Top Banner
Relay Architectures for 3GPP LTE-Advanced By/ Eng. Ahmed Nasser Ahmed 1
43
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Relay lte

Relay Architectures for

3GPP LTE-Advanced

By/ Eng. Ahmed Nasser Ahmed

1

Page 2: Relay lte

Contents

1 • Introduction to Relay Architecture

2 • System Model

3 • One-Way Relaying Modeling

4 • Two-Way Relaying Modeling

5 • Shared Relaying Modeling

6 • Base Station Coordination

7 • Simulation Results

8 • Conclusion

9 • References2

Page 3: Relay lte

Introduction to Relay Architecture

One of the main challenges faced by the developing (3GPP-LTE-Advanced)

standard is providing high throughput at the cell edge.

The following Technologies enhance per-link throughput but do not inherently

mitigate the effects of interference.

Multiple input multiple output (MIMO)

Orthogonal frequency division multiplexing (OFDM)

Advanced error control codes

Cell edge performance is becoming more important When:

1. Cellular systems employ higher bandwidths with the same amount of transmit power

2. Use higher carrier frequencies with infrastructure designed for lower carrier frequencies.

One solution to improve coverage is the use of fixed relays.

fixed relays : are pieces of infrastructure without a wired backhaul connection,

that relay messages

3

Page 4: Relay lte

Introduction to Relay Architecture

Deployment Scenarios for Relay Technology

In 3GPP, it has been agreed to standardize the relay technology deployed for coverage extension in LTE Rel. 10. These specifications will, in particular, support one-hop relay technology in which the position of the relay station is fixed and the radio access link between the base station and mobile station is relayed by one relay station.

4

Page 5: Relay lte

Introduction to Relay Architecture

Many different relay transmission techniques have been developed over the

past ten years.

The simplest strategy (already deployed in commercial systems)

The analog repeater: which uses a combination of directional antennas and a power

amplifier to repeat the transmit signal [12].

More advanced strategies use signal processing of the received signal.

Amplify-and-forward relays: apply linear transformation to the received signal [13–15]

Decode-and- forward relays: decode the signal then re-encode for transmission [16]

Other hybrid types of transmission

information-theoretic compress-and forward [17]

demodulate-and-forward [18].

practical systems are considering half-duplex relay operation, which incur a

rate penalty since they require two (or more timeslots) to relay a message

5

Page 6: Relay lte

Introduction to Relay Architecture

6

Page 7: Relay lte

Introduction to Relay Architecture

The layer 3

The layer 3 relay also performs

demodulation and decoding of RF signals

received on the downlink from the base station

perform processing (such as ciphering and user-

data concatenation/segmentation/ reassembly)

for retransmitting user data on a radio

interface

performs encoding/modulation

The layer 3 relay station also features a

unique Physical Cell ID (PCI) on the physical

layer different than that of the base station.

In this way, a mobile station can recognize

that a cell provided by a relay station differs

from a cell provided by a base station

7

Page 8: Relay lte

Introduction to Relay Architecture

Radio Protocol for Relays layer3:

In layer 3 relay technology, user data is processed at the relay station as described.

It has consequently been agreed in 3GPP that a relay station will be equipped with

the same radio protocols as those of an LTE base station .

Packet Data Convergence Protocol (PDCP): for user data ciphering and header

compression.

Radio Link Control (RLC): protocol for retransmission control by ARQ

concatenation/segmentation/ reassembly.

Service Data Unit (SDU) .

Medium Access Control (MAC) protocol for HARQ and user data scheduling

Radio Resource Control (RRC) protocol for mobility, QoS, and security control .

8

Page 9: Relay lte

Introduction to Relay Architecture

There are three specific strategies for signal transmission including one-way relays, two-way relays, and shared relays.

1. The one-way relay : possesses only a single antenna and is deployed once in every sector. It performs a decode-and-forward operation and must aid the uplink and downlink using orthogonal resources.

2. The shared relay :The idea is to place a multiple antenna relay at the intersection of two or more cells. The relay decodes the signals from the intersecting base stations using the multiple receive antennas to cancel interference and retransmits to multiple users using MIMO broadcast methods.

3. The two-way relay: also called analog network coding and bidirectional relaying , is a way of avoiding the half-duplex loss of one-way relays . The key idea with the two-way relay is that both the base station and mobile station transmit to the relay at the same time in the first time slot. Then, in the second time slot, the relay rebroadcasts what it received to the base station and mobile station.

9

Page 10: Relay lte

Contents

1 • Introduction to Relay Architecture

2 • System Model

3 • One-Way Relaying Modeling

4 • Two-Way Relaying Modeling

5 • Shared Relaying Modeling

6 • Base Station Coordination

7 • Simulation Results

8 • Conclusion

9 • References10

Page 11: Relay lte

System Modeling

In the analysis we consider an arbitrary hexagonal cellular network with at least three cells as shown in the Figure .

The base stations are located in the center of each cell and consist of six directional antennas, each serving a different sector of the cell.

The antenna patterns are those specified in the IEEE 802.16j channel models [3].

The channel is assumed static over the length of the packet, and perfect transmit CSI is assumed in each case to allow for comparison of capacity expressions.

Thus, each cell has S = 6 sectors.

The multiple access strategy in each sector is orthogonal such that each antenna is serving one user in any given time/frequency resource.

We assume block fading model this mean that that the channels are narrowband in each time/frequency resource, constant over the length of a packet, and independent for each packet. 11

Page 12: Relay lte

System Modeling

12

BS TX power 47 dBm

BS-RS channel model IEEE 802.16j, Type H [33]

BS-MS channel model IEEE 802.16j, Type E [33]

RS-MS channel model IEEE 802.16j, Type E [33]

Number of Realizations 1000

Cell radius 876 m

Carrier frequency 2 GHz

Noise power -144 dBW

Mobile height 1 m

Relay height 15 m

BS height 30 m

Propagation environment Urban

System Parameters Used For Simulation

Page 13: Relay lte

System Modeling

Summary Table of Path-loss Types for IEEE802.16j Relay System

13

Page 14: Relay lte

Channel model

RS-MS channel model is IEEE 802.16j, Type E

Parameter values to be used for this model are provided below.

Building spacing, b = 60m (this is the spacing between building centers)

Street width, w = 12m (this is the spacing between building faces)

Street orientation = 90degrees

Average rooftop height, ℎ𝑟𝑜𝑜𝑓 = 25m

Note: The use of these values is not mandatory14

Page 15: Relay lte

Channel model

For the urban NLOS case which is shown as the examples in Figure 4 and 5, the COST 231 Walfisch-Ikegami model is recommended and given in

free space loss

roof top to street diffraction

multi - screen loss

This model is limited by the following parameter ranges:

f : 800....2,000MHz,

h base : 4....50m,

h mobile: 1....3m

R : 0.02.....5km

An alternative is using WINNER model, which is given as:

where d is the distance in meter and the carrier frequency is 5GHz.

15

Page 16: Relay lte

Channel model

Type H Urban ART to ART model:

The path loss is determined by the COST 231 model, and consists of the free-space path loss

plus the multiscreen diffraction loss Lmsd

Where:

b is the distance between two buildings (in meters)

Where:

ℎ𝑏 is the height of the BS.

16

Page 17: Relay lte

Channel model

Type H Urban ART to ART model:

The dependence of the pathloss on the frequency and distance is given via the parameters d k and f k

The following parameters are to be used for the COST 231 WI model:

ℎ𝑏 =30 m

ℎ𝑟𝑜𝑜𝑓 =15 m

b=30m

𝑘𝑓 chosen according to the specifications of metropolitan areas 17

Page 18: Relay lte

Contents

1 • Introduction to Relay Architecture

2 • System Model

3 • One-Way Relaying Modeling

4 • Two-Way Relaying Modeling

5 • Shared Relaying Modeling

6 • Base Station Coordination

7 • Simulation Results

8 • Conclusion

9 • References18

Page 19: Relay lte

One-Way Relaying Model

It also Called IEEE 802.16j relaying

The one-way relay possesses only a single antenna and is deployed once in

every sector. It performs a decode-and-forward operation and must aid the

uplink and downlink using orthogonal resources

Assuming that all base stations transmit at the same time, frequency, and

power, and that the cellular architecture is such that each cell sees the same

interference also we assume an i.i.d. block fading model

There are four distinct parts of the frame:

1. The base station transmits in the downlink.

2. The relay transmits in the downlink

3. The mobile transmits in the uplink.

4. The relay transmits in the uplink.

19

Page 20: Relay lte

One-Way Relaying Model

The transmission between the base station and the relay

The Relay Received signal from the base station

Where

h is the BS-RS channel (transmit power is absorbed into h),

s is the symbol transmitted by the BS (normalized so that E|s|2 = 1),

ℎ𝐼 is the vector of channels between the relay and all interfering base stations (including intercell

and intersector)

𝑆𝐼 is the vector of transmitted symbols from all the interferers,

𝑉𝑅 is the additive white Gaussian noise observed at the relay with variance σ2N.

The Symbol rate

Assuming that h, s I is Gaussian with variance σ2hI

20

Page 21: Relay lte

One-Way Relaying Model

Transmission between relay station and the mobile station

The mobile Received signal from the relay station

Where

g is the RS-MS channel (with absorbed transmit power)

𝑔𝐼 is the vector of channels between the mobile and all interfering relays,

𝑋𝐼 is the vector of transmitted symbols from all the interferers

The Symbol rate

Interference is assumed to be Gaussian and has variance σ2gI

The rate of the two-hop scenario is:

21

Page 22: Relay lte

Contents

1 • Introduction to Relay Architecture

2 • System Model

3 • One-Way Relaying Modeling

4 • Two-Way Relaying Modeling

5 • Shared Relaying Modeling

6 • Base Station Coordination

7 • Simulation Results

8 • Conclusion

9 • References22

Page 23: Relay lte

Two-Way Relaying Model

Two-way relays avoid the half-duplex assumption by using a form of analog

network coding that allows two messages to be sent and received in two

time-slots, so transmission cycle would be cut in half

There are two Phases:

1. phase I :During the first time slot all information-generating nodes in the cell (BSs

and MSs) transmit their signals to the relay.

2. phase II, In the second time slot, and after proper processing, the RSs broadcast

symbols from which the network nodes, that is, BSs and MSs, may extract their

intended signals

23

Page 24: Relay lte

Two-Way Relaying Model

The transmission in phase I

The received signal at the relays in the cell of interest

Where:

H :channels from the base station array to the relays

G the channels from the mobile stations to the relays

s and u: The BSs and MSs transmitted symbols

𝐻𝐼𝐶 : is the channel from base stations serving other cells to each relay.

𝐺𝐼𝐶: is the channel from mobiles in other cells.

𝑉𝑅: is zero-mean additive white Gaussian noise at the relay with variance σ2N

24

Page 25: Relay lte

Two-Way Relaying Model

The uplink transmission in Phase II:

The received signal at the BS array:

Where

𝑊𝐼𝐶: is the matrix channel from relays in other cells to the base station.

𝑌𝑅: is the amplified signal from all the relays in the cell, where

Γ is a diagonal matrix determined by the power constraint

𝑌𝑅,𝐼𝐶: is the amplified signal from relays in other cells.

The uplink sum rate for the whole cell is:

Where:

RIN: The spatial covariance of the interference and noise at the base station

25

Page 26: Relay lte

Two-Way Relaying Model

The Downlink transmission in Phase II

This user will received signal:

Where:

𝑞𝐼𝑠: is the vector channel from the other-sector relays to the user.

𝑞𝐼𝐶: is the vector from other-cell relays to the user.

𝑉𝑀 is the noise with variance σ2N

𝑌𝑅,𝐼𝑆 and 𝑌𝑅,𝐼𝐶: have information about both the uplink and downlink signal

The downlink rate for one user is:

Where

σ2: is The interference variance:

26

Page 27: Relay lte

Contents

1 • Introduction to Relay Architecture

2 • System Model

3 • One-Way Relaying Modeling

4 • Two-Way Relaying Modeling

5 • Shared Relaying Modeling

6 • Base Station Coordination

7 • Simulation Results

8 • Conclusion

9 • References27

Page 28: Relay lte

Shared Relaying Modelling

The idea is to place a multiple antenna relay at the intersection of two or more cells. The relay decodes the signals from the intersecting base stations using the multiple receive antennas to cancel interference and retransmits to multiple users using MIMO broadcast methods.

IEEE 802.16j does not permit this architecture.

The relay has KM antennas:

where

M is the number of base station antennas serving each sector

K is the number of base stations sharing the relay.

By placing many antennas at the shared relay, interference can be canceled in both hops of communication.

The shared relay behaves as a coordination of many single-antenna relays and thus alleviates the need for coordination among base stations

As in the one-way model, downlink communication occurs in two time slots

28

Page 29: Relay lte

Shared Relaying Modelling

In the first hop

the relay received signal:

where :

ℎ𝐾 is the channel from the kth parent base station to the relay,

𝑠𝐾 is the symbol transmitted by the kth base station

𝐻𝐼 is the matrix of channel coefficients from interfering base stations

𝑆𝐼 is the vector of symbols transmitted by the interferers.

𝑉𝑅 is spatially white zero-mean additive white Gaussian noise at the relay.

Then the mutual information for user k in the first hop is:

Where:

𝐴𝐾is defined recursively as

29

Parameter Value

BS TX power PBS

Relay TX power PRS

Antennas per BS

(sector)

1

Antennas per

relay

3

Relays per sector 1

Antennas per

mobile

1

Relay location cell radius

from BS

Page 30: Relay lte

Shared Relaying Modelling In the second hop

The user receives only its signal from the relay, plus interference from the external interferers. This is modeled as:

Where:

𝑔𝐾is the effective channel after precoding, waterfilling, and dirty paper coding between the relay and the kth mobile station,

𝑔𝑖,𝐾 is the vector channel from all the interferers to the kth mobile.

𝑥𝐼 is the transmitted vector at the interferers during the second hop.

𝑣𝑀,𝐾 is the additive white Gaussian noise at mobile k.

The rate in the second hop is for user k :

The optimized sum rate is:30

Page 31: Relay lte

Shared Relaying Modelling

Practical Shared Relaying :

Since it serves 3 adjacent sectors, there will be 1/3 as many relays in the network than with the one-way model

The shared relay may also mitigate the need for coordinated scheduling between the sectors. If the shared relay is allowed to transmit its own control information. it can achieve a large multiuser diversity gain across sectors without the need for the base stations to share information.

It may also make handoff easier by allowing for a buffer zone where which base station a mobile is associated with is unimportant. For example, consider a mobile station moving away from a base station and toward a shared relay. As it enters the relay’s zone of service, it is now served by this relay but still associated with its original base station

31

Page 32: Relay lte

Contents

1 • Introduction to Relay Architecture

2 • System Model

3 • One-Way Relaying Modeling

4 • Two-Way Relaying Modeling

5 • Shared Relaying Modeling

6 • Base Station Coordination

7 • Simulation Results

8 • Conclusion

9 • References32

Page 33: Relay lte

Base Station Coordination

Base station coordination allows distributed base

stations to act as a single multiantenna transmitter by

sharing the data to be transmitted via a high-capacity

low-delay wired backbone.

If all base stations can coordinate their transmissions

to all scheduled users, then all interference can be

removed.

full coordination over a wide area is impractical

because of the complexity of coordinated transmission

33

Page 34: Relay lte

Base Station Coordination

For the down link:

the user rates are similar to those achieved in the second hop of the shared relay transmission

Where:

ℎ𝐾is the effective channel gain from the base stations to the kth mobile after precoding, dirty paper coding, and water filling.

𝑠𝐾 is the transmitted symbol intended for the kth mobile

𝐻𝐼,𝐾 is the vector channel from the interferers to the kth mobile.

𝑆𝐼 is the vector of symbols transmitted by the interferers.

𝑉𝐾is the additive white Gaussian noise at the kth mobile.

The rate for user k is:

For the uplink:

The rates are that for the MIMO multiple access channel (MIMO MAC), whose forms are identical to those for the downlink but for the proper uplink channel substituted for hk and the interfering channels

34

Page 35: Relay lte

Contents

1 • Introduction to Relay Architecture

2 • System Model

3 • One-Way Relaying Modeling

4 • Two-Way Relaying Modeling

5 • Shared Relaying Modeling

6 • Base Station Coordination

7 • Simulation Results

8 • Conclusion

9 • References35

Page 36: Relay lte

Simulation Results

downlink sum rate results:

for each of the architectures presented as a function of relay transmit power for reuse factors r = 1, 6. For each case, r = 1 outperforms r = 6 to varying degree.

Base station coordination and conventional transmission are constant across the plot because no relays are included in these system models.

Base station coordination, unsurprisingly, gives the highest downlink sum rates, a roughly 119% increase over a conventional architecture with no relaying or coordination. More striking.

shared relaying achieves approximately 60% of the gains of base station coordination. When comparing the two systems, it must be emphasized that shared relaying requires no coordination between its base stations beyond that needed for synchronization in the multiple access channel of the first hop.

The one-way architecture only gives a roughly 15% increase in rate relative to a conventional system.

two-way relaying performs worse than conventional in the regime plotted where the multiplexing gain of the two-way relay is not apparent because we are considering only the downlink.

36

Using only free space model

Using the complete Model

Page 37: Relay lte

Simulation Results

Uplink sum rates :

In this regime, conventional architectures (without power control, soft handoff, or multiuser diversity which have been abstracted out of the system) have extremely low uplink SINR, resulting in almost no rate.

Two-way relaying performs similarly since the interference from nearby base stations is overwhelming the mobile device’s signal unless the relay is extremely close to it (as will be discussed in the next section). The curves on this graph are flat partly because they are already in the interference-limited regime and partly because, in the case of relaying, the system is limited by the first hop, which is not a function of the relay transmit power.

In this regime, shared relaying achieves around 90% of the achievable rate of base station coordination due to the relay’s ability to remove interference and its proximity to the cell edge. The half-duplex loss is much less severe in this case.

One-way relaying achieves roughly 50% of the rates of base station coordination. As in the downlink case, frequency use factor r = 1 drastically outperforms r = 6 across the board.

37

Page 38: Relay lte

Simulation Results

Downlink sum rate in one sector versus mobile station position for base

station coordination, shared relaying, and direct transmission

Using only free space model Using the complete Model38

Page 39: Relay lte

Simulation Results

Downlink sum rate versus MS position relative to cell edge. The relay station

is located 440m from the base station.

39

Using only free space model Using the complete Model

Page 40: Relay lte

Contents

1 • Introduction to Relay Architecture

2 • System Model

3 • One-Way Relaying Modeling

4 • Two-Way Relaying Modeling

5 • Shared Relaying Modeling

6 • Base Station Coordination

7 • Simulation Results

8 • Conclusion

9 • References40

Page 41: Relay lte

Conclusion

While base station coordination between adjacent sectors in neighboring cells

achieved the highest rates, it is also the most complex architecture.

Sharing a multiantenna relay among the same sectors is a simpler way to

achieve much of the gains of local interference mitigation but still has

significant complexity within the relay itself.

One-way relaying, where each relay is associated with only one base station,

is unlikely to give substantial throughput gains near the cell edge because it

does not directly treat interference

two-way relaying overcomes the half-duplex loss of conventional relaying

provided that the relay is extremely close to the mobile.

41

Page 42: Relay lte

References

[1] Steven W, Peters, Panah Ali Y, and Truong Kien T. "Relay architectures for

3GPP LTE-advanced." EURASIP Journal on Wireless Communications and

Networking 2009 (2009).

[2] Iwamura, Mikio, Hideaki Takahashi, and Satoshi Nagata. "Relay technology

in LTE-Advanced." NTT DoCoMo Technical Journal 12.2 (2010): 29-36.

[3] G. Senarath, et al., “Multi-hop relay system evaluation methodology

(channel model and performance metric),” IEEE 802.16j-06/013r3, February

2007.

[4] IEEE 802.16.3c-01/29r4, “Channel Models for Fixed Wireless Applications”

July 21, 2001

42

Page 43: Relay lte

43

Thank YouContact me:

Web site:

www.ahmed_nasser_eng.staff.scuegypt.edu.eg

Email:

[email protected]

[email protected]