Top Banner
Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals Reproducing kernel almost Pontryagin spaces Harald Woracek Vienna University of Technology FWF (I 1536-N25) :: Joint Project :: RFBR (13-01-91002-ANF)
153

Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Jul 10, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Reproducing kernel almost Pontryagin spaces

Harald Woracek

Vienna University of Technology

FWF (I 1536-N25) :: Joint Project :: RFBR (13-01-91002-ANF)

Page 2: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

This presentation is based on:

M. Kaltenback, H. Winkler, and H. Woracek. “AlmostPontryagin spaces”. In: Oper. Theory Adv. Appl. 160(2005), pp. 253–271.

H. de Snoo and H. Woracek. “Sums, couplings, andcompletions of almost Pontryagin spaces”. In: LinearAlgebra Appl. 437.2 (2012), pp. 559–580.

H. Woracek. “Reproducing kernel almost Pontryaginspaces”. 40pp. (submitted). Preprint in: ASC Report14 (2014), Vienna University of Technology.

H. Woracek. “Directing functionals and de Brangesspace completions in the almost Pontryagin spacesetting”. manuscript in preparation.

M. Langer and H. Woracek. “A Pontryagin spaceapproach to the index of determinacy of a measure”.manuscript in preparation.

Page 3: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

These slides are available from my website

http://asc.tuwien.ac.at/index.php?id=woracek

Page 4: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Outline

Almost Pontryagin SpacesGeometryCompletions

Reproducing Kernel SpacesContinuity of point-evaluationsKernel FunctionsReproducing kernel completions

Hamburger moment problemReviewIndefinite version of the moment problemSignificance of completions

Directing Functionals

Some Selected Literature

Page 5: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Almost Pontryagin Spaces

Page 6: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Definition of aPsA triple 〈A, [·, ·]A,O〉 is an almost Pontryagin space (aPs forshort), if

• A is a linear space,

• [·, ·]A is an inner product on A,

• O is a topology on A,

such that the following axioms hold:

Page 7: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Definition of aPsA triple 〈A, [·, ·]A,O〉 is an almost Pontryagin space (aPs forshort), if

(aPs1) The topology O is a Hilbert space topology on A (i.e., itis induced by some inner product which turns A into aHilbert space).

(aPs2) The inner product [·, ·]A is O-continuous (i.e., it iscontinuous as a map of A×A into C where A×Acarries the product topology O ×O and C the euclideantopology).

(aPs3) There exists an O-closed linear subspace M of A withfinite codimension in A, such that 〈M, [·, ·]A|M×M〉 is aHilbert space.

Page 8: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Definition of aPsA triple 〈A, [·, ·]A,O〉 is an almost Pontryagin space (aPs forshort), if

(aPs1) The topology O is a Hilbert space topology on A (i.e., itis induced by some inner product which turns A into aHilbert space).

(aPs2) The inner product [·, ·]A is O-continuous (i.e., it iscontinuous as a map of A×A into C where A×Acarries the product topology O ×O and C the euclideantopology).

(aPs3) There exists an O-closed linear subspace M of A withfinite codimension in A, such that 〈M, [·, ·]A|M×M〉 is aHilbert space.

If 〈A, [·, ·]A,O〉 and 〈B, [·, ·]B, T 〉 are almost Pontryagin spaces, amap ψ : A → B is an isomorphism, if it is linear, isometric, andhomeomorphic.

Page 9: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

The role of the topology

Let 〈A, [., .]A〉 be an inner product space. DenoteA := x ∈ A : [x, y]A = 0, y ∈ A.

• Assume that [., .]A is nondegenerated (i.e., A = 0). Thenbeing an aPs is a property of the inner product alone: thereexists at most one topology O s.t. 〈A, [., .]A,O〉 is an aPs.

• If [., .]A is degenerated (i.e., A 6= 0), dimA =∞, and Ois a topology s.t. 〈A, [., .]A,O〉 is an aPs, then there exists atopology T , T 6= O, s.t. 〈A, [., .]A, T 〉 is an aPs.

• 〈A, [., .]A,O〉 is a nondegenerated aPs if and only if 〈A, [., .]A〉is a Pontryagin space and O is its Pontryagin space topology.

• 〈A, [., .]A,O〉 is a nondegenerated and positive definite aPs ifand only if 〈A, [., .]A〉 is a Hilbert space and O is its Hilbertspace topology.

Page 10: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

The role of the topology

Let 〈A, [., .]A〉 be an inner product space. DenoteA := x ∈ A : [x, y]A = 0, y ∈ A.• Assume that [., .]A is nondegenerated (i.e., A = 0). Then

being an aPs is a property of the inner product alone: thereexists at most one topology O s.t. 〈A, [., .]A,O〉 is an aPs.

• If [., .]A is degenerated (i.e., A 6= 0), dimA =∞, and Ois a topology s.t. 〈A, [., .]A,O〉 is an aPs, then there exists atopology T , T 6= O, s.t. 〈A, [., .]A, T 〉 is an aPs.

• 〈A, [., .]A,O〉 is a nondegenerated aPs if and only if 〈A, [., .]A〉is a Pontryagin space and O is its Pontryagin space topology.

• 〈A, [., .]A,O〉 is a nondegenerated and positive definite aPs ifand only if 〈A, [., .]A〉 is a Hilbert space and O is its Hilbertspace topology.

Page 11: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

The role of the topology

Let 〈A, [., .]A〉 be an inner product space. DenoteA := x ∈ A : [x, y]A = 0, y ∈ A.• Assume that [., .]A is nondegenerated (i.e., A = 0). Then

being an aPs is a property of the inner product alone: thereexists at most one topology O s.t. 〈A, [., .]A,O〉 is an aPs.

• If [., .]A is degenerated (i.e., A 6= 0), dimA =∞, and Ois a topology s.t. 〈A, [., .]A,O〉 is an aPs, then there exists atopology T , T 6= O, s.t. 〈A, [., .]A, T 〉 is an aPs.

• 〈A, [., .]A,O〉 is a nondegenerated aPs if and only if 〈A, [., .]A〉is a Pontryagin space and O is its Pontryagin space topology.

• 〈A, [., .]A,O〉 is a nondegenerated and positive definite aPs ifand only if 〈A, [., .]A〉 is a Hilbert space and O is its Hilbertspace topology.

Page 12: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

The role of the topology

Let 〈A, [., .]A〉 be an inner product space. DenoteA := x ∈ A : [x, y]A = 0, y ∈ A.• Assume that [., .]A is nondegenerated (i.e., A = 0). Then

being an aPs is a property of the inner product alone: thereexists at most one topology O s.t. 〈A, [., .]A,O〉 is an aPs.

• If [., .]A is degenerated (i.e., A 6= 0), dimA =∞, and Ois a topology s.t. 〈A, [., .]A,O〉 is an aPs, then there exists atopology T , T 6= O, s.t. 〈A, [., .]A, T 〉 is an aPs.

• 〈A, [., .]A,O〉 is a nondegenerated aPs if and only if 〈A, [., .]A〉is a Pontryagin space and O is its Pontryagin space topology.

• 〈A, [., .]A,O〉 is a nondegenerated and positive definite aPs ifand only if 〈A, [., .]A〉 is a Hilbert space and O is its Hilbertspace topology.

Page 13: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

The role of the topology

Let 〈A, [., .]A〉 be an inner product space. DenoteA := x ∈ A : [x, y]A = 0, y ∈ A.• Assume that [., .]A is nondegenerated (i.e., A = 0). Then

being an aPs is a property of the inner product alone: thereexists at most one topology O s.t. 〈A, [., .]A,O〉 is an aPs.

• If [., .]A is degenerated (i.e., A 6= 0), dimA =∞, and Ois a topology s.t. 〈A, [., .]A,O〉 is an aPs, then there exists atopology T , T 6= O, s.t. 〈A, [., .]A, T 〉 is an aPs.

• 〈A, [., .]A,O〉 is a nondegenerated aPs if and only if 〈A, [., .]A〉is a Pontryagin space and O is its Pontryagin space topology.

• 〈A, [., .]A,O〉 is a nondegenerated and positive definite aPs ifand only if 〈A, [., .]A〉 is a Hilbert space and O is its Hilbertspace topology.

Page 14: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Example

For a > 0, the Paley-Wiener space is

PWa :=F entire : F exponential type ≤ a, F |R ∈ L2(R)

=F : ∃f ∈ L2([−a, a]) s.t. F (z) =

∫[−a,a]

f(t)e−itz dt.

Set

[F,G] :=

∫RF (t)G(t) dt− πF (0)G(0), F,G ∈ PWa,

and let PWa be endowed with the subspace topology of L2(R).Then

PWa is

Hilbert space , a < π

aPs (dimA = 1) , a = π

Pontryagin space , a > π

Page 15: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Example

For a > 0, the Paley-Wiener space is

PWa :=F entire : F exponential type ≤ a, F |R ∈ L2(R)

=F : ∃f ∈ L2([−a, a]) s.t. F (z) =

∫[−a,a]

f(t)e−itz dt.

Set

[F,G] :=

∫RF (t)G(t) dt− πF (0)G(0), F,G ∈ PWa,

and let PWa be endowed with the subspace topology of L2(R).

Then

PWa is

Hilbert space , a < π

aPs (dimA = 1) , a = π

Pontryagin space , a > π

Page 16: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Example

For a > 0, the Paley-Wiener space is

PWa :=F entire : F exponential type ≤ a, F |R ∈ L2(R)

=F : ∃f ∈ L2([−a, a]) s.t. F (z) =

∫[−a,a]

f(t)e−itz dt.

Set

[F,G] :=

∫RF (t)G(t) dt− πF (0)G(0), F,G ∈ PWa,

and let PWa be endowed with the subspace topology of L2(R).Then

PWa is

Hilbert space , a < π

aPs (dimA = 1) , a = π

Pontryagin space , a > π

Page 17: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Equivalent definitions of aPs

Let there be given

• a linear space A,

• an inner product [·, ·]A on A,

• a topology O on A.

Page 18: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Equivalent definitions of aPs

Let there be given

• a linear space A,

• an inner product [·, ·]A on A,

• a topology O on A.

Then the following statements are equivalent:

Page 19: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Equivalent definitions of aPs

• 〈A, [·, ·]A,O〉 is an almost Pontryagin space.

• dimA <∞. We have a decomposition

A = A+[+]A−[+]A,

with: A− finite dimensional and negative definite, A+ Hilbertspace when endowed with [., .]A and O-closed.

• There exists a Pontryagin space which (isometrically) containsA as a closed subspace.

• There exists a Hilbert space inner product (., .) on A, and Gbounded selfadjoint in 〈A, (., .)〉 s.t. (E spectral measure of G)

[x, y]A = (Gx, y), x, y ∈ A,

∃ε > 0 : dim ranE((−∞, ε]) <∞.

Page 20: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Equivalent definitions of aPs

• 〈A, [·, ·]A,O〉 is an almost Pontryagin space.

• dimA <∞. We have a decomposition

A = A+[+]A−[+]A,

with: A− finite dimensional and negative definite, A+ Hilbertspace when endowed with [., .]A and O-closed.

• There exists a Pontryagin space which (isometrically) containsA as a closed subspace.

• There exists a Hilbert space inner product (., .) on A, and Gbounded selfadjoint in 〈A, (., .)〉 s.t. (E spectral measure of G)

[x, y]A = (Gx, y), x, y ∈ A,

∃ε > 0 : dim ranE((−∞, ε]) <∞.

Page 21: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Equivalent definitions of aPs

• 〈A, [·, ·]A,O〉 is an almost Pontryagin space.

• dimA <∞. We have a decomposition

A = A+[+]A−[+]A,

with: A− finite dimensional and negative definite, A+ Hilbertspace when endowed with [., .]A and O-closed.

• There exists a Pontryagin space which (isometrically) containsA as a closed subspace.

• There exists a Hilbert space inner product (., .) on A, and Gbounded selfadjoint in 〈A, (., .)〉 s.t. (E spectral measure of G)

[x, y]A = (Gx, y), x, y ∈ A,

∃ε > 0 : dim ranE((−∞, ε]) <∞.

Page 22: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Equivalent definitions of aPs

• 〈A, [·, ·]A,O〉 is an almost Pontryagin space.

• dimA <∞. We have a decomposition

A = A+[+]A−[+]A,

with: A− finite dimensional and negative definite, A+ Hilbertspace when endowed with [., .]A and O-closed.

• There exists a Pontryagin space which (isometrically) containsA as a closed subspace.

• There exists a Hilbert space inner product (., .) on A, and Gbounded selfadjoint in 〈A, (., .)〉 s.t. (E spectral measure of G)

[x, y]A = (Gx, y), x, y ∈ A,

∃ε > 0 : dim ranE((−∞, ε]) <∞.

Page 23: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

The dual space

Let 〈A, [., .]A,O〉 be an aPs, and A′ its topological dual space.

• [·, y]A : y ∈ A is a w∗-closed linear subspace of A′.

• dim(A′/[·, y]A : y ∈ A

)= dimA.

Let F ⊆ A′ be point separating on A, i.e. assume

A ∩⋂ϕ∈F

kerϕ = 0,

and denote by π : A → A/A the canonical projection.

• A′ =

[·, y]A : y ∈ A

+ spanF .

Page 24: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

The dual space

Let 〈A, [., .]A,O〉 be an aPs, and A′ its topological dual space.

• [·, y]A : y ∈ A is a w∗-closed linear subspace of A′.

• dim(A′/[·, y]A : y ∈ A

)= dimA.

Let F ⊆ A′ be point separating on A, i.e. assume

A ∩⋂ϕ∈F

kerϕ = 0,

and denote by π : A → A/A the canonical projection.

• A′ =

[·, y]A : y ∈ A

+ spanF .

Page 25: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

The dual space

Let 〈A, [., .]A,O〉 be an aPs, and A′ its topological dual space.

• [·, y]A : y ∈ A is a w∗-closed linear subspace of A′.

• dim(A′/[·, y]A : y ∈ A

)= dimA.

Let F ⊆ A′ be point separating on A, i.e. assume

A ∩⋂ϕ∈F

kerϕ = 0,

and denote by π : A → A/A the canonical projection.

• A′ =

[·, y]A : y ∈ A

+ spanF .

Page 26: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

The dual space

Let 〈A, [., .]A,O〉 be an aPs, and A′ its topological dual space.

• [·, y]A : y ∈ A is a w∗-closed linear subspace of A′.

• dim(A′/[·, y]A : y ∈ A

)= dimA.

Let F ⊆ A′ be point separating on A, i.e. assume

A ∩⋂ϕ∈F

kerϕ = 0,

and denote by π : A → A/A the canonical projection.

• A′ =

[·, y]A : y ∈ A

+ spanF .

Page 27: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

The dual space

Let 〈A, [., .]A,O〉 be an aPs, and A′ its topological dual space.

• [·, y]A : y ∈ A is a w∗-closed linear subspace of A′.

• dim(A′/[·, y]A : y ∈ A

)= dimA.

Let F ⊆ A′ be point separating on A, i.e. assume

A ∩⋂ϕ∈F

kerϕ = 0,

and denote by π : A → A/A the canonical projection.

• A′ =

[·, y]A : y ∈ A

+ spanF .

Page 28: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

The notion of a completion

DefinitionLet 〈L, [., .]L〉 be an inner product space. A pair 〈ι,A〉 is anaPs-completion of L, if

• A is an aPs,

• ι : L → A is linear and isometric,

• ran ι is dense in A.

Two aPs-completions 〈ιi,Ai〉, i = 1, 2, are isomorphic, if thereexists an isomorphism ϕ : A1 → A2 with ϕ ι1 = ι2.

We speak of a Hilbert-space completion or a Pontryagin-spacecompletion, if

ind−A = 0, dimA = 0 or dimA = 0, resp.

Page 29: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

The notion of a completion

DefinitionLet 〈L, [., .]L〉 be an inner product space. A pair 〈ι,A〉 is anaPs-completion of L, if

• A is an aPs,

• ι : L → A is linear and isometric,

• ran ι is dense in A.

Two aPs-completions 〈ιi,Ai〉, i = 1, 2, are isomorphic, if thereexists an isomorphism ϕ : A1 → A2 with ϕ ι1 = ι2.

We speak of a Hilbert-space completion or a Pontryagin-spacecompletion, if

ind−A = 0, dimA = 0 or dimA = 0, resp.

Page 30: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

The notion of a completion

DefinitionLet 〈L, [., .]L〉 be an inner product space. A pair 〈ι,A〉 is anaPs-completion of L, if

• A is an aPs,

• ι : L → A is linear and isometric,

• ran ι is dense in A.

Two aPs-completions 〈ιi,Ai〉, i = 1, 2, are isomorphic, if thereexists an isomorphism ϕ : A1 → A2 with ϕ ι1 = ι2.

We speak of a Hilbert-space completion or a Pontryagin-spacecompletion, if

ind−A = 0, dimA = 0 or dimA = 0, resp.

Page 31: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

The notion of a completion

DefinitionLet 〈L, [., .]L〉 be an inner product space. A pair 〈ι,A〉 is anaPs-completion of L, if

• A is an aPs,

• ι : L → A is linear and isometric,

• ran ι is dense in A.

Two aPs-completions 〈ιi,Ai〉, i = 1, 2, are isomorphic, if thereexists an isomorphism ϕ : A1 → A2 with ϕ ι1 = ι2.

We speak of a Hilbert-space completion or a Pontryagin-spacecompletion, if

ind−A = 0, dimA = 0 or dimA = 0, resp.

Page 32: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Example

Consider L :=⋃

0<a<π PWa and set

[F,G] :=

∫RF (t)G(t) dt− πF (0)G(0), F,G ∈ L.

Then

• 〈L, [., .]〉 is positive definite.

• The norm F 7→ [F, F ]12 is not equivalent to the L2(R)-norm

on L.

• 〈PWπ, [., .]〉 with ι : F 7→ F is an aPs completion of L.

Page 33: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Example

Consider L :=⋃

0<a<π PWa and set

[F,G] :=

∫RF (t)G(t) dt− πF (0)G(0), F,G ∈ L.

Then

• 〈L, [., .]〉 is positive definite.

• The norm F 7→ [F, F ]12 is not equivalent to the L2(R)-norm

on L.

• 〈PWπ, [., .]〉 with ι : F 7→ F is an aPs completion of L.

Page 34: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Example

Consider L :=⋃

0<a<π PWa and set

[F,G] :=

∫RF (t)G(t) dt− πF (0)G(0), F,G ∈ L.

Then

• 〈L, [., .]〉 is positive definite.

• The norm F 7→ [F, F ]12 is not equivalent to the L2(R)-norm

on L.

• 〈PWπ, [., .]〉 with ι : F 7→ F is an aPs completion of L.

Page 35: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Example

Consider L :=⋃

0<a<π PWa and set

[F,G] :=

∫RF (t)G(t) dt− πF (0)G(0), F,G ∈ L.

Then

• 〈L, [., .]〉 is positive definite.

• The norm F 7→ [F, F ]12 is not equivalent to the L2(R)-norm

on L.

• 〈PWπ, [., .]〉 with ι : F 7→ F is an aPs completion of L.

Page 36: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Completions: Existence

Let 〈L, [., .]L〉 be an inner product space. Set

ind− L := sup

dimN : N negative definite subspace of L.

Proposition

Let L be an inner product space. The following are equivalent:

• ind− L <∞.

• L has an aPs-completion.

• L has a Pontryagin-space completion.

Page 37: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Completions: Existence

Let 〈L, [., .]L〉 be an inner product space. Set

ind− L := sup

dimN : N negative definite subspace of L.

Proposition

Let L be an inner product space. The following are equivalent:

• ind− L <∞.

• L has an aPs-completion.

• L has a Pontryagin-space completion.

Page 38: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Completions: Description ?Task: describe the totality of completions of L (up to isomorphism).

Page 39: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Completions: Description ?Task: describe the totality of completions of L (up to isomorphism).

Proposition

Let L be an inner product space with ind− L <∞. Then each twoPontryagin-space completions of L are isomorphic.

Page 40: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Completions: Description ?Task: describe the totality of completions of L (up to isomorphism).

Example

Let 〈L, (., .)L〉 be a Hilbert space, f1, . . . , fn : L → C be linear with

L′ ∩ spanf1, . . . , fn

= 0.

Set

A := L × Cn, ι(x) :=(x; (fi(x))ni=1

),[

(x; (ξi)ni=1), (y; (ηi)

ni=1)

]A := (x, y)L,(

(x; (ξi)ni=1), (y; (ηi)

ni=1)

)A := (x, y)L +

n∑i=1

ξiηi.

Then 〈ι,A〉 is an aPs-completion of L with dimA = n.

Page 41: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

The intrinsic dual

Let L be an inner product space with ind− L <∞.

DefinitionLet ϕ : L → C be linear. We write ϕ ∈ L, if

∀(xn)n∈N, xn ∈ L :([xn, xn]L → 0, [xn, x]L → 0, x ∈ L

)⇒ ϕ(xn)→ 0.

• L can be interpreted as the topological dual w.r.t. a certainseminorm on L.

Page 42: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

The intrinsic dual

Let L be an inner product space with ind− L <∞.

DefinitionLet ϕ : L → C be linear. We write ϕ ∈ L, if

∀(xn)n∈N, xn ∈ L :([xn, xn]L → 0, [xn, x]L → 0, x ∈ L

)⇒ ϕ(xn)→ 0.

• L can be interpreted as the topological dual w.r.t. a certainseminorm on L.

Page 43: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Completions: DescriptionFor an aPs-completion 〈ι,A〉 of L, set

ι∗(A′) :=f ι : f ∈ A′

.

TheoremThe map 〈ι,A〉 7→ ι∗(A′) induces a bijection between

• the set of isomorphy classes of aPs-completions of L,

and

• the set of those linear subspaces of the algebraic dual L∗ of Lwhich contain L with finite codimension.

For each aPs-completion it holds that

dim(ι∗(A′)

/L)

= dimA.

Page 44: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Completions: DescriptionFor an aPs-completion 〈ι,A〉 of L, set

ι∗(A′) :=f ι : f ∈ A′

.

TheoremThe map 〈ι,A〉 7→ ι∗(A′) induces a bijection between

• the set of isomorphy classes of aPs-completions of L,

and

• the set of those linear subspaces of the algebraic dual L∗ of Lwhich contain L with finite codimension.

For each aPs-completion it holds that

dim(ι∗(A′)

/L)

= dimA.

Page 45: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Reproducing Kernel Spaces

Page 46: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Continuity of point evaluations

For a set Ω and η ∈ Ω denote by χη : CΩ → C thepoint-evaluation functional χη : f 7→ f(η).

DefinitionLet Ω be a set. An aPs A is a reproducing kernel aPs on Ω, if

(rk1) A ⊆ CΩ (linear operations defined pointwise);

(rk2) ∀η ∈ Ω : χη|A ∈ A′.

Being a reproducing kernel aPs is a property of the inner productalone (regardless whether it is nondegenerated or degenerated):

Proposition

If 〈A, [., .]A〉 is an inner product space with (rk1), then there existsat most one topology O on A such that 〈A, [., .]A,O〉 is areproducing kernel aPs.

Page 47: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Continuity of point evaluations

For a set Ω and η ∈ Ω denote by χη : CΩ → C thepoint-evaluation functional χη : f 7→ f(η).

DefinitionLet Ω be a set. An aPs A is a reproducing kernel aPs on Ω, if

(rk1) A ⊆ CΩ (linear operations defined pointwise);

(rk2) ∀η ∈ Ω : χη|A ∈ A′.

Being a reproducing kernel aPs is a property of the inner productalone (regardless whether it is nondegenerated or degenerated):

Proposition

If 〈A, [., .]A〉 is an inner product space with (rk1), then there existsat most one topology O on A such that 〈A, [., .]A,O〉 is areproducing kernel aPs.

Page 48: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Continuity of point evaluations

For a set Ω and η ∈ Ω denote by χη : CΩ → C thepoint-evaluation functional χη : f 7→ f(η).

DefinitionLet Ω be a set. An aPs A is a reproducing kernel aPs on Ω, if

(rk1) A ⊆ CΩ (linear operations defined pointwise);

(rk2) ∀η ∈ Ω : χη|A ∈ A′.

Being a reproducing kernel aPs is a property of the inner productalone (regardless whether it is nondegenerated or degenerated):

Proposition

If 〈A, [., .]A〉 is an inner product space with (rk1), then there existsat most one topology O on A such that 〈A, [., .]A,O〉 is areproducing kernel aPs.

Page 49: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Continuity of point evaluations

Example

For each a > 0, the Paley-Wiener space PWa endowed with theinner product

[F,G] :=

∫RF (t)G(t) dt− πF (0)G(0), F,G ∈ PWa,

and the subspace topology of L2(R) is a reproducing kernel aPs ofentire functions.

Remember

PWa is

Hilbert space , a < π

aPs (dimA = 1), a = π

Pontryagin space , a > π

Page 50: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Continuity of point evaluations

Example

For each a > 0, the Paley-Wiener space PWa endowed with theinner product

[F,G] :=

∫RF (t)G(t) dt− πF (0)G(0), F,G ∈ PWa,

and the subspace topology of L2(R) is a reproducing kernel aPs ofentire functions.

Remember

PWa is

Hilbert space , a < π

aPs (dimA = 1), a = π

Pontryagin space , a > π

Page 51: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Kernel functions ?• Let A be a reproducing kernel Pontryagin space (i.e., a

nondegerated reproducing kernel aPs). Then

∃!K : Ω× Ω→ C : K(w, .) ∈ A, w ∈ Ω,

f(w) = [f,K(w, .)]A, f ∈ A, w ∈ Ω.

This function is called the reproducing kernel of A.

• Let A be a degenerated reproducing kernel aPs. Then therecannot exist a function K with these properties:

f(w) = [f,K(w, .)]A = 0, f ∈ A, w ∈ Ω.

Example

Let a > 0, a 6= π. The reproducing kernel of 〈PWa, [., .]〉 is

K(w, z) :=sin[a(z − w)]

π(z − w)+

1

π − a· sin[aw]

w

sin[az]

z.

Page 52: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Kernel functions ?• Let A be a reproducing kernel Pontryagin space (i.e., a

nondegerated reproducing kernel aPs). Then

∃!K : Ω× Ω→ C : K(w, .) ∈ A, w ∈ Ω,

f(w) = [f,K(w, .)]A, f ∈ A, w ∈ Ω.

This function is called the reproducing kernel of A.• Let A be a degenerated reproducing kernel aPs. Then there

cannot exist a function K with these properties:

f(w) = [f,K(w, .)]A = 0, f ∈ A, w ∈ Ω.

Example

Let a > 0, a 6= π. The reproducing kernel of 〈PWa, [., .]〉 is

K(w, z) :=sin[a(z − w)]

π(z − w)+

1

π − a· sin[aw]

w

sin[az]

z.

Page 53: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Kernel functions ?• Let A be a reproducing kernel Pontryagin space (i.e., a

nondegerated reproducing kernel aPs). Then

∃!K : Ω× Ω→ C : K(w, .) ∈ A, w ∈ Ω,

f(w) = [f,K(w, .)]A, f ∈ A, w ∈ Ω.

This function is called the reproducing kernel of A.• Let A be a degenerated reproducing kernel aPs. Then there

cannot exist a function K with these properties:

f(w) = [f,K(w, .)]A = 0, f ∈ A, w ∈ Ω.

Example

Let a > 0, a 6= π. The reproducing kernel of 〈PWa, [., .]〉 is

K(w, z) :=sin[a(z − w)]

π(z − w)+

1

π − a· sin[aw]

w

sin[az]

z.

Page 54: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Almost reproducing kernels

DefinitionLet A be a reproducing kernel aPs. A function K : Ω× Ω→ C isan almost reproducing kernel of A, if

(aRK1) K is a hermitian kernel on Ω, i.e.,

K(z, w) = K(w, z), z, w ∈ Ω,

(aRK2) K(w, .) ∈ A, w ∈ Ω,

(aRK3) There exists data δ = ((wi)ni=1; (γi)

ni=1) ∈ Ωn × Rn

where n := dimA, such that

∀f ∈ A, w ∈ Ω :

f(w) =[f,K(w, .)

]A +

n∑i=1

γi · χwi(f)χwi(K(w, .)).

Page 55: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Almost reproducing kernels

DefinitionLet A be a reproducing kernel aPs. A function K : Ω× Ω→ C isan almost reproducing kernel of A, if

(aRK1) K is a hermitian kernel on Ω, i.e.,

K(z, w) = K(w, z), z, w ∈ Ω,

(aRK2) K(w, .) ∈ A, w ∈ Ω,

(aRK3) There exists data δ = ((wi)ni=1; (γi)

ni=1) ∈ Ωn × Rn

where n := dimA, such that

∀f ∈ A, w ∈ Ω :

f(w) =[f,K(w, .)

]A +

n∑i=1

γi · χwi(f)χwi(K(w, .)).

Page 56: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Almost reproducing kernels: Existence

TheoremLet A be a reproducing kernel aPs, set n := dimA, and let(wi)

ni=1 ∈ Ωn be such that

A ∩n⋂i=1

kerχwi = 0.

Then there exists a closed and nowhere dense exceptional setE ⊆ Rn, such that for each (γi)

ni=1 ∈ Rn \ E there exists an

almost reproducing kernel of A with data δ := ((wi)ni=1; (γi)

ni=1).

• Such choices of (wi)ni=1 ∈ Ωn certainly exist since

χw : w ∈ Ω is point separating.

Page 57: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Almost reproducing kernels: Existence

TheoremLet A be a reproducing kernel aPs, set n := dimA, and let(wi)

ni=1 ∈ Ωn be such that

A ∩n⋂i=1

kerχwi = 0.

Then there exists a closed and nowhere dense exceptional setE ⊆ Rn, such that for each (γi)

ni=1 ∈ Rn \ E there exists an

almost reproducing kernel of A with data δ := ((wi)ni=1; (γi)

ni=1).

• Such choices of (wi)ni=1 ∈ Ωn certainly exist since

χw : w ∈ Ω is point separating.

Page 58: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Almost reproducing kernels: Existence

TheoremLet A be a reproducing kernel aPs, set n := dimA, and let(wi)

ni=1 ∈ Ωn be such that

A ∩n⋂i=1

kerχwi = 0.

Then there exists a closed and nowhere dense exceptional setE ⊆ Rn, such that for each (γi)

ni=1 ∈ Rn \ E there exists an

almost reproducing kernel of A with data δ := ((wi)ni=1; (γi)

ni=1).

• Such choices of (wi)ni=1 ∈ Ωn certainly exist since

χw : w ∈ Ω is point separating.

Page 59: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Almost reproducing kernels: Properties

For a hermitian kernel K we denote by ind−K ∈ N0 ∪ ∞ thesupremum of the numbers of negative squares of quadratic forms

n∑i,j=1

K(wj , wi)ξiξj where n ∈ N, w1, . . . , wn ∈ Ω.

TheoremLet A be a reproducing kernel aPs, set n := dimA, and letδ = ((wi)

ni=1; (γi)

ni=1) ∈ Ωn × Rn.

Assume K is an almost reproducing kernel of A with data δ. Then

• A ∩⋂ni=1 kerχwi = 0,

• ind−K <∞,

• γi 6= 0, i, i = 1, . . . , n,

• K(wi, wj) = δij1γ i, i, i = 1, . . . , n.

Page 60: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Almost reproducing kernels: Properties

For a hermitian kernel K we denote by ind−K ∈ N0 ∪ ∞ thesupremum of the numbers of negative squares of quadratic forms

n∑i,j=1

K(wj , wi)ξiξj where n ∈ N, w1, . . . , wn ∈ Ω.

TheoremLet A be a reproducing kernel aPs, set n := dimA, and letδ = ((wi)

ni=1; (γi)

ni=1) ∈ Ωn × Rn.

Assume K is an almost reproducing kernel of A with data δ. Then

• A ∩⋂ni=1 kerχwi = 0,

• ind−K <∞,

• γi 6= 0, i, i = 1, . . . , n,

• K(wi, wj) = δij1γ i, i, i = 1, . . . , n.

Page 61: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Almost reproducing kernels: Properties

For a hermitian kernel K we denote by ind−K ∈ N0 ∪ ∞ thesupremum of the numbers of negative squares of quadratic forms

n∑i,j=1

K(wj , wi)ξiξj where n ∈ N, w1, . . . , wn ∈ Ω.

TheoremLet A be a reproducing kernel aPs, set n := dimA, and letδ = ((wi)

ni=1; (γi)

ni=1) ∈ Ωn × Rn.

Assume K is an almost reproducing kernel of A with data δ.

Then

• A ∩⋂ni=1 kerχwi = 0,

• ind−K <∞,

• γi 6= 0, i, i = 1, . . . , n,

• K(wi, wj) = δij1γ i, i, i = 1, . . . , n.

Page 62: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Almost reproducing kernels: Properties

For a hermitian kernel K we denote by ind−K ∈ N0 ∪ ∞ thesupremum of the numbers of negative squares of quadratic forms

n∑i,j=1

K(wj , wi)ξiξj where n ∈ N, w1, . . . , wn ∈ Ω.

TheoremLet A be a reproducing kernel aPs, set n := dimA, and letδ = ((wi)

ni=1; (γi)

ni=1) ∈ Ωn × Rn.

Assume K is an almost reproducing kernel of A with data δ. Then

• A ∩⋂ni=1 kerχwi = 0,

• ind−K <∞,

• γi 6= 0, i, i = 1, . . . , n,

• K(wi, wj) = δij1γ i, i, i = 1, . . . , n.

Page 63: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Almost reproducing kernels: Uniqueness

TheoremLet A be a reproducing kernel aPs, set n := dimA, and let K1

and K2 be almost reproducing kernels for A with correspondingdata δ1 and δ2, respectively.

Non-uniqueness: If the data δ1 and δ2 has the same points(wi)

ni=1 but different weights (γi)

ni=1, then K1 6= K2.

Uniqueness: If δ1 = δ2, then K1 = K2.

• Due to the Existence Theorem, A has many different almostreproducing kernels.

Page 64: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Almost reproducing kernels: Uniqueness

TheoremLet A be a reproducing kernel aPs, set n := dimA, and let K1

and K2 be almost reproducing kernels for A with correspondingdata δ1 and δ2, respectively.

Non-uniqueness: If the data δ1 and δ2 has the same points(wi)

ni=1 but different weights (γi)

ni=1, then K1 6= K2.

Uniqueness: If δ1 = δ2, then K1 = K2.

• Due to the Existence Theorem, A has many different almostreproducing kernels.

Page 65: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Almost reproducing kernels: Uniqueness

TheoremLet A be a reproducing kernel aPs, set n := dimA, and let K1

and K2 be almost reproducing kernels for A with correspondingdata δ1 and δ2, respectively.

Non-uniqueness: If the data δ1 and δ2 has the same points(wi)

ni=1 but different weights (γi)

ni=1, then K1 6= K2.

Uniqueness: If δ1 = δ2, then K1 = K2.

• Due to the Existence Theorem, A has many different almostreproducing kernels.

Page 66: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Almost reproducing kernels: Uniqueness

TheoremLet A be a reproducing kernel aPs, set n := dimA, and let K1

and K2 be almost reproducing kernels for A with correspondingdata δ1 and δ2, respectively.

Non-uniqueness: If the data δ1 and δ2 has the same points(wi)

ni=1 but different weights (γi)

ni=1, then K1 6= K2.

Uniqueness: If δ1 = δ2, then K1 = K2.

• Due to the Existence Theorem, A has many different almostreproducing kernels.

Page 67: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Almost reproducing kernels: Description

TheoremLet K be a hermitian kernel, let ((wi)

ni=1, (γi)

ni=1) ∈ Ωn × Rn, and

assume that

• ind−K <∞,

• γi 6= 0, i, i = 1, . . . , n,

• K(wi, wj) = δij1γ i, i, i = 1, . . . , n.

Then there exists a unique reproducing kernel aPs, such that K isthe almost reproducing kernel of A with dataδ = ((wi)

ni=1; (γi)

ni=1).

Page 68: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Almost reproducing kernels: Description

TheoremLet K be a hermitian kernel, let ((wi)

ni=1, (γi)

ni=1) ∈ Ωn × Rn, and

assume that

• ind−K <∞,

• γi 6= 0, i, i = 1, . . . , n,

• K(wi, wj) = δij1γ i, i, i = 1, . . . , n.

Then there exists a unique reproducing kernel aPs, such that K isthe almost reproducing kernel of A with dataδ = ((wi)

ni=1; (γi)

ni=1).

Page 69: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Reproducing kernel space completions ?Let L be an inner product space whose elements are functions.

Does there exist a reproducing kernel aPs which contains Lisometrically and densely ?

Page 70: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Reproducing kernel space completions ?

Does there exist a reproducing kernel aPs which contains Lisometrically and densely ?

Example

Consider the space L :=⋃

0<a<π PWa endowed with

[F,G] :=

∫RF (t)G(t) dt− πF (0)G(0), F,G ∈ L.

Page 71: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Reproducing kernel space completions ?

Does there exist a reproducing kernel aPs which contains Lisometrically and densely ?

Example

Consider the space L :=⋃

0<a<π PWa endowed with

[F,G] :=

∫RF (t)G(t) dt− πF (0)G(0), F,G ∈ L.

Then L is positive definite, and

• L is isometrically and densely contained in the (degenerated)reproducing kernel aPs 〈PWπ, [., .]〉.

• There does not exist a reproducing kernel Pontryagin spacewhich contains L isometrically and densely.

• There does not exist a reproducing kernel Hilbert space whichcontains L isometrically.

Page 72: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Reproducing kernel space completions ?

Does there exist a reproducing kernel aPs which contains Lisometrically and densely ?

Example

Let µ be a positive Borel measure on the real line which iscompactly supported and not discrete, and consider the space L ofall polynomials endowed with

[p, q] :=

∫Rpq dµ, p, q ∈ L.

Page 73: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Reproducing kernel space completions ?

Does there exist a reproducing kernel aPs which contains Lisometrically and densely ?

Example

Let µ be a positive Borel measure on the real line which iscompactly supported and not discrete, and consider the space L ofall polynomials endowed with

[p, q] :=

∫Rpq dµ, p, q ∈ L.

Then there does not exist a reproducing kernel aPs which containsL isometrically.

Page 74: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Topologising the intrinsic dual

Proposition

Let L be an inner product space with ind− L <∞. Then, for eachaPs-completion 〈ι,A〉 of L, it holds that

L = ι∗([., y]A : y ∈ A

)=x 7→ [ιx, y]A : y ∈ A

.

• The map ι∗|A′ is injective since ι(L) is dense in A.

DefinitionLet T be the topology induced by the norm

‖φ‖ := ‖(ι∗|A′)−1φ‖A′ , φ ∈ L.

Page 75: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Topologising the intrinsic dual

Proposition

Let L be an inner product space with ind− L <∞. Then, for eachaPs-completion 〈ι,A〉 of L, it holds that

L = ι∗([., y]A : y ∈ A

)=x 7→ [ιx, y]A : y ∈ A

.

• The map ι∗|A′ is injective since ι(L) is dense in A.

DefinitionLet T be the topology induced by the norm

‖φ‖ := ‖(ι∗|A′)−1φ‖A′ , φ ∈ L.

Page 76: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Topologising the intrinsic dual

Proposition

Let L be an inner product space with ind− L <∞. Then, for eachaPs-completion 〈ι,A〉 of L, it holds that

L = ι∗([., y]A : y ∈ A

)=x 7→ [ιx, y]A : y ∈ A

.

• The map ι∗|A′ is injective since ι(L) is dense in A.

DefinitionLet T be the topology induced by the norm

‖φ‖ := ‖(ι∗|A′)−1φ‖A′ , φ ∈ L.

Page 77: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Existence Theorem

TheoremLet L be an inner product space whose elements are functions.

There exists a reproducing kernel aPs which contains Lisometrically, if and only if

(A) ind− L <∞,

and

(B) dim([L + spanχw|L : w ∈ Ω

]/L)<∞,

(C) L ∩ spanχw|L : w ∈ Ω is T -dense in L.

These conditions can be reformulated in a concrete way. It holdsthat

(B)⇔ (B′) (C)⇒ (C′) (B) ∧ (C′)⇒ (C)

Page 78: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Existence Theorem

TheoremLet L be an inner product space whose elements are functions.

There exists a reproducing kernel aPs which contains Lisometrically, if and only if

(A) ind− L <∞,

and

(B) dim([L + spanχw|L : w ∈ Ω

]/L)<∞,

(C) L ∩ spanχw|L : w ∈ Ω is T -dense in L.

These conditions can be reformulated in a concrete way. It holdsthat

(B)⇔ (B′) (C)⇒ (C′) (B) ∧ (C′)⇒ (C)

Page 79: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Existence Theorem

TheoremLet L be an inner product space whose elements are functions.

There exists a reproducing kernel aPs which contains Lisometrically, if and only if

(A) ind− L <∞,

and

(B) dim([L + spanχw|L : w ∈ Ω

]/L)<∞,

(C) L ∩ spanχw|L : w ∈ Ω is T -dense in L.

These conditions can be reformulated in a concrete way. It holdsthat

(B)⇔ (B′) (C)⇒ (C′) (B) ∧ (C′)⇒ (C)

Page 80: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Existence Theorem

TheoremLet L be an inner product space whose elements are functions.

There exists a reproducing kernel aPs which contains Lisometrically, if and only if

(A) ind− L <∞,

and

(B) dim([L + spanχw|L : w ∈ Ω

]/L)<∞,

(C) L ∩ spanχw|L : w ∈ Ω is T -dense in L.

These conditions can be reformulated in a concrete way. It holdsthat

(B)⇔ (B′) (C)⇒ (C′) (B) ∧ (C′)⇒ (C)

Page 81: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

(B’) There exist N ∈ N and (wi)Ni=1 ∈MN , such that the

following implication holds. If (fn)n∈N is a sequence ofelements of L with

limn→∞

[fn, fn]L = 0, limn→∞

[fn, g]L = 0, g ∈ L,

limn→∞

χwi(fn) = 0, i = 1, . . . , N,

then limn→∞ χw(fn) = 0, w ∈ Ω.

(C’) If (fn)n∈N is a sequence of elements of L with

limn,m→∞

[fn − fm, fn − fm]L = 0, limn→∞

[fn − fm, g]L = 0, g ∈ L,

limn→∞

χw(fn) = 0, w ∈ Ω,

then limn→∞[fn, g]L = 0, g ∈ L.

Page 82: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

(B’) There exist N ∈ N and (wi)Ni=1 ∈MN , such that the

following implication holds. If (fn)n∈N is a sequence ofelements of L with

limn→∞

[fn, fn]L = 0, limn→∞

[fn, g]L = 0, g ∈ L,

limn→∞

χwi(fn) = 0, i = 1, . . . , N,

then limn→∞ χw(fn) = 0, w ∈ Ω.

(C’) If (fn)n∈N is a sequence of elements of L with

limn,m→∞

[fn − fm, fn − fm]L = 0, limn→∞

[fn − fm, g]L = 0, g ∈ L,

limn→∞

χw(fn) = 0, w ∈ Ω,

then limn→∞[fn, g]L = 0, g ∈ L.

Page 83: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Uniqueness

TheoremLet L be an inner product space whose elements are functions, andassume that (A), (B), (C) hold. Then there exists a uniquereproducing kernel aPs which contains L isometrically and densely.

• We call this unique space the reproducing kernel completionof L.

• The number ∆(L) := dimA where A is the reproducingkernel completion of L is an important geometric invariant ofL.

Page 84: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Uniqueness

TheoremLet L be an inner product space whose elements are functions, andassume that (A), (B), (C) hold. Then there exists a uniquereproducing kernel aPs which contains L isometrically and densely.

• We call this unique space the reproducing kernel completionof L.

• The number ∆(L) := dimA where A is the reproducingkernel completion of L is an important geometric invariant ofL.

Page 85: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Uniqueness

TheoremLet L be an inner product space whose elements are functions, andassume that (A), (B), (C) hold. Then there exists a uniquereproducing kernel aPs which contains L isometrically and densely.

• We call this unique space the reproducing kernel completionof L.

• The number ∆(L) := dimA where A is the reproducingkernel completion of L is an important geometric invariant ofL.

Page 86: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

A motivating example:

The Hamburger powermoment problem

Page 87: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

The Hamburger power moment problem

Given (sn)∞n=0, sn ∈ R, does there exist a positive Borel

measure on R with sn =∫Rtn dµ(t), n = 0, 1, 2, . . . ?

Page 88: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Existence of solutions

TheoremThere exists a solution µ if and only if

∀N ∈ N0 : det[(si+j)

Ni,j=0

]≥ 0

Consider the inner product[∑i

αiti,∑j

βjtj]

:=∑i,j

si+j · αiβj

on the space C[z] of all polynomials. Then 〈C[z], [., .]〉 is positivesemidefinite.

Page 89: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Existence of solutions

TheoremThere exists a solution µ if and only if

∀N ∈ N0 : det[(si+j)

Ni,j=0

]≥ 0

Consider the inner product[∑i

αiti,∑j

βjtj]

:=∑i,j

si+j · αiβj

on the space C[z] of all polynomials. Then 〈C[z], [., .]〉 is positivesemidefinite.

Page 90: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Existence of solutions

TheoremThere exists a solution µ if and only if

∀N ∈ N0 : det[(si+j)

Ni,j=0

]≥ 0

Consider the inner product[∑i

αiti,∑j

βjtj]

:=∑i,j

si+j · αiβj

on the space C[z] of all polynomials. Then 〈C[z], [., .]〉 is positivesemidefinite.

Page 91: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Existence of solutions

TheoremAssume the moment problem is solvable. Then one of thefollowing alternatives must occur.

• The solution µ is unique (determinate case).

• There exist infinitely many solutions (indeterminate case).

Let S be the multiplication operator Sp(z) := zp(z) on C[z]. LetH be the Hilbert space completion of 〈C[z], [., .]〉, and let T be theclosure of S in H. Then one of the following holds.

• T is selfadjoint (determinate case).

• T is symmetric with defect index (1, 1) (indeterminate case).

Page 92: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Existence of solutions

TheoremAssume the moment problem is solvable. Then one of thefollowing alternatives must occur.

• The solution µ is unique (determinate case).

• There exist infinitely many solutions (indeterminate case).

Let S be the multiplication operator Sp(z) := zp(z) on C[z]. LetH be the Hilbert space completion of 〈C[z], [., .]〉, and let T be theclosure of S in H. Then one of the following holds.

• T is selfadjoint (determinate case).

• T is symmetric with defect index (1, 1) (indeterminate case).

Page 93: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Existence of solutions

TheoremAssume the moment problem is solvable. Then one of thefollowing alternatives must occur.

• The solution µ is unique (determinate case).

• There exist infinitely many solutions (indeterminate case).

Let S be the multiplication operator Sp(z) := zp(z) on C[z]. LetH be the Hilbert space completion of 〈C[z], [., .]〉, and let T be theclosure of S in H. Then one of the following holds.

• T is selfadjoint (determinate case).

• T is symmetric with defect index (1, 1) (indeterminate case).

Page 94: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

The Nevanlinna parameterisation

TheoremAssume the moment problem is indeterminate.

There exist four entire functions A,B,C,D, such that∫R

dµ(t)

t− z=A(z)τ(z) +B(z)

C(z)τ(z) +D(z)

establishes a bijection between µ : solution andN0 := τ : analytic in C+, Im τ(z) ≥ 0.

The operator T is entire with respect to the gauge u := 1. The

matrix

A BC D

is the u-resolvent matrix of T .

Page 95: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

The Nevanlinna parameterisation

TheoremAssume the moment problem is indeterminate.

There exist four entire functions A,B,C,D, such that∫R

dµ(t)

t− z=A(z)τ(z) +B(z)

C(z)τ(z) +D(z)

establishes a bijection between µ : solution andN0 := τ : analytic in C+, Im τ(z) ≥ 0.

The operator T is entire with respect to the gauge u := 1. The

matrix

A BC D

is the u-resolvent matrix of T .

Page 96: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

The Nevanlinna parameterisation

TheoremAssume the moment problem is indeterminate.

There exist four entire functions A,B,C,D, such that∫R

dµ(t)

t− z=A(z)τ(z) +B(z)

C(z)τ(z) +D(z)

establishes a bijection between µ : solution andN0 := τ : analytic in C+, Im τ(z) ≥ 0.

The operator T is entire with respect to the gauge u := 1. The

matrix

A BC D

is the u-resolvent matrix of T .

Page 97: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

The three term recurrenceGiven µ with all power moments, let pn, n ∈ N0, be thepolynomials with degree n and positive leading coefficient, suchthat pn : n ∈ N0 is orthonormal w.r.t. [p, q] :=

∫R pq dµ.

Theorem

There exist unique an > 0 and bn ∈ R, s.t. (p−1 := 0)zpn(z) = an+1pn+1(z) + bnpn(z) + anpn−1(z), n ∈ N0

The operator T is unitarily equivalent to the operator in `2 definedby the Jacobi matrix

J :=

b0 a1 0 0 0 · · ·a1 b1 a2 0 0 · · ·0 a2 b2 a3 0 · · ·...

. . .. . .

. . .

Page 98: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

The three term recurrenceGiven µ with all power moments, let pn, n ∈ N0, be thepolynomials with degree n and positive leading coefficient, suchthat pn : n ∈ N0 is orthonormal w.r.t. [p, q] :=

∫R pq dµ.

Theorem

There exist unique an > 0 and bn ∈ R, s.t. (p−1 := 0)zpn(z) = an+1pn+1(z) + bnpn(z) + anpn−1(z), n ∈ N0

The operator T is unitarily equivalent to the operator in `2 definedby the Jacobi matrix

J :=

b0 a1 0 0 0 · · ·a1 b1 a2 0 0 · · ·0 a2 b2 a3 0 · · ·...

. . .. . .

. . .

Page 99: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

The three term recurrenceGiven µ with all power moments, let pn, n ∈ N0, be thepolynomials with degree n and positive leading coefficient, suchthat pn : n ∈ N0 is orthonormal w.r.t. [p, q] :=

∫R pq dµ.

Theorem

There exist unique an > 0 and bn ∈ R, s.t. (p−1 := 0)zpn(z) = an+1pn+1(z) + bnpn(z) + anpn−1(z), n ∈ N0

The operator T is unitarily equivalent to the operator in `2 definedby the Jacobi matrix

J :=

b0 a1 0 0 0 · · ·a1 b1 a2 0 0 · · ·0 a2 b2 a3 0 · · ·...

. . .. . .

. . .

Page 100: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

(In-)determinate measures

DefinitionLet µ be a positive measure with all power moments. Then µ iscalled determinate if it is uniquely determined by the sequence ofits power moments, and indeterminate otherwise.

Theoremµ is determinate if and only the polynomials are dense in L2(µ).

Being (in-)determinate means that the moment problem for

sn :=

∫Rtn dµ(t), n = 0, 1, 2, . . . ,

which is by definition solvable, is actually (in-)determinate.

Page 101: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

(In-)determinate measures

DefinitionLet µ be a positive measure with all power moments. Then µ iscalled determinate if it is uniquely determined by the sequence ofits power moments, and indeterminate otherwise.

Theoremµ is determinate if and only the polynomials are dense in L2(µ).

Being (in-)determinate means that the moment problem for

sn :=

∫Rtn dµ(t), n = 0, 1, 2, . . . ,

which is by definition solvable, is actually (in-)determinate.

Page 102: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

(In-)determinate measures

DefinitionLet µ be a positive measure with all power moments. Then µ iscalled determinate if it is uniquely determined by the sequence ofits power moments, and indeterminate otherwise.

Theoremµ is determinate if and only the polynomials are dense in L2(µ).

Being (in-)determinate means that the moment problem for

sn :=

∫Rtn dµ(t), n = 0, 1, 2, . . . ,

which is by definition solvable, is actually (in-)determinate.

Page 103: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

The index of determinacy

DefinitionFor µ determinate and w ∈ C set

indw(µ) := supk ∈ N0 : |t−w|2kdµ(t) determinate

∈ N0∪∞.

TheoremLet µ be determinate.

• If indw(µ) =∞ for some w ∈ C, then indw(µ) =∞ for allw ∈ C.

• Assume indw(µ) <∞ for some w ∈ C. Then µ is discreteand indw(µ) is constant on C \ suppµ; denote this constantby ind(µ).

• Assume indw(µ) <∞ for some w ∈ C. Thenindw(µ) = ind(µ) + 1, w ∈ suppµ.

Page 104: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

The index of determinacy

DefinitionFor µ determinate and w ∈ C set

indw(µ) := supk ∈ N0 : |t−w|2kdµ(t) determinate

∈ N0∪∞.

TheoremLet µ be determinate.

• If indw(µ) =∞ for some w ∈ C, then indw(µ) =∞ for allw ∈ C.

• Assume indw(µ) <∞ for some w ∈ C. Then µ is discreteand indw(µ) is constant on C \ suppµ; denote this constantby ind(µ).

• Assume indw(µ) <∞ for some w ∈ C. Thenindw(µ) = ind(µ) + 1, w ∈ suppµ.

Page 105: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

The index of determinacy

For each k ∈ N the (infinite, still well-defined) matrix Jk defines alinear operator Vk on `2 by taking the closure of the operatordefined by the action of Jk on the subspace of finite sequences.

TheoremLet µ be determinate. Then the following are equivalent.

• µ has finite index of determinacy.

• There exists N ∈ N such that V, . . . , VN are selfadjoint, butVN+1 is not.

If µ has finite index of determinacy, then N = ind(µ) + 1.

Page 106: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

The index of determinacy

For each k ∈ N the (infinite, still well-defined) matrix Jk defines alinear operator Vk on `2 by taking the closure of the operatordefined by the action of Jk on the subspace of finite sequences.

TheoremLet µ be determinate. Then the following are equivalent.

• µ has finite index of determinacy.

• There exists N ∈ N such that V, . . . , VN are selfadjoint, butVN+1 is not.

If µ has finite index of determinacy, then N = ind(µ) + 1.

Page 107: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

The index of determinacy

For each k ∈ N the (infinite, still well-defined) matrix Jk defines alinear operator Vk on `2 by taking the closure of the operatordefined by the action of Jk on the subspace of finite sequences.

TheoremLet µ be determinate. Then the following are equivalent.

• µ has finite index of determinacy.

• There exists N ∈ N such that V, . . . , VN are selfadjoint, butVN+1 is not.

If µ has finite index of determinacy, then N = ind(µ) + 1.

Page 108: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

The index of determinacy

For each k ∈ N the (infinite, still well-defined) matrix Jk defines alinear operator Vk on `2 by taking the closure of the operatordefined by the action of Jk on the subspace of finite sequences.

TheoremLet µ be determinate. Then the following are equivalent.

• µ has finite index of determinacy.

• There exists N ∈ N such that V, . . . , VN are selfadjoint, butVN+1 is not.

If µ has finite index of determinacy, then N = ind(µ) + 1.

Page 109: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

A class of distributions

Definition(1) Let µ be a distribution on R. We write µ ∈ D<∞, if

∃N ∈N0, c1, . . . , cN ∈ R, µ positive measure on R \ c1, . . . , cN :

µ(f) =

∫R\c1,...,cN

f dµ, f ∈ C∞00 (R), supp f ⊆ R \ c1, . . . , cN

(2) We say µ ∈ D<∞ has all power moments, if∫|t|≥t0 |t|

n dµ(t) <∞, n ∈ N, provided t0 > max|c1|, . . . , |cN |.

(3) Let R<∞ be the set of formal expressions ρ :=m∑i=1

ki∑l=0

ailδ(l)wi

where wi ∈ C+ pairwise different, ki ∈ N0, ail ∈ C with aiki 6= 0.

Page 110: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

A class of distributions

Definition(1) Let µ be a distribution on R. We write µ ∈ D<∞, if

∃N ∈N0, c1, . . . , cN ∈ R, µ positive measure on R \ c1, . . . , cN :

µ(f) =

∫R\c1,...,cN

f dµ, f ∈ C∞00 (R), supp f ⊆ R \ c1, . . . , cN

(2) We say µ ∈ D<∞ has all power moments, if∫|t|≥t0 |t|

n dµ(t) <∞, n ∈ N, provided t0 > max|c1|, . . . , |cN |.

(3) Let R<∞ be the set of formal expressions ρ :=m∑i=1

ki∑l=0

ailδ(l)wi

where wi ∈ C+ pairwise different, ki ∈ N0, ail ∈ C with aiki 6= 0.

Page 111: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

A class of distributions

Definition(1) Let µ be a distribution on R. We write µ ∈ D<∞, if

∃N ∈N0, c1, . . . , cN ∈ R, µ positive measure on R \ c1, . . . , cN :

µ(f) =

∫R\c1,...,cN

f dµ, f ∈ C∞00 (R), supp f ⊆ R \ c1, . . . , cN

(2) We say µ ∈ D<∞ has all power moments, if∫|t|≥t0 |t|

n dµ(t) <∞, n ∈ N, provided t0 > max|c1|, . . . , |cN |.

(3) Let R<∞ be the set of formal expressions ρ :=m∑i=1

ki∑l=0

ailδ(l)wi

where wi ∈ C+ pairwise different, ki ∈ N0, ail ∈ C with aiki 6= 0.

Page 112: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

A class of distributions

DefinitionLet (µ, ρ) ∈ D<∞ ×R<∞ and assume that µ has all powermoments. For f which is C∞(R) with f(t) = O(|t|n), t→∞, andlocally holomorphic at wi, define

(µ, ρ)(f) := µ(f)+

m∑i=1

ki∑l=0

(ail·[f ](l)(wi)+ail·[f ](l)(wi)

), n ∈ N0

Page 113: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

The indefinite moment problem

Given (sn)∞n=0, sn ∈ R, does there exist

(µ, ρ) ∈ D<∞ ×R<∞ with sn = (µ, ρ)(tn), n ∈ N0 ?

Page 114: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Existence of solutions

For a sequence (sn)∞n=0 of real numbers, set L := C[z] and[∑i

αiti,∑j

βjtj]

:=∑i,j

si+j · αiβj .

TheoremThere exists a solution (µ, ρ) if and only if

∃N ∈ N0 : sgn det[(si+j)

ni,j=0

]constant for n ≥ N

The inner product space 〈C[z], [., .]〉 has finite negative index.

Page 115: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Existence of solutions

For a sequence (sn)∞n=0 of real numbers, set L := C[z] and[∑i

αiti,∑j

βjtj]

:=∑i,j

si+j · αiβj .

TheoremThere exists a solution (µ, ρ) if and only if

∃N ∈ N0 : sgn det[(si+j)

ni,j=0

]constant for n ≥ N

The inner product space 〈C[z], [., .]〉 has finite negative index.

Page 116: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Existence of solutions

For a sequence (sn)∞n=0 of real numbers, set L := C[z] and[∑i

αiti,∑j

βjtj]

:=∑i,j

si+j · αiβj .

TheoremThere exists a solution (µ, ρ) if and only if

∃N ∈ N0 : sgn det[(si+j)

ni,j=0

]constant for n ≥ N

The inner product space 〈C[z], [., .]〉 has finite negative index.

Page 117: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Existence of solutions

For a sequence (sn)∞n=0 of real numbers, set L := C[z] and[∑i

αiti,∑j

βjtj]

:=∑i,j

si+j · αiβj .

TheoremThere exists a solution (µ, ρ) if and only if

∃N ∈ N0 : sgn det[(si+j)

ni,j=0

]constant for n ≥ N

The inner product space 〈C[z], [., .]〉 has finite negative index.

Page 118: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Existence of solutions

TheoremAssume the indefinite moment problem is solvable.

Then there exists a number ∆ ∈ N0 ∪ ∞, such that(κ0 := ind− L)

n 0 · · · κ0 κ0 + 1 · · · κ0 + ∆ κ0 + ∆ · · ·# solutionsind− = n

0 · · · 1 0 · · · ∞ ∞ · · ·

This includes the extremal case as follows:

• If ∆ = 0, the number of solutions is ∞ for all n ≥ κ0;

• If ∆ =∞, the number of solutions is 0 for all n > κ0.

Page 119: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Existence of solutions

TheoremAssume the indefinite moment problem is solvable.

Then there exists a number ∆ ∈ N0 ∪ ∞, such that(κ0 := ind− L)

n 0 · · · κ0 κ0 + 1 · · · κ0 + ∆ κ0 + ∆ · · ·# solutionsind− = n

0 · · · 1 0 · · · ∞ ∞ · · ·

This includes the extremal case as follows:

• If ∆ = 0, the number of solutions is ∞ for all n ≥ κ0;

• If ∆ =∞, the number of solutions is 0 for all n > κ0.

Page 120: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Parameterization of solutionsLet K∆

κ be the set of all function τ meromorphic in C+, such thatthe maximal number of quadratic forms

Q(ξ1, . . . , ξm; η0, . . . , η∆−1) :=

m∑i,j=1

τ(wi)− τ(wj)

wi − wjξiξj +

∆−1∑k=0

m∑i=1

Re(zki ξiηk

)where m ∈ N0, w1, . . . , wm ∈ C+, equals κ.

TheoremAssume the indefinite moment problem has ∆ <∞.

There exist four entire functions A,B,C,D, such that

(µ, ρ)( 1

t− z

)=A(z)τ(z) +B(z)

C(z)τ(z) +D(z)

establishes a bijection between (µ, ρ) : ind−(µ, ρ) = κ, solutionand K∆

κ−κ0.

Page 121: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Parameterization of solutionsLet K∆

κ be the set of all function τ meromorphic in C+, such thatthe maximal number of quadratic forms

Q(ξ1, . . . , ξm; η0, . . . , η∆−1) :=

m∑i,j=1

τ(wi)− τ(wj)

wi − wjξiξj +

∆−1∑k=0

m∑i=1

Re(zki ξiηk

)where m ∈ N0, w1, . . . , wm ∈ C+, equals κ.

TheoremAssume the indefinite moment problem has ∆ <∞.

There exist four entire functions A,B,C,D, such that

(µ, ρ)( 1

t− z

)=A(z)τ(z) +B(z)

C(z)τ(z) +D(z)

establishes a bijection between (µ, ρ) : ind−(µ, ρ) = κ, solutionand K∆

κ−κ0.

Page 122: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Parameterization of solutionsLet K∆

κ be the set of all function τ meromorphic in C+, such thatthe maximal number of quadratic forms

Q(ξ1, . . . , ξm; η0, . . . , η∆−1) :=

m∑i,j=1

τ(wi)− τ(wj)

wi − wjξiξj +

∆−1∑k=0

m∑i=1

Re(zki ξiηk

)where m ∈ N0, w1, . . . , wm ∈ C+, equals κ.

TheoremAssume the indefinite moment problem has ∆ <∞.

There exist four entire functions A,B,C,D, such that

(µ, ρ)( 1

t− z

)=A(z)τ(z) +B(z)

C(z)τ(z) +D(z)

establishes a bijection between (µ, ρ) : ind−(µ, ρ) = κ, solutionand K∆

κ−κ0.

Page 123: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

The significance of completions

The positive definite case:

• The moment problem is solvable and indeterminate if andonly if L has a reproducing kernel Hilbert space completion.

• Assume the moment problem is solvable and determinate, andlet µ be its unique solution. Then ind(µ) <∞ if and only ifL has a reproducing kernel aPs-completion. If ind(µ) <∞,then ind(µ) = ∆(L)− 1.

The indefinite case:

• Assume the indefinite moment problem is solvable. Then∆ <∞ if and only if L has a reproducing kernelaPs-completion. If ∆ <∞, then ∆ = ∆(L).

• Assume the indefinite moment problem is solvable with∆ <∞. The functions A,B,C,D occur from (anaPs-version) of Krein’s resolvent matrix.

Page 124: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

The significance of completions

The positive definite case:

• The moment problem is solvable and indeterminate if andonly if L has a reproducing kernel Hilbert space completion.

• Assume the moment problem is solvable and determinate, andlet µ be its unique solution. Then ind(µ) <∞ if and only ifL has a reproducing kernel aPs-completion. If ind(µ) <∞,then ind(µ) = ∆(L)− 1.

The indefinite case:

• Assume the indefinite moment problem is solvable. Then∆ <∞ if and only if L has a reproducing kernelaPs-completion. If ∆ <∞, then ∆ = ∆(L).

• Assume the indefinite moment problem is solvable with∆ <∞. The functions A,B,C,D occur from (anaPs-version) of Krein’s resolvent matrix.

Page 125: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Directing Functionals

Page 126: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Let L be an inner product space whose elements are analyticfunctions.

• Can one improve the general conditions for existence of areproducing kernel aPs-completion of L due to analyticity ?

• If there exists a reproducing kernel aPs-completion, are itselements again analytic ?

An answer is obtained from an aPs-version of Krein’s method ofdirecting functionals.

Page 127: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Let L be an inner product space whose elements are analyticfunctions.

• Can one improve the general conditions for existence of areproducing kernel aPs-completion of L due to analyticity ?

• If there exists a reproducing kernel aPs-completion, are itselements again analytic ?

An answer is obtained from an aPs-version of Krein’s method ofdirecting functionals.

Page 128: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Sets of semi-Φ-regularity

DefinitionLet L be an inner product space, let S be a linear relation in L, letΩ ⊆ C and M ⊆ Ω, and Φ : L × Ω→ C.

r⊆(S,Φ) :=η ∈ Ω : ran(S − η) ⊆ ker Φ(·, η)

r⊇(S,Φ) :=

η ∈ Ω : ran(S − η) ⊇ ker Φ(·, η)

r(S,Φ) := r⊆(S,Φ) ∩ r⊇(S,Φ)

rapp⊇ (S,Φ;M) :=

η ∈ Ω : ∀x ∈ ker Φ(·, η)∃(xn)n∈N s.t.

xn ∈ ran(S − η),

limn→∞

[xn, xn]X = [x, x]X , limn→∞

[xn, y]X = [x, y]X , y ∈ L,

limn→∞

Φ(xn, w) = Φ(x,w), w ∈M.

Page 129: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Sets of semi-Φ-regularity

DefinitionLet L be an inner product space, let S be a linear relation in L, letΩ ⊆ C and M ⊆ Ω, and Φ : L × Ω→ C.

r⊆(S,Φ) :=η ∈ Ω : ran(S − η) ⊆ ker Φ(·, η)

r⊇(S,Φ) :=

η ∈ Ω : ran(S − η) ⊇ ker Φ(·, η)

r(S,Φ) := r⊆(S,Φ) ∩ r⊇(S,Φ)

rapp⊇ (S,Φ;M) :=

η ∈ Ω : ∀x ∈ ker Φ(·, η)∃(xn)n∈N s.t.

xn ∈ ran(S − η),

limn→∞

[xn, xn]X = [x, x]X , limn→∞

[xn, y]X = [x, y]X , y ∈ L,

limn→∞

Φ(xn, w) = Φ(x,w), w ∈M.

Page 130: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Sets of semi-Φ-regularity

DefinitionLet L be an inner product space, let S be a linear relation in L, letΩ ⊆ C and M ⊆ Ω, and Φ : L × Ω→ C.

r⊆(S,Φ) :=η ∈ Ω : ran(S − η) ⊆ ker Φ(·, η)

r⊇(S,Φ) :=

η ∈ Ω : ran(S − η) ⊇ ker Φ(·, η)

r(S,Φ) := r⊆(S,Φ) ∩ r⊇(S,Φ)

rapp⊇ (S,Φ;M) :=

η ∈ Ω : ∀x ∈ ker Φ(·, η) ∃(xn)n∈N s.t.

xn ∈ ran(S − η),

limn→∞

[xn, xn]X = [x, x]X , limn→∞

[xn, y]X = [x, y]X , y ∈ L,

limn→∞

Φ(xn, w) = Φ(x,w), w ∈M.

Page 131: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Directing functionals in aPs

DefinitionLet L be an inner product space, let S be a symmetric linearrelation in L, let Ω ⊆ C, and let Φ : L × Ω→ C.

We call Φ a directing functional for S, if it satisfies the followingaxioms.

(DF1) For each w ∈ Ω the function Φ(·, w) : L → C is linear.

(DF2) The set Ω is open. For each x ∈ L the functionΦ(x, ·) : Ω→ C is analytic.

(DF3) There is no nonempty open subset O of Ω, such thatΦ|L×O = 0.

(DF4) The set r⊆(S,Φ) has accumulation points in eachconnected component of Ω \ R.

(DF5) The set rapp⊇ (S,Φ; Ω \ R) has nonempty intersection

with both half-planes C+ and C−.

Page 132: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Directing functionals in aPs

DefinitionLet L be an inner product space, let S be a symmetric linearrelation in L, let Ω ⊆ C, and let Φ : L × Ω→ C.

We call Φ a directing functional for S, if it satisfies the followingaxioms.

(DF1) For each w ∈ Ω the function Φ(·, w) : L → C is linear.

(DF2) The set Ω is open. For each x ∈ L the functionΦ(x, ·) : Ω→ C is analytic.

(DF3) There is no nonempty open subset O of Ω, such thatΦ|L×O = 0.

(DF4) The set r⊆(S,Φ) has accumulation points in eachconnected component of Ω \ R.

(DF5) The set rapp⊇ (S,Φ; Ω \ R) has nonempty intersection

with both half-planes C+ and C−.

Page 133: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Directing functionals in aPs

DefinitionLet L be an inner product space, let S be a symmetric linearrelation in L, let Ω ⊆ C, and let Φ : L × Ω→ C.

We call Φ a directing functional for S, if it satisfies the followingaxioms.

(DF1) For each w ∈ Ω the function Φ(·, w) : L → C is linear.

(DF2) The set Ω is open. For each x ∈ L the functionΦ(x, ·) : Ω→ C is analytic.

(DF3) There is no nonempty open subset O of Ω, such thatΦ|L×O = 0.

(DF4) The set r⊆(S,Φ) has accumulation points in eachconnected component of Ω \ R.

(DF5) The set rapp⊇ (S,Φ; Ω \ R) has nonempty intersection

with both half-planes C+ and C−.

Page 134: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Directing functionals in aPs

DefinitionLet L be an inner product space, let S be a symmetric linearrelation in L, let Ω ⊆ C, and let Φ : L × Ω→ C.

We call Φ a directing functional for S, if it satisfies the followingaxioms.

(DF1) For each w ∈ Ω the function Φ(·, w) : L → C is linear.

(DF2) The set Ω is open. For each x ∈ L the functionΦ(x, ·) : Ω→ C is analytic.

(DF3) There is no nonempty open subset O of Ω, such thatΦ|L×O = 0.

(DF4) The set r⊆(S,Φ) has accumulation points in eachconnected component of Ω \ R.

(DF5) The set rapp⊇ (S,Φ; Ω \ R) has nonempty intersection

with both half-planes C+ and C−.

Page 135: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Directing functionals in aPs

DefinitionLet L be an inner product space, let S be a symmetric linearrelation in L, let Ω ⊆ C, and let Φ : L × Ω→ C.

We call Φ a directing functional for S, if it satisfies the followingaxioms.

(DF1) For each w ∈ Ω the function Φ(·, w) : L → C is linear.

(DF2) The set Ω is open. For each x ∈ L the functionΦ(x, ·) : Ω→ C is analytic.

(DF3) There is no nonempty open subset O of Ω, such thatΦ|L×O = 0.

(DF4) The set r⊆(S,Φ) has accumulation points in eachconnected component of Ω \ R.

(DF5) The set rapp⊇ (S,Φ; Ω \ R) has nonempty intersection

with both half-planes C+ and C−.

Page 136: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Directing functionals in aPs

Example

Let (sn)∞n=0, sn ∈ R, be given and consider:

• L := C[z] with [., .];

• S := (p(z); zp(z)) : p ∈ C[z];• Ω := C;

• Φ(p, w) := p(w).

Then

• Φ(·, w) = χw is linear;

• Φ(p, ·) = p is entire;

• Φ(1, w) = 1, hence Φ(1, ·) vanishes nowhere;

• ∀w ∈ C : ran(S − w) =p ∈ C[z] : p(w) = 0

= ker Φ(·, w),

hence r(S,Φ) = C.

Page 137: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Directing functionals in aPs

Example

Let (sn)∞n=0, sn ∈ R, be given and consider:

• L := C[z] with [., .];

• S := (p(z); zp(z)) : p ∈ C[z];• Ω := C;

• Φ(p, w) := p(w).

Then

• Φ(·, w) = χw is linear;

• Φ(p, ·) = p is entire;

• Φ(1, w) = 1, hence Φ(1, ·) vanishes nowhere;

• ∀w ∈ C : ran(S − w) =p ∈ C[z] : p(w) = 0

= ker Φ(·, w),

hence r(S,Φ) = C.

Page 138: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Directing functionals in aPs

Example

Let (sn)∞n=0, sn ∈ R, be given and consider:

• L := C[z] with [., .];

• S := (p(z); zp(z)) : p ∈ C[z];• Ω := C;

• Φ(p, w) := p(w).

Then

• Φ(·, w) = χw is linear;

• Φ(p, ·) = p is entire;

• Φ(1, w) = 1, hence Φ(1, ·) vanishes nowhere;

• ∀w ∈ C : ran(S − w) =p ∈ C[z] : p(w) = 0

= ker Φ(·, w),

hence r(S,Φ) = C.

Page 139: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Directing functionals in aPs

Example

Let (sn)∞n=0, sn ∈ R, be given and consider:

• L := C[z] with [., .];

• S := (p(z); zp(z)) : p ∈ C[z];• Ω := C;

• Φ(p, w) := p(w).

Then

• Φ(·, w) = χw is linear;

• Φ(p, ·) = p is entire;

• Φ(1, w) = 1, hence Φ(1, ·) vanishes nowhere;

• ∀w ∈ C : ran(S − w) =p ∈ C[z] : p(w) = 0

= ker Φ(·, w),

hence r(S,Φ) = C.

Page 140: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Directing functionals in aPs

Example

Let (sn)∞n=0, sn ∈ R, be given and consider:

• L := C[z] with [., .];

• S := (p(z); zp(z)) : p ∈ C[z];• Ω := C;

• Φ(p, w) := p(w).

Then

• Φ(·, w) = χw is linear;

• Φ(p, ·) = p is entire;

• Φ(1, w) = 1, hence Φ(1, ·) vanishes nowhere;

• ∀w ∈ C : ran(S − w) =p ∈ C[z] : p(w) = 0

= ker Φ(·, w),

hence r(S,Φ) = C.

Page 141: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

aPs-completion of spaces of analytic functions

TheoremLet L be an inner product space with ind− L <∞, let S be asymmetric linear relation in L, let Ω ⊆ C, and let Φ : L × Ω→ Cbe a directing functional for S.

Page 142: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

aPs-completion of spaces of analytic functions

TheoremLet L be an inner product space with ind− L <∞, let S be asymmetric linear relation in L, let Ω ⊆ C, and let Φ : L × Ω→ Cbe a directing functional for S.

Assume that

• ∃M ⊆ r⊆(S,Φ) s.t. M has accumulation points in eachconnected component of Ω \ R, and

dim([L + spanΦ(·, w) : w ∈M

]/L)<∞;

Page 143: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

aPs-completion of spaces of analytic functions

TheoremLet L be an inner product space with ind− L <∞, let S be asymmetric linear relation in L, let Ω ⊆ C, and let Φ : L × Ω→ Cbe a directing functional for S.

Assume that

• ∃M ⊆ r⊆(S,Φ) s.t. M has accumulation points in eachconnected component of Ω \ R, and

dim([L + spanΦ(·, w) : w ∈M

]/L)<∞;

• Either L ∩ span

Φ(·, w) : w ∈ r⊆(S,Φ),Φ(·, w) ∈ L + spanΦ(·, w) : w ∈M

or L ∩ span

Φ(·, w) : w ∈ rapp

⊇ (S,Φ; Ω \ R) \ R

is dense in L w.r.t. T .

Page 144: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

aPs-completion of spaces of analytic functions

TheoremLet L be an inner product space with ind− L <∞, let S be asymmetric linear relation in L, let Ω ⊆ C, and let Φ : L × Ω→ Cbe a directing functional for S.

Under these assumptions:

• There exists a unique reproducing kernel aPs B, such thatΦL : x 7→ Φ(x, ·) maps L isometrically onto a dense subspaceof B.

• The elements of B are analytic on Ω.

• ClosB[(ΦL × ΦL)(S)

]= S(B).

Here S(B) is the multiplication operator in B.

Page 145: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

aPs-completion of spaces of analytic functions

TheoremLet L be an inner product space with ind− L <∞, let S be asymmetric linear relation in L, let Ω ⊆ C, and let Φ : L × Ω→ Cbe a directing functional for S.

Under these assumptions:

Concerning the geometry of B, we have

• Φ∗L(B′) = L + span

Φ(·, w) : w ∈M

= L + span

Φ(·, w) : w ∈ Ω

• ind0 B = dim([L + spanΦ(·, w) : w ∈ Ω

]/L)

• The set w ∈ Ω : dB(w) > 0 is discrete.Here dB(w) is the minimal multiplicity of w as a zero of someelement of B \ 0.

Page 146: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

aPs-completion of spaces of analytic functions

TheoremLet L be an inner product space with ind− L <∞, let S be asymmetric linear relation in L, let Ω ⊆ C, and let Φ : L × Ω→ Cbe a directing functional for S.

Under these assumptions:

Concerning the operator theory of S(B), we have

• S(B) is of defect (1, 1);

• Ω ⊆ r(S(B))

• ran(S(B)− w) = kerχ(dB(w))w |B, w ∈ Ω

Page 147: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

De Branges space completions

DefinitionAn inner product space L whose elements are entire functions iscalled algebraic de Branges space, if

• If f ∈ L, w ∈ C \ R with f(w) = 0, then f(z)z−w ∈ L. We have

[z − wz − w

f(z),z − wz − w

g(z)]L

=[f(z), g(z)

]L,

f, g ∈ B, f(w) = g(w) = 0.

• If f ∈ L then f#(z) := f(z) ∈ L. We have[f#, g#

]L = [g, f ]L, f, g ∈ L.

If in addition L is a reproducing kernel aPs, then L is called ade Branges aPs.

Page 148: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

De Branges space completions

DefinitionAn inner product space L whose elements are entire functions iscalled algebraic de Branges space, if

• If f ∈ L, w ∈ C \ R with f(w) = 0, then f(z)z−w ∈ L. We have

[z − wz − w

f(z),z − wz − w

g(z)]L

=[f(z), g(z)

]L,

f, g ∈ B, f(w) = g(w) = 0.

• If f ∈ L then f#(z) := f(z) ∈ L. We have[f#, g#

]L = [g, f ]L, f, g ∈ L.

If in addition L is a reproducing kernel aPs, then L is called ade Branges aPs.

Page 149: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

De Branges space completions

TheoremLet L be an algebraic de Branges space. If L has a reproducingkernel aPs-completion, then this completion is a de Branges aPs.

Page 150: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Selected Literature

Indefinite inner products:

J. Bognar. Indefinite inner product spaces. Ergebnisseder Mathematik und ihrer Grenzgebiete, Band 78. NewYork: Springer-Verlag, 1974.

I. S. Iohvidov, M.G. Krein, and H. Langer. Introductionto the spectral theory of operators in spaces with anindefinite metric. Vol. 9. Mathematical Research.Berlin: Akademie-Verlag, 1982.

T.Ya. Azizov and I.S. Iohvidov. Linear operators inspaces with an indefinite metric. Pure and AppliedMathematics (New York). John Wiley & Sons Ltd.,1989.

Page 151: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Selected Literature

Reproducing kernel spaces:

N. Aronszajn. “Theory of reproducing kernels”. In:Trans. Amer. Math. Soc. 68 (1950), pp. 337–404.

D Alpay. The Schur algorithm, reproducing kernelspaces and system theory. Providence, RI: AmericanMathematical Society, 2001.

D. Alpay et al. Schur functions, operator colligations,and reproducing kernel Pontryagin spaces. Basel:Birkhauser Verlag, 1997.

A. Gheondea. “A Survey on Reproducing Kernel KreinSpaces”. In: (2013). arXiv: 1309.2393v2 [math.FA].

Page 152: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Selected Literature

Moment problems:

N.I. Akhiezer. The classical moment problem and somerelated questions in analysis. Edinburgh: Oliver &Boyd, 1965.

C. Berg and A.J. Duran. “The index of determinacy formeasures and the l2-norm of orthonormal polynomials”.In: Trans. Amer. Math. Soc. 347.8 (1995),

pp. 2795–2811.

M.G. Krein and H. Langer. “On some extensionproblems which are closely connected with the theory ofHermitian operators in a space Πκ. III. Indefiniteanalogues of the Hamburger and Stieltjes momentproblems. Part I”. In: Beitrage Anal. 14 (1979),pp. 25–40.

Page 153: Reproducing kernel almost Pontryagin spacesworacek/homepage/downloads/...Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals This presentation

Almost Pontryagin Spaces Reproducing Kernel Spaces Hamburger moment problem Directing Functionals

Selected Literature

Directing functionals:

M.G. Krein. “On Hermitian operators with directedfunctionals”. In: Akad. Nauk Ukrain. RSR. ZbirnikPrac′ Inst. Mat. 1948.10 (1948), pp. 83–106.

H. Langer and B. Textorius. “Spectral functions of asymmetric linear relation with a directing mapping. I”.In: Proc. Roy. Soc. Edinburgh Sect. A 97 (1984),pp. 165–176.

M.L. Gorbachuk and V.I. Gorbachuk. M. G. Krein’slectures on entire operators. Basel: Birkhauser Verlag,1997.

B. Textorius. “Directing mappings in Kreın spaces”. In:Oper. Theory Adv. Appl. 163 (2006), pp. 351–363.