Top Banner
Relativity Seminar at Oxford Non-Commutative Solitons and Integrable Equations Masashi HAMANAKA (Tokyo U. present) (Nagoya U. from Feb. 2004) MH, ``Commuting Flows and Conservation Laws for NC Lax Hierarches,’’ [hep-th/0311206] cf. MH,``NC Solitons and D-branes,’’ Ph.D thesis (2003) [hep-th/0303256]
26

Relativity Seminar at Oxford Non-Commutative Solitons and Integrable Equationshamanaka/040120.pdf · 2004-01-20 · Relativity Seminar at Oxford Non-Commutative Solitons and Integrable

Apr 05, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Relativity Seminar at Oxford Non-Commutative Solitons and Integrable Equationshamanaka/040120.pdf · 2004-01-20 · Relativity Seminar at Oxford Non-Commutative Solitons and Integrable

Relativity Seminar at Oxford

Non-Commutative Solitonsand Integrable Equations

Masashi HAMANAKA(Tokyo U. present) (Nagoya U. from Feb. 2004)

MH, ``Commuting Flows and Conservation Laws for NC Lax Hierarches,’’ [hep-th/0311206]cf. MH,``NC Solitons and D-branes,’’

Ph.D thesis (2003) [hep-th/0303256]

Page 2: Relativity Seminar at Oxford Non-Commutative Solitons and Integrable Equationshamanaka/040120.pdf · 2004-01-20 · Relativity Seminar at Oxford Non-Commutative Solitons and Integrable

1. Introduction• Non-Commutative (NC) spaces are defined by

noncommutativity of the coordinates:

This looks like CCR in QM:( ``space-space uncertainty relation’’ )

Resolution of singulality( New physical objects)

e.g. resolution of small instanton singularity( U(1) instantons)

ijji ixx θ=],[hipq =],[

θ~

Com. space NC space

ijθ : NC parameter

Page 3: Relativity Seminar at Oxford Non-Commutative Solitons and Integrable Equationshamanaka/040120.pdf · 2004-01-20 · Relativity Seminar at Oxford Non-Commutative Solitons and Integrable

NC gauge theories Com. gauge theories in background of

(real physics) magnetic fields

• Gauge theories are realized on D-branes which are solitons in string theories

• In this context, NC solitons are (lower-dim.) D-branesAnalysis of NC solitons Analysis of D-branes

(easy)

Various successful applicationse.g. confirmation of Sen’s conjecture on decay of D-branes

NC extension of soliton theories are worth studying !

Page 4: Relativity Seminar at Oxford Non-Commutative Solitons and Integrable Equationshamanaka/040120.pdf · 2004-01-20 · Relativity Seminar at Oxford Non-Commutative Solitons and Integrable

Soliton equations indiverse dimensions

4 Anti-Self-Dual Yang-Mills eq.(instantons)

2(+1)

KP eq. BCS eq. DS eq. …

3 Bogomol’nyi eq.(monopoles)

1(+1)

KdV eq. Boussinesq eq.NLS eq. Burgers eq. sine-Gordon eq. Sawada-Kotera eq

µνµν FF ~−=

Dim. of space

NC extension (Successful)

NC extension(Successful)

NC extension(This talk)

NC extension (This talk)

Page 5: Relativity Seminar at Oxford Non-Commutative Solitons and Integrable Equationshamanaka/040120.pdf · 2004-01-20 · Relativity Seminar at Oxford Non-Commutative Solitons and Integrable

Ward’s observation:Almost all integrable equations are

reductions of the ASDYM eqs.R.Ward, Phil.Trans.Roy.Soc.Lond.A315(’85)451

ASDYM eq.Reductions

KP eq. BCS eq. KdV eq. Boussinesq eq.

NLS eq. mKdV eq. sine-Gordon eq. Burgers eq. …

(Almost all ! )e.g. [Mason&Woodhouse]

Page 6: Relativity Seminar at Oxford Non-Commutative Solitons and Integrable Equationshamanaka/040120.pdf · 2004-01-20 · Relativity Seminar at Oxford Non-Commutative Solitons and Integrable

NC Ward’s observation: Almost all NC integrable equations are

reductions of the NC ASDYM eqs.MH&K.Toda, PLA316(‘03)77[hep-th/0211148]

NC ASDYM eq.

NC KP eq. NC BCS eq. NC KdV eq. NC Boussinesq eq.

NC NLS eq. NC mKdV eq. NC sine-Gordon eq. NC Burgers eq. …

(Almost all !?)

Reductions

Successful

Successful?Sato’s theory may answer

Page 7: Relativity Seminar at Oxford Non-Commutative Solitons and Integrable Equationshamanaka/040120.pdf · 2004-01-20 · Relativity Seminar at Oxford Non-Commutative Solitons and Integrable

Plan of this talk

1. Introduction2. NC Gauge Theory3. NC Sato’s Theory4. Conservation Laws5. Conclusion and Discussion

Page 8: Relativity Seminar at Oxford Non-Commutative Solitons and Integrable Equationshamanaka/040120.pdf · 2004-01-20 · Relativity Seminar at Oxford Non-Commutative Solitons and Integrable

2. NC Gauge TheoryHere we discuss NC gauge theory of instantons.

(Ex.) 4-dim. (Euclidean) G=U(N) Yang-Mills theory• Action

• Eq. Of Motion:

• BPS eq. (=(A)SDYM eq.)

∫−= µνµν FFTrxdS 4

21 ( )

( )[ ]µνµνµνµν

µνµνµνµν

FFFFTrxd

FFFFTrxd

~2~41

~~41

24

4

±−=

+−=

m

0]],[,[ =µνν DDD

µνµν FF ~±= instantons

]),[:( νµµννµµν AAAAF +∂−∂=⇔= 0 BPS 2C↔

)0,0(212211==+⇔ zzzzzz FFF

Page 9: Relativity Seminar at Oxford Non-Commutative Solitons and Integrable Equationshamanaka/040120.pdf · 2004-01-20 · Relativity Seminar at Oxford Non-Commutative Solitons and Integrable

(Q) How we get NC version of the theories?(A) They are obtained from ordinary commutative

gauge theories by replacing products of fields with star-products:

• The star product:

hgfhgf ∗∗=∗∗ )()(

)()()(2

)()()(2

exp)(:)()( 2θθθ Oxgxfixgxfxgixfxgxf ji

ij

jiij +∂∂+=⎟

⎠⎞

⎜⎝⎛ ∂∂=∗

rs

ijijjiji ixxxxxx θ=∗−∗=∗ :],[ NC !

Associative

)()()()( xgxfxgxf

A deformed product

∗→

Presence of background magnetic fields

In this way, we get NC-deformed theorieswith infinite derivatives in NC directions. (integrable???)

Page 10: Relativity Seminar at Oxford Non-Commutative Solitons and Integrable Equationshamanaka/040120.pdf · 2004-01-20 · Relativity Seminar at Oxford Non-Commutative Solitons and Integrable

(Ex.) 4-dim. NC (Euclidean) G=U(N) Yang-Mills theory

(All products are star products)• Action

• Eq. Of Motion:

• BPS eq. (=NC (A)SDYM eq.)

∫ ∗−= µνµν FFTrxdS 4

21 ( )

( )[ ]µνµνµνµν

µνµνµνµν

FFFFTrxd

FFFFTrxd

~2~41

~~41

24

4

∗±−=

∗+∗−=

∗∫

m

0]],[,[ =∗∗µνν DDD

µνµν FF ~±= NC instantons

Don’t omit even for G=U(1)

))()1(( ∞≅UUQ

)],[:( ∗+∂−∂= νµµννµµν AAAAF⇔= 0 BPS 2C↔

)0,0(212211==+⇔ zzzzzz FFF

Page 11: Relativity Seminar at Oxford Non-Commutative Solitons and Integrable Equationshamanaka/040120.pdf · 2004-01-20 · Relativity Seminar at Oxford Non-Commutative Solitons and Integrable

ADHM construction of instantons

0],[0],[],[

21

2211

=+=−++ ∗∗∗∗

IJBBJJIIBBBB

ADHM eq. (G=``U(k)’’): k times k matrix eq.

BPS

D-brane’sinterpretationDouglas, Witten

Atiyah-Drinfeld-Hitchin-Manin, PLA65(’78)185

k D0-branesADHM data kNNkkk JIB ××× :,:,:2,1

1:1

Instatntons NNA ×:µ

N D4-branesASD eq. (G=U(N), C2=-k): N times N PDE

0

0

21

2211

=

=+

zz

zzzz

F

FF BPS

String theory is a treasure house of dualities

Page 12: Relativity Seminar at Oxford Non-Commutative Solitons and Integrable Equationshamanaka/040120.pdf · 2004-01-20 · Relativity Seminar at Oxford Non-Commutative Solitons and Integrable

ADHM construction of BPST instanton (N=2,k=1)

Final remark: matrices B andcoords. z always appear in pair: z-B

ADHM eq. (G=``U(1)’’)

0],[0],[],[

21

2211

=+=−++ ∗∗∗∗

IJBBJJIIBBBB

0

0

21

2211

=

=+

zz

zzzz

F

FF

⎟⎠⎞

⎜⎝⎛

===ρ

ρα0

( ),0,,2,12,1 JIB

)(222

2

22

)(

))((2,

)()( −

+−=

+−−

= µνµνµν

ν

µ ηρ

ρρ

ηbx

iFbxbxi

A

ρ

position

0→

size

ρsingular

ASD eq. (G=U(2), C2=-1)M

Small instanton singulality

0=ρ

Page 13: Relativity Seminar at Oxford Non-Commutative Solitons and Integrable Equationshamanaka/040120.pdf · 2004-01-20 · Relativity Seminar at Oxford Non-Commutative Solitons and Integrable

ADHM construction of NC BPST instanton(N=2,k=1)

0],[],[],[

21

2211

=+=−++ ∗∗∗∗

IJBBJJIIBBBB ζ

Nekrasov&Schwarz,CMP198(‘98)689[hep-th/9802068]

ADHM eq. (G=``U(1)’’) 1 times 1 matrix eq.

⎟⎠⎞

⎜⎝⎛

=+==ρ

ζρα02( ),0,,2,12,1 JIB

size slightly fat?position

µνµ FA , : something smooth Regular! (U(1) instanton!)0→ρ

ASD eq. (G=U(2), C2=-1)

0

0

21

2211

=

=+

zz

zzzz

F

FF

Resolution of the singulality

M

0=ρ

Page 14: Relativity Seminar at Oxford Non-Commutative Solitons and Integrable Equationshamanaka/040120.pdf · 2004-01-20 · Relativity Seminar at Oxford Non-Commutative Solitons and Integrable

NC monopoles are also interesting• Magnetic flux of Dirac monopoles ``Visible’’

Dirac string(regular !) z z

On commutative space On NC space

yx, yx,

Dirac string(singular)

ADHMN construction works well.Moduli space is the same as commutative one.

Gross&Nekrasov, JHEP[hep-th/0005204]

Page 15: Relativity Seminar at Oxford Non-Commutative Solitons and Integrable Equationshamanaka/040120.pdf · 2004-01-20 · Relativity Seminar at Oxford Non-Commutative Solitons and Integrable

3. NC Sato’s Theory• Sato’s Theory : one of the most beautiful

theory of solitons– Based on the exsitence of

hierarchies and tau-functions• Sato’s theory reveals essential

aspects of solitons:– Construction of exact solutions– Structure of solution spaces– Infinite conserved quantities– Hidden infinite-dim. SymmetryLet’s discuss NC extension of Sato’s theory

Page 16: Relativity Seminar at Oxford Non-Commutative Solitons and Integrable Equationshamanaka/040120.pdf · 2004-01-20 · Relativity Seminar at Oxford Non-Commutative Solitons and Integrable

NC (KP) Hierarchy:

∗=∂∂ ],[ LBxL

mm

L+∂∂

+∂∂

+∂∂

34

23

12

xm

xm

xm

u

u

u

L+∂

+∂

+∂

34

23

12

)(

)(

)(

xm

xm

xm

uF

uF

uF

Huge amount of ``NC evolution equations’’ (m=1,2,3,…)

0

34

23

12

)(::

−−−

∗∗=+∂+∂+∂+∂=

LLBuuuL

m

xxxx

L

L

),,,( 321 Lxxxuu kk =)(33

2

23233

03

222

02

01

uuuLB

uLB

LB

xx

x

x

′++∂+∂==

+∂==

∂==

Noncommutativity is introduced here: ijji ixx θ=],[

m times

Page 17: Relativity Seminar at Oxford Non-Commutative Solitons and Integrable Equationshamanaka/040120.pdf · 2004-01-20 · Relativity Seminar at Oxford Non-Commutative Solitons and Integrable

Negative powers of differential operatorsjn

xjx

j

nx f

jn

f −∞

=

∂∂⎟⎟⎠

⎞⎜⎜⎝

⎛=∂ ∑ )(:

0o

1)2)(1())1(()2)(1(

L

L

−−−−−−

jjjjnnnn

: binomial coefficientwhich can be extendedto negative n

negative power of

differential operator(well-defined !)

ffff

fffff

xxx

xxxx

′′+∂′+∂=∂

′′′+∂′′+∂′+∂=∂

2

3322

1233

o

o

Lo

Lo

−∂′′+∂′−∂=∂

−∂′′+∂′−∂=∂−−−−

−−−−

4322

3211

32 xxxx

xxxx

ffff

ffff

)(2

exp)(:)()( xgixfxgxf jiij ⎟

⎠⎞

⎜⎝⎛ ∂∂=∗

rsθStar product:

which makes theories``noncommutative’’:ijijjiji ixxxxxx θ=∗−∗=∗ :],[

Page 18: Relativity Seminar at Oxford Non-Commutative Solitons and Integrable Equationshamanaka/040120.pdf · 2004-01-20 · Relativity Seminar at Oxford Non-Commutative Solitons and Integrable

Closer look at NC (KP) hierarchyFor m=2

2322 2 uuu ′′+′=∂

M

)

)

)

3

2

1

x

x

x

∗+′∗+′′+′=∂ ],[222 32223432 uuuuuuu

∗+′′∗−′∗+′′+′=∂ ],[2242 4222234542 uuuuuuuuu

Infinite kind of fields are representedin terms of one kind of field x

uux ∂∂

=:uu ≡2

MH&K.Toda, [hep-th/0309265]∫ ′=∂− x

x xd:1For m=3

M

)1−∂ x 222243223 3333 uuuuuuuu ′∗+∗′+′′+′′+′′′=∂ etc.

(2+1)-dim.NC KP equation∗

−− ∂+∂+∗+∗+= ],[43

43)(

43

41 11

yyxyyxxxxxxt uuuuuuuuu

),,,( 321 Lxxxuu =

x y t

and other NC equations(NC hierarchy equations)

Page 19: Relativity Seminar at Oxford Non-Commutative Solitons and Integrable Equationshamanaka/040120.pdf · 2004-01-20 · Relativity Seminar at Oxford Non-Commutative Solitons and Integrable

(KP hierarchy) (various hierarchies.)• (Ex.) KdV hierarchy

Reduction condition

gives rise to NC KdV hierarchywhich includes (1+1)-dim. NC KdV eq.:

):( 22

2 uBL x +∂==

)(43

41

xxxxxt uuuuuu ∗+∗+=

02

=∂∂

Nxu

Note

: 2-reduction

: dimensional reduction in directions

l -reduction yields wide class of other NC hierarchies which include NC Boussinesq, coupled KdV, Sawada-Kotera, mKdV hierarchies and so on.

Nx2

Page 20: Relativity Seminar at Oxford Non-Commutative Solitons and Integrable Equationshamanaka/040120.pdf · 2004-01-20 · Relativity Seminar at Oxford Non-Commutative Solitons and Integrable

NC Burgers hierarchyMH&K.Toda,JPA36(‘03)11981[hepth/0301213]

• NC (1+1)-dim. Burgers equation:uuuu ′∗+′′= 2& : Non-linear &

Infinite order diff. eq. w.r.t. time ! (Integrable?)

NC Cole-Hopf transformation

)log( 01 τττ θxu ∂⎯⎯ →⎯′∗= →−

ττ ′′=& : Linear & first order diff. eq. w.r.t. time

(Integrable !)

(NC) Diffusion equation:

NC Burgers eq. can be derived from G=U(1) NC ASDYM eq. (One example of NC Ward’s observation)

Page 21: Relativity Seminar at Oxford Non-Commutative Solitons and Integrable Equationshamanaka/040120.pdf · 2004-01-20 · Relativity Seminar at Oxford Non-Commutative Solitons and Integrable

NC Ward’s observation (NC NLS eq.)• Reduced ASDYM eq.: ),( xtx →µ

0],[)(

0],[)(0)(

=+−′

=+−′

=′

BCBAiii

CAACiiBi

&

&

Legare, [hep-th/0012077]

A, B, C: 2 times 2matrices (gauge fields)

FurtherReduction: ⎟⎟

⎞⎜⎜⎝

⎛∗−′′∗

−=⎟⎟⎠

⎞⎜⎜⎝

⎛−

=⎟⎟⎠

⎞⎜⎜⎝

⎛−

=qqq

qqqiCiB

qq

A ,10

012

,0

0

NOT traceless0

0220

)( =⎟⎟⎠

⎞⎜⎜⎝

⎛∗∗+′′+

∗∗−′′−⇒

qqqqqiqqqqqi

ii&

&

qqqqqi ∗∗+′′= 2& : NC NLS eq.U(1) part isimportant),2(),2(,, 0 CslCglCBA ⎯⎯→⎯∈ →θ

Note:

Page 22: Relativity Seminar at Oxford Non-Commutative Solitons and Integrable Equationshamanaka/040120.pdf · 2004-01-20 · Relativity Seminar at Oxford Non-Commutative Solitons and Integrable

NC Ward’s observation (NC Burgers eq.)),( xtx →µ MH&K.Toda, JPA

[hep-th/0301213]• Reduced ASDYM eq.:

G=U(1)

0],[)(

0],[)(

=+′−

=+

CBBCii

ABAi&

&A, B, C: 1 times 1matrices (gauge fields)

should remainFurtherReduction: uCuuBA =−′== ,,0 2

uuuu ∗′+′′= 2&⇒)(ii : NC Burgers eq.

Note: Without the commutators [ , ], (ii) yields:

uuuuuu ′∗+∗′+′′=& : neither linearizable nor Lax formsymmetric

Page 23: Relativity Seminar at Oxford Non-Commutative Solitons and Integrable Equationshamanaka/040120.pdf · 2004-01-20 · Relativity Seminar at Oxford Non-Commutative Solitons and Integrable

4. Conservation Laws• We have obtained wide class of NC hierarchies

and NC (soliton) equations.

• Are they integrable or specialfrom viewpoints of soliton theories? YES !

Now we show the existence of infinite number of conserved quatities which suggests a hidden infinite-dimensional symmetry.

Page 24: Relativity Seminar at Oxford Non-Commutative Solitons and Integrable Equationshamanaka/040120.pdf · 2004-01-20 · Relativity Seminar at Oxford Non-Commutative Solitons and Integrable

Conservation Laws• Conservation laws:

Conservation laws for the hierarchies

iit J∂=∂ σ

σ∫= spacedxQ :

∫∫ ==∂=∂inity

spatiali

ispace tt JdSdxQinf

0σQ

ijij

xxn

m JBAJLres Ξ∂+∂=+∂=∂ ∗− θ],[1

Then is a conserved quantity.

σ : Conserved density

Follwing G.Wilson’s approach, we have:

troublesome

I have succeeded in the evaluation explicitly !

spacetime

:nr Lres−

coefficient of inr

x−∂ nL

should be space or time derivativej∂

Noncommutativity should be introduced in space-time directions only.

Page 25: Relativity Seminar at Oxford Non-Commutative Solitons and Integrable Equationshamanaka/040120.pdf · 2004-01-20 · Relativity Seminar at Oxford Non-Commutative Solitons and Integrable

Main ResultsInfinite conserved densities for NC

hierarchy eqs. (n=1,2,…))1(

1

1

11 1

)1( +−−+−−

=

−++

+=

−−+− ◊∂⎟

⎠⎞

⎜⎝⎛−+= ∑ ∑ −−

− lknmkmiln

m

k

kmn

nl

lknmmin baLresnl

kmθσ

kmx

kkm

mxm

lnx

lln

nx

n bBaL −∞

=−

−∞

=− ∂+∂=∂+∂= ∑∑

11,

◊ : Strachan’s product

mxt ≡

)(21

)!12()1()(:)()(

2

0

xgs

xfxgxfs

jiij

s

s

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛ ∂∂

+−

=◊ ∑∞

=

rsθ

MH, [hep-th/0311206]

Example: NC KP and KdV equations )],([ θixt =

))()((3 22311 uLresuLresLres nnn ′◊+′◊−= −−− θσ : meaningful ?

Page 26: Relativity Seminar at Oxford Non-Commutative Solitons and Integrable Equationshamanaka/040120.pdf · 2004-01-20 · Relativity Seminar at Oxford Non-Commutative Solitons and Integrable

5. Conclusion and Discussion• We proved the existence of infinite conserved

quantities for wide class of NC hierarchies and gave the infinite conserved densities explicitly.

• Our results strongly suggest that infinite-dim. symmetry would be hidden in NC (soliton) equations.What is it ? theories of tau-functions are needed

(via e.g. Hirota’s bilinearization )the completion of NC Sato’s theory

• What is space-time noncommutativity ?• What is the twistor descriptions ? NC twistor theory

There are many things to be seen.

τlog2xu ∂=

e.g. Kapustin&Kuznetsov&Orlov, Hannabuss, Hannover group,…