Top Banner
bg=black!2 Introduction Limiting eigenvalue distribution of random matrices Digital communication Bibliography Replica method: a statistical mechanics approach to probability-based information processing Toshiyuki Tanaka [email protected] Graduate School of Informatics, Kyoto University, Kyoto, Japan 17th International Symposium on Mathematical Theory of Networks and Systems, Kyoto, Japan, July 25, 2006 Toshiyuki Tanaka MTNS2006: Replica method
41

Replica method: a statistical mechanics approach to ...

Oct 15, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Replica method: a statistical mechanics approach to ...

bg=black!2 IntroductionLimiting eigenvalue distribution of random matrices

Digital communicationBibliography

Replica method: a statistical mechanics approachto probability-based information processing

Toshiyuki [email protected]

Graduate School of Informatics, Kyoto University, Kyoto, Japan

17th International Symposium on Mathematical Theory ofNetworks and Systems, Kyoto, Japan, July 25, 2006

Toshiyuki Tanaka MTNS2006: Replica method

Page 2: Replica method: a statistical mechanics approach to ...

bg=black!2 IntroductionLimiting eigenvalue distribution of random matrices

Digital communicationBibliography

Introduction

Replica method

Developed in studies of spin glasses (=magnetic materialswith random spin-spin interactions)

Recently applied to problems in information sciences:

Neural networksStatistical learning theoryCombinatorial optimization problemsError-correcting codesCDMA (digital wireless communication)Eigenvalue distribution of random matrices

Still lacks rigorous mathematical justification

Toshiyuki Tanaka MTNS2006: Replica method

Page 3: Replica method: a statistical mechanics approach to ...

bg=black!2 IntroductionLimiting eigenvalue distribution of random matrices

Digital communicationBibliography

Introduction

Objectives

To give a review of the replica method, as well as itsmathematically questionable point.

To demonstrate its applications.

Eigenvalue distribution of random matrices.Analysis of digital communication systems.

Toshiyuki Tanaka MTNS2006: Replica method

Page 4: Replica method: a statistical mechanics approach to ...

bg=black!2 IntroductionLimiting eigenvalue distribution of random matrices

Digital communicationBibliography

Basic resultsApproachesAnalysis via replica method

Problem

Basic defs.

A: N × N real symmetric random matrixλ1, . . . , λN : Eigenvalues of A

Empirical eigenvalue distribution

ρA(x) =1

N

N∑i=1

δ(x − λi )

Problem

To evaluateρ(x) = lim

N→∞ EA

[ρA(x)

]

Toshiyuki Tanaka MTNS2006: Replica method

Page 5: Replica method: a statistical mechanics approach to ...

bg=black!2 IntroductionLimiting eigenvalue distribution of random matrices

Digital communicationBibliography

Basic resultsApproachesAnalysis via replica method

Basic results

Wigner’s semicircle law (Wigner, 1951)

A = (aij): N × N matrix, aij (i ≤ j): i.i.d., mean 0, variance 1/N.

Marc̆enko-Pastur law (Marc̆enko & Pastur, 1967)

A = ΞTΞ, Ξ = (ξμi ): p × N matrix;ξμi i.i.d., mean 0, variance 1/N.

(Girko’s) full-circle law (Girko, 1985)

A = (aij), aij : i.i.d., mean 0, variance 1/N. (A not symmetric)

Toshiyuki Tanaka MTNS2006: Replica method

Page 6: Replica method: a statistical mechanics approach to ...

bg=black!2 IntroductionLimiting eigenvalue distribution of random matrices

Digital communicationBibliography

Basic resultsApproachesAnalysis via replica method

Wigner’s semicircle law

Wigner’s semicircle law

A = (aij), aij (i ≤ j): i.i.d, mean 0, variance 1/N.

⇒ ρ(x) =

⎧⎨⎩

1

√4 − x2 (|x | < 2)

0 (|x | > 2)

Toshiyuki Tanaka MTNS2006: Replica method

Page 7: Replica method: a statistical mechanics approach to ...

bg=black!2 IntroductionLimiting eigenvalue distribution of random matrices

Digital communicationBibliography

Basic resultsApproachesAnalysis via replica method

Wigner’s semicircle law

-2 -1 0 1 2

Histogram of eigenvalues of a 6000 × 6000 random symmetricmatrix with entries following Gaussian distribution.

Toshiyuki Tanaka MTNS2006: Replica method

Page 8: Replica method: a statistical mechanics approach to ...

bg=black!2 IntroductionLimiting eigenvalue distribution of random matrices

Digital communicationBibliography

Basic resultsApproachesAnalysis via replica method

Marc̆enko-Pastur law

Marc̆enko-Pastur law

A = ΞTΞ, Ξ = (ξμi ): p × N matrix;ξμi : i.i.d., mean 0, variance 1/N.

ρ(x) =

⎧⎪⎪⎨⎪⎪⎩

√4α − (x − 1 − α)2

2πxχα(x) (α ≥ 1)

(1 − α)δ(x) +

√4α − (x − 1 − α)2

2πxχα(x) (0 < α < 1)

α ≡ p/Nχα(x): Characteristic function of interval [(1 −√

α)2, (1 +√

α)2].

Toshiyuki Tanaka MTNS2006: Replica method

Page 9: Replica method: a statistical mechanics approach to ...

bg=black!2 IntroductionLimiting eigenvalue distribution of random matrices

Digital communicationBibliography

Basic resultsApproachesAnalysis via replica method

Marc̆enko-Pastur law

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6

ρ(x)

x

α = 0.3, 0.6, 2; Terms proportional to δ(x) not shown.

Toshiyuki Tanaka MTNS2006: Replica method

Page 10: Replica method: a statistical mechanics approach to ...

bg=black!2 IntroductionLimiting eigenvalue distribution of random matrices

Digital communicationBibliography

Basic resultsApproachesAnalysis via replica method

Full-circle

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Im(λ

)

Re(λ)

Eigenvalue distribution of a real 6000 × 6000 random matrix.

Toshiyuki Tanaka MTNS2006: Replica method

Page 11: Replica method: a statistical mechanics approach to ...

bg=black!2 IntroductionLimiting eigenvalue distribution of random matrices

Digital communicationBibliography

Basic resultsApproachesAnalysis via replica method

Eigenvalue distribution of random matrices

Useful for what?

Wide applications in mathematical physics

Applications in Information Processing

Statistical learning theoryDigital communication(kernel) PCA (bioinformatics, mathematical finance, etc.)

Toshiyuki Tanaka MTNS2006: Replica method

Page 12: Replica method: a statistical mechanics approach to ...

bg=black!2 IntroductionLimiting eigenvalue distribution of random matrices

Digital communicationBibliography

Basic resultsApproachesAnalysis via replica method

Eigenvalue distribution of random matrix

Approaches

Marginalization of joint eigenvalue distribution (ex. Mehta,

1967)

Evaluation of moments (ex. Brody et al., 1981)

“Locator” expansion (ex. Bray & Moore, 1979; Hertz et al., 1989)

Cavity method

Free probability theory (ex. Voiculescu, 1985; Hiai & Petz, 2000)

Replica method (ex. Edwards & Jones, 1976)

Toshiyuki Tanaka MTNS2006: Replica method

Page 13: Replica method: a statistical mechanics approach to ...

bg=black!2 IntroductionLimiting eigenvalue distribution of random matrices

Digital communicationBibliography

Basic resultsApproachesAnalysis via replica method

Reformulation

ρA(x) =1

N

N∑i=1

δ(x − λi)

mA(z) =1

Ntr(A − zI )−1

=2

N

d

dzlog ZA(z)

ZA(z) = (−2πi)N/2|A − zI |−1/2

=

∫R

N

exp[− i

2uT (A − zI )u

]du

mA(z) =

∫R

ρA(x)

x − zdx

ρA(x) = limε→+0

1

π�[

mA(x + iε)]

Stieltjes trans.

tr∗−1 = (log det ∗)′

Gaussian integ.rep. of det.

Toshiyuki Tanaka MTNS2006: Replica method

Page 14: Replica method: a statistical mechanics approach to ...

bg=black!2 IntroductionLimiting eigenvalue distribution of random matrices

Digital communicationBibliography

Basic resultsApproachesAnalysis via replica method

Averaging over A

ρ(x) = EA

[1

N

N∑i=1

δ(x − λi)

]

m(z) = EA

[1

Ntr(A − zI )−1

]

= 2d

dzEA

[1

Nlog ZA(z)

]

ZA(z) =

∫R

N

exp[− i

2uT (A − zI )u

]du

mA(z) =

∫R

ρA(x)

x − zdx

ρA(x) = limε→+0

1

π�[

mA(x + iε)]

Stieltjes trans.

tr∗−1 = (log det ∗)′

Toshiyuki Tanaka MTNS2006: Replica method

Page 15: Replica method: a statistical mechanics approach to ...

bg=black!2 IntroductionLimiting eigenvalue distribution of random matrices

Digital communicationBibliography

Basic resultsApproachesAnalysis via replica method

Outline of the approach

1 Evaluate

f (z) = limN→∞ EA

[1

Nlog ZA(z)

]

where (ZA(z) =

∫R

N

exp[− i

2uT (A − zI )u

]du

)

2 Calculate Stieltjes transform m(z) of ρ(x) with

m(z) = 2d

dzf (z).

3 Evaluate the inverse Stieltjes transform to obtain ρ(x):

ρ(x) = limε→+0

1

π�[

m(x + iε)]

Toshiyuki Tanaka MTNS2006: Replica method

Page 16: Replica method: a statistical mechanics approach to ...

bg=black!2 IntroductionLimiting eigenvalue distribution of random matrices

Digital communicationBibliography

Basic resultsApproachesAnalysis via replica method

Replica method

Rewriting of formulas

f (z) = limN→∞ EA

[1

Nlog ZA(z)

](

∂nlog EA

(Z n

)=

EA(Z n log Z )

EA(Z n)

)

= limN→∞

1

Nlimn→0

∂nlog EA

{[ZA(z)

]n}(

Exchange order of limn→0 ∂/∂nand limN→∞.

)

= limn→0

∂nlim

N→∞1

Nlog EA

{[ZA(z)

]n}

Toshiyuki Tanaka MTNS2006: Replica method

Page 17: Replica method: a statistical mechanics approach to ...

bg=black!2 IntroductionLimiting eigenvalue distribution of random matrices

Digital communicationBibliography

Basic resultsApproachesAnalysis via replica method

Replica method

Goal

To evaluate limN→∞

1

Nlog EA

{[ZA(z)

]n}.

The replica “trick”

Evaluate it by assuming n to be a positive integer.

Believe the result to be valid for real n.

No mathematically rigorous justification.

Toshiyuki Tanaka MTNS2006: Replica method

Page 18: Replica method: a statistical mechanics approach to ...

bg=black!2 IntroductionLimiting eigenvalue distribution of random matrices

Digital communicationBibliography

Basic resultsApproachesAnalysis via replica method

Random matrix ensemble

Covariance matrix of random samples

A = ΞTΞ, Ξ = (ξμi ){ξμi ; μ = 1, . . . , p; i = 1, . . . , N} i.i.d.,

E(ξ) = 0, E(ξ2) = O(1/N), E(ξm) = o(1/N) (m ≥ 3)⇒ Marc̆enko-Pastur

Toshiyuki Tanaka MTNS2006: Replica method

Page 19: Replica method: a statistical mechanics approach to ...

bg=black!2 IntroductionLimiting eigenvalue distribution of random matrices

Digital communicationBibliography

Basic resultsApproachesAnalysis via replica method

Replica method

Introduction of “Replicated” systems

ZA(z) =

∫R

N

exp[− i

2uT (A − zI )u

]du

⇒ For n = 1, 2, . . .,

[ZA(z)

]n=

∫R

Nn

exp[− i

2

n∑a=1

uTa (A − zI )ua

] n∏a=1

dua

EA

{[ZA(z)

]n}=

∫R

NnEA

[exp

(− i

2

n∑a=1

uTa Aua

)]

× exp( iz

2

n∑a=1

∣∣ua

∣∣2) n∏a=1

dua

Toshiyuki Tanaka MTNS2006: Replica method

Page 20: Replica method: a statistical mechanics approach to ...

bg=black!2 IntroductionLimiting eigenvalue distribution of random matrices

Digital communicationBibliography

Basic resultsApproachesAnalysis via replica method

Calculation of EA(· · · )Factor to be evaluated

EA

[exp

(− i

2

n∑a=1

uTa Aua

)]

Assumptions on ramdom mtx. ensemble

A = ΞTΞ, Ξ = (ξμi ) (size: p × N)

{ξμi ; μ = 1, . . . , p; i = 1, . . . , N}: i.i.d.

vμa ≡N∑

i=1

ξμiuai ⇒ uTa Aua =

p∑μ=1

(vμa

)2

n∑a=1

uTa Aua =

p∑μ=1

n∑a=1

(vμa

)2=

p∑μ=1

∣∣vμ

∣∣2, (vμ = (vμ1, . . . , vμn)

T)

Toshiyuki Tanaka MTNS2006: Replica method

Page 21: Replica method: a statistical mechanics approach to ...

bg=black!2 IntroductionLimiting eigenvalue distribution of random matrices

Digital communicationBibliography

Basic resultsApproachesAnalysis via replica method

Calculation of EA(· · · )Average over A = Average over v

vμa ≡N∑

i=1

ξμiuai ⇒ uTa Aua =

p∑μ=1

(vμa

)2

n∑a=1

uTa Aua =

p∑μ=1

n∑a=1

(vμa

)2=

p∑μ=1

∣∣vμ

∣∣2(vμ = (vμ1, . . . , vμn)

T)

⇒ EA

[exp

(− i

2

n∑a=1

uTa Aua

)]=

{Ev

[exp

(− i

2

∣∣v∣∣2)]}p

(v = (ξTu1, . . . , ξTun)

T)

Toshiyuki Tanaka MTNS2006: Replica method

Page 22: Replica method: a statistical mechanics approach to ...

bg=black!2 IntroductionLimiting eigenvalue distribution of random matrices

Digital communicationBibliography

Basic resultsApproachesAnalysis via replica method

Assumptions on ramdom mtx. ensemble

E(ξ) = 0, E(ξ2) = 1/N, E(ξm) = o(1/N) (m ≥ 3)

Statistical properties of v = (ξTu1, . . . , ξTun)T

v ∼ N(0, Q) for fixed {ua} (⇐ Central limit theorem)

Order parameters

Q = (qab), qab ≡ Eξ(vvT ) = N−1

N∑i=1

uaiubi

⇒ Ev

[exp

(− i

2

∣∣v∣∣2)]=

∣∣I + iQ∣∣−1/2

(Gaussian integral)

exp( iz

2

n∑a=1

∣∣ua

∣∣2) = exp(Niz

2trQ

)

Toshiyuki Tanaka MTNS2006: Replica method

Page 23: Replica method: a statistical mechanics approach to ...

bg=black!2 IntroductionLimiting eigenvalue distribution of random matrices

Digital communicationBibliography

Basic resultsApproachesAnalysis via replica method

Integral with {ua} = Integral with Q

Ev

[exp

(− i

2

∣∣v∣∣2)]=

∣∣I + iQ∣∣−1/2

(Gaussian integral)

exp( iz

2

n∑a=1

∣∣ua

∣∣2) = exp(Niz

2trQ

)

⇒ EA

{[ZA(z)

]n}=

∫eNG(Q) μ(Q) dQ

G(Q) ≡ −α

2log

∣∣I + iQ∣∣ +

iz

2trQ, α ≡ p/N

μ(Q) ≡∫ ∏

a≤b

δ

(qab − 1

N

N∑i=1

uaiubi

) n∏a=1

dua

(Subshell volume)

Toshiyuki Tanaka MTNS2006: Replica method

Page 24: Replica method: a statistical mechanics approach to ...

bg=black!2 IntroductionLimiting eigenvalue distribution of random matrices

Digital communicationBibliography

Basic resultsApproachesAnalysis via replica method

Varadhan’s theorem (Large deviation theory)

limN→∞

1

Nlog

∫eNG(Q) μ(Q) dQ = sup

Q

[G(Q) − I(Q)]

Rate function I(Q)

The heuristic formula μ(Q) = e−NI(Q) holds for large N with

I(Q) = −1

2log |Q| + n

2

[1 + log(−2π)

].

Stationary condition (saddle-point equation)

∂Q

[G(Q) − I(Q)]

= O ⇒ izI + Q−1 − iα(I + iQ)−1 = O

Toshiyuki Tanaka MTNS2006: Replica method

Page 25: Replica method: a statistical mechanics approach to ...

bg=black!2 IntroductionLimiting eigenvalue distribution of random matrices

Digital communicationBibliography

Basic resultsApproachesAnalysis via replica method

m(z) = limn→0

∂nitrQ, izI + Q−1 − iα(I + iQ)−1 = O

Q uniquely determined by requiringintegrals not to diverge.

⎧⎪⎪⎨⎪⎪⎩

Q = qI

iz +1

q− iα

1 + iq= 0

m(z) = iq

⇒ m(z) = −[z − α

1 + m(z)

]−1

ρ(x) =

⎧⎪⎪⎨⎪⎪⎩

√4α − (x − 1 − α)2

2πxχα(x) (α ≥ 1)

(1 − α)δ(x) +

√4α − (x − 1 − α)2

2πxχα(x) (0 < α < 1)

(Marc̆enko-Pastur)

Toshiyuki Tanaka MTNS2006: Replica method

Page 26: Replica method: a statistical mechanics approach to ...

bg=black!2 IntroductionLimiting eigenvalue distribution of random matrices

Digital communicationBibliography

Basic settingUse of randomness in communicationReplica method

CommunicationBasic setting

X

Input

Channel Y

Output

p(x) p(y |x)

Output Y · · · What we observe.

Input X · · · What we want to know!

Problem

How much the output Y conveys information about the input X?

Toshiyuki Tanaka MTNS2006: Replica method

Page 27: Replica method: a statistical mechanics approach to ...

bg=black!2 IntroductionLimiting eigenvalue distribution of random matrices

Digital communicationBibliography

Basic settingUse of randomness in communicationReplica method

Communication

Problem

How much the output Y conveys information about the input X?

Mutual information

I (X ; Y ) =

∫p(x , y) log

p(x , y)

p(x)p(y)dx dy

= H(Y ) − H(Y |X )

H(Y |X ) = −∫ [∫

p(y |x) log p(y |x) dy

]p(x) dx

H(Y ) = −∫

p(y) log p(y) dy

Toshiyuki Tanaka MTNS2006: Replica method

Page 28: Replica method: a statistical mechanics approach to ...

bg=black!2 IntroductionLimiting eigenvalue distribution of random matrices

Digital communicationBibliography

Basic settingUse of randomness in communicationReplica method

Use of randomness in communication

Basic diagram

X

Input

Channel? Y

Output

Error-correcting code: ? =Encoder

Modulation: ? =Modulator

Toshiyuki Tanaka MTNS2006: Replica method

Page 29: Replica method: a statistical mechanics approach to ...

bg=black!2 IntroductionLimiting eigenvalue distribution of random matrices

Digital communicationBibliography

Basic settingUse of randomness in communicationReplica method

Use of randomness in communication

Examples

“Turbo” codes (Berrou et al., 1993): Two convolutionalcodes interlinked with a random interleaver.

Low-density parity-check codes (Gallager, 1962): Randomensemble of low-density parity-check matrices.

Code-division multiple-access (CDMA): Spreadingmodulation with random spreading sequences.

Toshiyuki Tanaka MTNS2006: Replica method

Page 30: Replica method: a statistical mechanics approach to ...

bg=black!2 IntroductionLimiting eigenvalue distribution of random matrices

Digital communicationBibliography

Basic settingUse of randomness in communicationReplica method

Mobile communication

��

Toshiyuki Tanaka MTNS2006: Replica method

Page 31: Replica method: a statistical mechanics approach to ...

bg=black!2 IntroductionLimiting eigenvalue distribution of random matrices

Digital communicationBibliography

Basic settingUse of randomness in communicationReplica method

Multiple access and CDMA

Multiple-access: Multipleusers simultaneously commu-nicate with the same basestation.

Toshiyuki Tanaka MTNS2006: Replica method

Page 32: Replica method: a statistical mechanics approach to ...

bg=black!2 IntroductionLimiting eigenvalue distribution of random matrices

Digital communicationBibliography

Basic settingUse of randomness in communicationReplica method

2-user CDMA system

×

×

Noise

×

Alice

Information x1

Spreading code{sμ1}

Bob

Information x2

Spreading code{sμ2}

Base st.

{yμ} Rcvd. signal

{sμ1}

h1 ⇒ x̂1

Toshiyuki Tanaka MTNS2006: Replica method

Page 33: Replica method: a statistical mechanics approach to ...

bg=black!2 IntroductionLimiting eigenvalue distribution of random matrices

Digital communicationBibliography

Basic settingUse of randomness in communicationReplica method

K -user CDMA system

x1

x2

xK

Information

{sμ1}{sμ2} {sμK}� � �

Spreading codes

××

×

Channel

++

Noise{nμ}

Rcvd. signal{yμ}

yμ =1√N

K∑k=1

sμkxk + nμ

(μ = 1, . . . , N)

Toshiyuki Tanaka MTNS2006: Replica method

Page 34: Replica method: a statistical mechanics approach to ...

bg=black!2 IntroductionLimiting eigenvalue distribution of random matrices

Digital communicationBibliography

Basic settingUse of randomness in communicationReplica method

Use of randomness in communication

Basic diagram

X

Input

ChannelS Y

Output

p(x) p(y |x , s)

Modeling of randomness

p(y |x , s): Channel input-output characteristics depending onauxiliary random variable S (e.g., spreading codes).

Toshiyuki Tanaka MTNS2006: Replica method

Page 35: Replica method: a statistical mechanics approach to ...

bg=black!2 IntroductionLimiting eigenvalue distribution of random matrices

Digital communicationBibliography

Basic settingUse of randomness in communicationReplica method

Use of randomness in communication

Randomness-averaged mutual information

One wants to evaluate:

ES

[I (X ; Y |S)

]= ES

[H(Y |S)

] − ES

[H(Y |X , S)

]

Difficulty

ES

[H(Y |S)

]= −ES

[∫p(y |S) log p(y |S) dy

]

p(y |S) =

∫p(y |x , S) p(x) dx

Toshiyuki Tanaka MTNS2006: Replica method

Page 36: Replica method: a statistical mechanics approach to ...

bg=black!2 IntroductionLimiting eigenvalue distribution of random matrices

Digital communicationBibliography

Basic settingUse of randomness in communicationReplica method

Replica method

Evaluation of randomness-averaged entropy

ES

[H(Y |S)

]= −ES

[∫p(y |S) log p(y |S) dy

]= − lim

n→0

∂nlog Ξn

Ξn ≡ ES

[∫ [p(y |S)

]n+1dy

]=

∫∫ [p(y |s)]n+1

p(s) dy ds

Replica method provides a powerful approach to evaluaterandomness-averaged mutual information.

Toshiyuki Tanaka MTNS2006: Replica method

Page 37: Replica method: a statistical mechanics approach to ...

bg=black!2 IntroductionLimiting eigenvalue distribution of random matrices

Digital communicationBibliography

Basic settingUse of randomness in communicationReplica method

Example of results

10-710-610-510-410-310-210-1100

0 2 4 6 8 10 12

Bit-

Err

or R

ate

Pb

Signal-to-Noise Ratio Eb /N0 [dB]

System load β = 1, 1.2, 1.4, 1.6, 1.8, 2Single-user limit

Toshiyuki Tanaka MTNS2006: Replica method

Page 38: Replica method: a statistical mechanics approach to ...

bg=black!2 IntroductionLimiting eigenvalue distribution of random matrices

Digital communicationBibliography

Basic settingUse of randomness in communicationReplica method

Discussion

S-shaped performance curve

Multiple solutions for performance.

Essentially the same as magnetization curve of ferromagnets:{Stable, Metastable, Unstable} solutions

-1

-0.5

0

0.5

1

-0.4 -0.2 0 0.2 0.4

Mag

netiz

atio

n

External magnetic field

“Hysteresis” · · · Affects behavior of estimation algorithms.

Toshiyuki Tanaka MTNS2006: Replica method

Page 39: Replica method: a statistical mechanics approach to ...

bg=black!2 IntroductionLimiting eigenvalue distribution of random matrices

Digital communicationBibliography

Basic settingUse of randomness in communicationReplica method

Replica method: Applications

Digital communication

Turbo codes (Montanari & Sourlas, 2000)

Low-density parity-check codes (Murayama et al., 2000)

Code-division multiple-access (Tanaka, 2002)

· · ·

Other fields

Associative memory of neural network, Hopfield model (Amitet al., 1985)

Perceptron learning (Gardner & Derrida, 1989)

Random K -SAT problem (Monasson & Zecchina, 1997)

· · ·

Toshiyuki Tanaka MTNS2006: Replica method

Page 40: Replica method: a statistical mechanics approach to ...

bg=black!2 IntroductionLimiting eigenvalue distribution of random matrices

Digital communicationBibliography

Basic settingUse of randomness in communicationReplica method

Replica method

Mathematics

Validity of replica solutions (not replica method) (Talagrand, 2003)

“It is difficult to see (in the replica method) more than away to guess the correct formula.” — Talagrand, 2003.

Current status

Empirically gives the correct results to various problems.

Heuristics: Validity unknown.

Justification (or counterexample) needed.

Toshiyuki Tanaka MTNS2006: Replica method

Page 41: Replica method: a statistical mechanics approach to ...

bg=black!2 IntroductionLimiting eigenvalue distribution of random matrices

Digital communicationBibliography

Bibliography

D. J. Amit et al., Phys. Rev. Lett., 55(14), 1530–1533, 1985.

Berrou et al., Proc. IEEE Int. Conf. Commun., 1064–1070, 1993.

A. Bray & Moore, J. Phys. C: Solid State Phys., 12(11), L441–L448, 1979.

T. A. Brody et al., Rev. Mod. Phys., 53(3), 385–479, 1981.

S. F. Edwards & R. C. Jones, J. Phys. A: Math. Gen., 9(10), 1595–1603, 1976.

R. G. Gallager, Trans. IRE Info. Theory, 8, 21–28, 1962.

E. Gardner & B. Derrida, J. Phys. A: Math. Gen., 22(12), 1983–1994, 1989.

V. L. Girko, Theory of Prob. Its Appl. (USSR), 29(4), 694–706, 1985.

J. A. Hertz et al., J. Phys. A: Math. Gen., 22(12), 2133–2150, 1989.

F. Hiai & D. Petz, The Semicircle Law, Free Random Variables, and Entropy, Amer. Math. Soc., 2000.

V. A. Marc̆enko & L. A. Pastur, Math. USSR-Sb., 1, 457–483, 1967.

M. L. Mehta, Random Matrices, Academic Press, 1967.

R. Monasson & R. Zecchina, Phys. Rev. E, 56(2), 1357–1370, 1997.

A. Montanari & N. Sourlas, Eur. Phys. J. B, 18(1) 107–119, 2000.

T. Murayama et al., Phys. Rev. E, 62(2), 1577–1591, 2000.

M. Talagrand, Spin Glasses: A Challenge for Mathematicians, Springer, 2003.

T. Tanaka, IEEE Trans. Info. Theory, 48(11), 2888–2910, 2002.

D. V. Voiculescu, in Operator Algebras and Their Connection with Topology and Ergodic Theory,Lecture Notes in Math., 1131, Springer, 1985, 556–588.

E. P. Wigner, Proc Cambridge Phil. Soc., 47, 790–798, 1951.

Toshiyuki Tanaka MTNS2006: Replica method