 (m)
3 Material survey:
· Concrete volume = 0.20 (m3) · Formwork = 2.76 (m2)
· Steel · Total weight = 28.97 (kG) · Density = 142.03 (kG/m3) · Average diameter = 11.4 (mm) · Survey according to diameters:
Diameter Length Weight NumberTotal weight (mm) (m) (kG) (No.) (kG) 8 0.89 0.35 17 5.94 14 1.55 1.87 4 7.48 14 3.10 3.74 2 7.49 14 3.34 4.04 2 8.07
17 | P a g e
5. DESIGN OF COLUMNS
1 Level:
· Name : Story 2 · Reference level : 1.50 (m) · Fire rating : 0 (h) · Environment class : mild
2 Column: Column63 Number: 1
2.1 Material properties:
2.2 Geometry:
2.2.1 Rectangular 20.0 x 20.0 (cm) 2.2.2 Height: L = 3.10 (m) 2.2.3 Slab thickness = 0.15 (m) 2.2.4 Beam height = 0.30 (m) 2.2.5 Cover = 3.0 (cm)
2.3 Calculation options:
· Calculations according to : BS 8110 · Precast column : no · Pre-design : no · Slenderness taken into account : yes · Ties :to slab · Non-sway structure
2.4 Loads:
Case Nature Group gf N Myu Myl Myi Mzu Mzl Mzi (kN) (kN*m) (kN*m) (kN*m) (kN*m) (kN*m) (kN*m)
DL2 dead load(Structural) 63 1.40 57.95 0.36 -0.18 0.14 -0.67 0.60 -0.27
LL1 live load(Category A) 63 1.60 26.92 0.70 -0.35 0.28 -0.13 0.08 -0.05
gf - load factor
2.5 Calculation results:
2.5.1 ULS Analysis
Design combination: 1.40DL2+1.60LL1 (A) Internal forces:
NSd = 124.21 (kN) MSdy = 1.62 (kN*m) MSdz = -1.13 (kN*m) Design forces: Upper node
NSd = 124.21 (kN) NSd*etotz = 3.12 (kN*m) NSd*etoty= -1.24 (kN*m)
2.5.1.1 Eccentricity:
Eccentricity: ez (My/N) ey (Mz/N) Static ee: 1.3 (cm) -0.9 (cm)
II order eadd: 1.2 (cm) 1.2 (cm) Minimal emin: 1.0 (cm) -1.0 (cm) Total etot: 2.5 (cm) -1.0 (cm)
2.5.1.2 Detailed analysis-Direction Y:
3.10 1.00 3.10
ley/h = 15.50 > 15.00 (10-7) lez/b = 15.50 > 15.00 (10-7) Slender column
2.5.1.2.2 Buckling analysis
M2 = 1.62 (kN*m) M1 = -0.81 (kN*m) Case: Cross-section at the column end (Upper node), Slenderness taken into account M = 1.62 (kN*m) emin = max (20mm ; 0.05 *hy) = 1.0 (cm) (3.8.2.4)
hy = 20.0 (cm) Mmin = N*emin = 1.24 (kN*m) au/2 = ba*K*h/2 = 1.2 (cm) (32)
ba = 0.12 (34) K = min((Nuz-N)/(Nuz-Nbal) ; 1) = 1.00 (33)
Nuz = 2/3*fcu/gc*Ac+fy/gs*Asc = 714.20 (kN) Ac = 0.04 (m2) Asc = 6.16 (cm2)
Nbal = 153.16 (kN) h = 20.0 (cm)
Madd/2 = au/2 * N = 1.49 (kN*m) (35) Md = max (Mmin;M+Madd/2) = 3.12 (kN*m)
2.5.1.3 Detailed analysis-Direction Z:
M2 = 0.96 (kN*m) M1 = -1.13 (kN*m) Case: Cross-section at the column end (Upper node), Slenderness not taken into account M = -1.13 (kN*m) emin = max (20mm ; 0.05 *hz) = -1.0 (cm) (3.8.2.4)
hz = 20.0 (cm) Mmin = N*emin = -1.24 (kN*m) Md = max (Mmin;M) = -1.24 (kN*m)
2.5.2 Reinforcement:
Real (provided) area Asr = 6.16 (cm2)
Ratio: m = 1.54 %
Transversal reinforcement: stirrups: 18 8 l = 0.69 (m)
pins 18 8 l = 0.69 (m)
3 Material survey:
· Concrete volume = 0.11 (m3) · Formwork = 2.24 (m2)
· Steel · Total weight = 19.71 (kG) · Density = 176.00 (kG/m3) · Average diameter = 11.0 (mm) · Reinforcement survey:
Diameter Length Weight Number Total weight (m) (kG) (No.) (kG)
8 0.69 0.27 18 4.87 14 3.07 3.71 4 14.84
6. FOUNDATION DESIGN
6. 1. FOOTING
1 Spread footing: Foundation1...58 Number: 1
1.1 Basic data
· Geotechnic calculations according to : BS 8004 · Concrete calculations according to : BS 8110 · Shape selection : without limits
1.1.2 Geometry:
A = 0.80 (m) a = 0.20 (m) B = 0.80 (m) b = 0.20 (m) h1 = 0.25 (m) ex = 0.00 (m) h2 = 0.20 (m) ey = 0.00 (m) h4 = 0.05 (m)
a' = 20.0 (cm) b' = 20.0 (cm) c1 = 5.0 (cm) c2 = 5.0 (cm)
1.1.3 Materials
· Concrete : C25/30; Characteristic strength = 31.30 MPa Unit weight = 2501.36 (kG/m3)
· Longitudinal reinforcement : type B450C Characteristic strength = 450.00 MPa
· Transversal reinforcement : type B450C Characteristic strength = 450.00 MPa
1.1.4 Loads:
Foundation loads:
21 | P a g e
Case Nature Group N Fx Fy Mx My (kN) (kN) (kN) (kN*m) (kN*m)
COMB1 design ---- 234.91 9.86 -2.74 1.27 4.69 COMB1 design ---- 158.75 -11.02 -3.12 1.49 -5.75 COMB1 design ---- 312.34 -11.01 1.46 -0.80 -5.51 COMB1 design ---- 335.92 11.22 0.37 -0.28 5.57 COMB1 design ---- 62.06 2.25 -0.37 0.15 1.14 COMB1 design ---- 119.10 -2.37 -4.39 2.27 -1.17 COMB1 design ---- 79.47 -0.86 -0.22 0.08 -0.44 COMB1 design ---- 156.44 0.08 1.01 -0.57 0.03 COMB1 design ---- 148.40 -0.26 0.11 -0.13 -0.16 COMB1 design ---- 319.88 -2.62 -1.66 0.68 -1.34 COMB1 design ---- 250.03 4.31 0.96 -0.57 2.12 COMB1 design ---- 205.87 4.64 0.93 -0.55 2.35 COMB1 design ---- 283.49 -3.86 1.47 -0.88 -1.89 COMB1 design ---- 115.30 3.97 1.54 -0.86 2.04 COMB1 design ---- 237.24 0.63 1.35 -0.82 0.38 COMB1 design ---- 198.94 -1.03 0.18 -0.12 -0.43 COMB1 design ---- 193.57 2.48 0.24 -0.15 1.29 COMB1 design ---- 27.76 -2.68 1.76 -0.78 -1.25 COMB1 design ---- 173.45 -2.59 0.67 -0.24 -1.24 COMB1 design ---- 181.27 -2.78 1.20 -0.51 -1.40 COMB1 design ---- 182.93 2.55 -0.11 0.03 1.26 COMB1 design ---- 112.41 -0.90 -0.65 0.29 -0.48
Backfill loads: Case Nature Q1
(kN/m2)
1.1.5 Combination list
1/ ULS : COMB1 N=234.91 Mx=1.27 My=4.69 Fx=9.86 Fy=-2.74 2/ ULS : COMB1 N=158.75 Mx=1.49 My=-5.75 Fx=-11.02 Fy=-3.12 3/ ULS : COMB1 N=312.34 Mx=-0.80 My=-5.51 Fx=-11.01 Fy=1.46 4/ ULS : COMB1 N=335.92 Mx=-0.28 My=5.57 Fx=11.22 Fy=0.37 5/ ULS : COMB1 N=62.06 Mx=0.15 My=1.14 Fx=2.25 Fy=-0.37 6/ ULS : COMB1 N=119.10 Mx=2.27 My=-1.17 Fx=-2.37 Fy=-4.39 7/ ULS : COMB1 N=79.47 Mx=0.08 My=-0.44 Fx=-0.86 Fy=-0.22 8/ ULS : COMB1 N=156.44 Mx=-0.57 My=0.03 Fx=0.08 Fy=1.01 9/ ULS : COMB1 N=148.40 Mx=-0.13 My=-0.16 Fx=-0.26 Fy=0.11 10/ ULS : COMB1 N=319.88 Mx=0.68 My=-1.34 Fx=-2.62 Fy=-1.66 11/ ULS : COMB1 N=250.03 Mx=-0.57 My=2.12 Fx=4.31 Fy=0.96 12/ ULS : COMB1 N=205.87 Mx=-0.55 My=2.35 Fx=4.64 Fy=0.93 13/ ULS : COMB1 N=283.49 Mx=-0.88 My=-1.89 Fx=-3.86 Fy=1.47 14/ ULS : COMB1 N=115.30 Mx=-0.86 My=2.04 Fx=3.97 Fy=1.54 15/ ULS : COMB1 N=237.24 Mx=-0.82 My=0.38 Fx=0.63 Fy=1.35 16/ ULS : COMB1 N=198.94 Mx=-0.12 My=-0.43 Fx=-1.03 Fy=0.18 17/ ULS : COMB1 N=193.57 Mx=-0.15 My=1.29 Fx=2.48 Fy=0.24 18/ ULS : COMB1 N=27.76 Mx=-0.78 My=-1.25 Fx=-2.68 Fy=1.76 19/ ULS : COMB1 N=173.45 Mx=-0.24 My=-1.24 Fx=-2.59 Fy=0.67 20/ ULS : COMB1 N=181.27 Mx=-0.51 My=-1.40 Fx=-2.78 Fy=1.20 21/ ULS : COMB1 N=182.93 Mx=0.03 My=1.26 Fx=2.55 Fy=-0.11 22/ ULS : COMB1 N=112.41 Mx=0.29 My=-0.48 Fx=-0.90 Fy=-0.65 23/* ULS : COMB1 N=234.91 Mx=1.27 My=4.69 Fx=9.86 Fy=-2.74 24/* ULS : COMB1 N=158.75 Mx=1.49 My=-5.75 Fx=-11.02 Fy=-3.12 25/* ULS : COMB1 N=312.34 Mx=-0.80 My=-5.51 Fx=-11.01 Fy=1.46 26/* ULS : COMB1 N=335.92 Mx=-0.28 My=5.57 Fx=11.22 Fy=0.37 27/* ULS : COMB1 N=62.06 Mx=0.15 My=1.14 Fx=2.25 Fy=-0.37 28/* ULS : COMB1 N=119.10 Mx=2.27 My=-1.17 Fx=-2.37 Fy=-4.39 29/* ULS : COMB1 N=79.47 Mx=0.08 My=-0.44 Fx=-0.86 Fy=-0.22 30/* ULS : COMB1 N=156.44 Mx=-0.57 My=0.03 Fx=0.08 Fy=1.01 31/* ULS : COMB1 N=148.40 Mx=-0.13 My=-0.16 Fx=-0.26 Fy=0.11 32/* ULS : COMB1 N=319.88 Mx=0.68 My=-1.34 Fx=-2.62 Fy=-1.66 33/* ULS : COMB1 N=250.03 Mx=-0.57 My=2.12 Fx=4.31 Fy=0.96 34/* ULS : COMB1 N=205.87 Mx=-0.55 My=2.35 Fx=4.64 Fy=0.93 35/* ULS : COMB1 N=283.49 Mx=-0.88 My=-1.89 Fx=-3.86 Fy=1.47 36/* ULS : COMB1 N=115.30 Mx=-0.86 My=2.04 Fx=3.97 Fy=1.54 37/* ULS : COMB1 N=237.24 Mx=-0.82 My=0.38 Fx=0.63 Fy=1.35 38/* ULS : COMB1 N=198.94 Mx=-0.12 My=-0.43 Fx=-1.03 Fy=0.18
22 | P a g e
39/* ULS : COMB1 N=193.57 Mx=-0.15 My=1.29 Fx=2.48 Fy=0.24 40/* ULS : COMB1 N=27.76 Mx=-0.78 My=-1.25 Fx=-2.68 Fy=1.76 41/* ULS : COMB1 N=173.45 Mx=-0.24 My=-1.24 Fx=-2.59 Fy=0.67 42/* ULS : COMB1 N=181.27 Mx=-0.51 My=-1.40 Fx=-2.78 Fy=1.20 43/* ULS : COMB1 N=182.93 Mx=0.03 My=1.26 Fx=2.55 Fy=-0.11 44/* ULS : COMB1 N=112.41 Mx=0.29 My=-0.48 Fx=-0.90 Fy=-0.65
1.2 Geotechnical design
1.2.2 Soil:
Soil level: N1 = 0.00 (m) Column pier level: Na = 0.00 (m) Minimum reference level: Nf = -0.50 (m)
Clay • Soil level: 0.00 (m) • Unit weight:2243.38 (kG/m3) • Unit weight of solid: 2753.23 (kG/m3) • Internal friction angle: 25.0 (Deg) • Cohesion: 0.06 (MPa)
1.2.3 Limit states
1.3 RC design
Shear
Design combination ULS : COMB1 N=335.92 Mx=-0.28 My=5.57 Fx=11.22 Fy=0.37
Load factors: 1.00 * Foundation weight 1.00 * Soil weight
Design load: Nr = 342.68 (kN) Mx = -0.44 (kN*m) My = 10.62 (kN*m)
Length of critical circumference: 0.80 (m) Shear force: 55.61 (kN) Section effective height heff = 0.19 (m)
23 | P a g e
Shear area: A = 0.15 (m2) Reinforcement ratio: r = 0.19 % Shear stress: 0.37 (MPa) Admissible shear stress: 0.47 (MPa) Safety factor: 1.288 > 1
1.3.3 Required reinforcement
bottom:
ULS : COMB1 N=335.92 Mx=-0.28 My=5.57 Fx=11.22 Fy=0.37 My = 22.26 (kN*m) Asx = 3.60 (cm2/m)
ULS : COMB1 N=335.92 Mx=-0.28 My=5.57 Fx=11.22 Fy=0.37 Mx = 19.04 (kN*m) Asy = 3.38 (cm2/m)
As min = 3.38 (cm2/m)
As min = 0.00 (cm2/m)
Column pier: Longitudinal reinforcement A = 1.60 (cm2) A min. = 1.60 (cm2)
A = 2 * (Asx + Asy) Asx = 0.32 (cm2) Asy = 0.48 (cm2)
1.3.4 Provided reinforcement
2.3.1 Spread footing: Bottom: Along X axis:
5 B450C 12 l = 0.85 (m) e = 1*-0.30 + 4*0.15 Along Y axis:
5 B450C 12 l = 0.85 (m) e = 1*-0.30 + 4*0.15 Top:
2.3.2 Pier Longitudinal reinforcement
Dowels Longitudinal reinforcement
4 B450C 14 l = 0.95 (m) e = 1*-0.03 + 1*0.07
24 | P a g e
2 Material survey:
· Concrete volume = 0.17 (m3) · Formwork = 0.96 (m2)
· Steel B450C · Total weight = 12.47 (kG) · Density = 74.25 (kG/m3) · Average diameter = 11.9 (mm) · Survey according to diameters:
Diameter Length Number: (m)
7. RECAPTILATION OF REINFORCEMENTS DESIGN RESULTS
1.1.1 COLUMNS SUMMARY
Floor Internal/ Edge
Edge 20X20 414 8@20 cm c/c Edge
1 Internal 20X20 414 8@20 cm c/c Edge 20X20 414 8@20 cm c/c Edge
25 | P a g e
1.1.2 FOOTING SUMMARY Footing type
Dimensions Reinforcement in X-direction
Type 1 140x140x25 12@200 mm c/c 12@200 mm c/c 414
1.1.3 BEAMS SUMMARY
Bottom reinforcement (mid-span)
Transversal beams
1.1.4 SLAB SUMMARY
10@20cm c/c
10@20cm c/c
Done at RUBAVU on May 22 ,2018 Eng. HAVUGIMANA Juvens
V1 P1 V2
200 2250 200
310 1080 3
80
26
Tel. Fax Concrete : C20/25 = 0.153 m3
Formwork = 2.04 m2
Side cover 3 cm
28 00 29
Pos.ReinforcementCodeShape SteelNumber
140
18
Formwork = 2.24 m2
1
100 700 10
680
310
4
100
100
3
Cover c1 = 5 cm, c2 = 5 cm
View scale 1/20
3600
Formwork = 15.8 m2
Element: Plate107
3600
, Tel. Fax Concrete : C25/30 = 2.38 m3 Cover top = 3 cm
bottom = 3 cm Level Story 2 Subject: MUKAHIGIRO M.Claire
Element: Plate107
Drawing: BOTTOM SLAB REINFORCEMENT Scale : 1/50 Date : 22/05/18 Page 2/4
3600
, Tel. Fax Concrete : C25/30 = 2.38 m3 Cover top = 3 cm
bottom = 3 cm Level Story 2 Subject: MUKAHIGIRO M.Claire
Element: Plate107
Drawing: TOP SLAB REINFORCEMENT Scale : 1/50 Date : 22/05/18 Page 3/4
1 12.0 l=3540 00 3540 15
Pos. Reinforcement Code Shape Steel Number
2 10.0 l=4340 00 4340 21
3 10.0 l=3540 00 3540 14
, Tel. Fax Concrete : C25/30 = 2.38 m3 Cover top = 3 cm
bottom = 3 cm Level Story 2 Subject: MUKAHIGIRO M.Claire
Element: Plate107
V2 P2 V3
200 2250 200
240
80
26
310 830 3
Tel. Fax Concrete : C20/25 = 0.153 m3
Formwork = 2.04 m2
Side cover 3 cm