Top Banner
1 Prof. Sergio B. Mendes Spring 2018 Relativistic Mechanics and Electromagnetic Field Theory Chapter 2 of “Modern Problems in Classical Electrodynamics” by Brau Chapter 12 “Classical Electrodynamics” by Jackson, 3 rd ed. Chapter 2 - 4 “The Classical Theory of Fields” by Landau and Lifshitz , 4 th ed. Chapter 6 “Electrodynamics” by Melia Special Relativity and Electrodynamics by Prof. Leonard Susskind, part of the Theoretical Minimum Lectures from Stanford University
21

Relativistic Mechanics and Electromagnetic Field Theory 611 spring 20... · 2020. 3. 17. · • Special Relativity and Electrodynamics by Prof. Leonard Susskind, part of the Theoretical

Apr 01, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Relativistic Mechanics and Electromagnetic Field Theory 611 spring 20... · 2020. 3. 17. · • Special Relativity and Electrodynamics by Prof. Leonard Susskind, part of the Theoretical

1Prof. Sergio B. MendesSpring 2018

Relativistic Mechanics and Electromagnetic Field Theory

• Chapter 2 of “Modern Problems in Classical Electrodynamics” by Brau

• Chapter 12 “Classical Electrodynamics” by Jackson, 3rd ed.

• Chapter 2-4 “The Classical Theory of Fields” by Landau and Lifshitz, 4th ed.

• Chapter 6 “Electrodynamics” by Melia

• Special Relativity and Electrodynamics by Prof. Leonard Susskind, part of the Theoretical Minimum Lectures from Stanford University

Page 2: Relativistic Mechanics and Electromagnetic Field Theory 611 spring 20... · 2020. 3. 17. · • Special Relativity and Electrodynamics by Prof. Leonard Susskind, part of the Theoretical

2Prof. Sergio B. MendesSpring 2018

𝑆 = න𝑡1

𝑡2

𝐿 𝑞𝑖 , ሶ𝑞𝑖 , 𝑡 𝑑𝑡

𝐿 = 𝐿 𝑞𝑖 , ሶ𝑞𝑖 , 𝑡

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑞𝑖=𝜕𝐿

𝜕𝑞𝑖

Lagrangian of Particles

Page 3: Relativistic Mechanics and Electromagnetic Field Theory 611 spring 20... · 2020. 3. 17. · • Special Relativity and Electrodynamics by Prof. Leonard Susskind, part of the Theoretical

3Prof. Sergio B. MendesSpring 2018

𝐻 = 𝑃𝑛 ሶ𝑞𝑛 − 𝐿

𝑃𝑖 ≡𝜕𝐿

𝜕 ሶ𝑞𝑖

Hamiltonian of Particles

Page 4: Relativistic Mechanics and Electromagnetic Field Theory 611 spring 20... · 2020. 3. 17. · • Special Relativity and Electrodynamics by Prof. Leonard Susskind, part of the Theoretical

Relativistic Lagrangian of a Free Particle

Spring 2020 Prof. Sergio B. Mendes 4

𝑡𝑡𝑖 𝑡𝑓

𝑥𝑖

𝑥𝑖, 𝑖𝑛

𝑥𝑖, 𝑓𝑖

𝜕𝐿

𝜕𝑥𝑖=

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑥𝑖

𝐿 𝑑𝑡 ∝ 𝑑𝜏

𝑆 = න𝑡𝑖

𝑡𝑓

𝐿 𝑑𝑡

𝐿 = −𝑚 𝑐2

𝛾

𝜕𝐿

𝜕 ሶ𝑥𝑖= 𝑃𝑖

0 =𝑑

𝑑𝑡𝛾 𝑚 ሶ𝑥𝑖

= −𝑚 𝑐2 1 −ሶ𝑥𝑖2

𝑐2

= 𝑚ሶ𝑥𝑖

1 −ሶ𝑥𝑖2

𝑐2

= 𝛾 𝑚 ሶ𝑥𝑖

: must be a scalar (invariant)

=𝑑𝑡

𝛾

Page 5: Relativistic Mechanics and Electromagnetic Field Theory 611 spring 20... · 2020. 3. 17. · • Special Relativity and Electrodynamics by Prof. Leonard Susskind, part of the Theoretical

Relativistic Hamiltonian of a Free Particle

Spring 2020 Prof. Sergio B. Mendes 5

𝐿 = −𝑚 𝑐2

𝛾𝐻 = 𝑃𝑖 ሶ𝑥𝑖 − 𝐿

= 𝛾 𝑚 ሶ𝑥𝑖2 +

𝑚 𝑐2

𝛾

= 𝛾 𝑚 𝑐2ሶ𝑥𝑖2

𝑐2+

1

𝛾2

= 𝛾 𝑚 𝑐2ሶ𝑥𝑖2

𝑐2+ 1 − 𝛽2

𝐻 = 𝛾 𝑚 𝑐2

𝑃𝑖 = 𝛾 𝑚 ሶ𝑥𝑖

Page 6: Relativistic Mechanics and Electromagnetic Field Theory 611 spring 20... · 2020. 3. 17. · • Special Relativity and Electrodynamics by Prof. Leonard Susskind, part of the Theoretical

Relativistic Lagrangian of a Charged Particle on Given EM Fields

Spring 2020 Prof. Sergio B. Mendes 6

𝐿 = −𝑚 𝑐2

𝛾− 𝑞 Φ + 𝑞

𝑑𝑥

𝑑𝑡𝐴𝑥 +

𝑑𝑦

𝑑𝑡𝐴𝑦 +

𝑑𝑧

𝑑𝑡𝐴𝑧

𝑆 = න𝑡𝑖

𝑡𝑓

𝐿 𝑑𝑡 = න𝑡𝑖

𝑡𝑓

−𝑚 𝑐2

𝛾𝑑𝑡 − 𝑞න

𝑡𝑖

𝑡𝑓

𝐴𝜇 𝑑𝑥𝜇

𝐴𝜇 =

𝛷/𝑐− 𝐴𝑥− 𝐴𝑦− 𝐴𝑧

𝑑𝑥𝜇 =

𝑐 𝑑𝑡𝑑𝑥𝑑𝑦𝑑𝑧

= න𝑡𝑖

𝑡𝑓

−𝑚 𝑐2

𝛾− 𝑞 Φ + 𝑞

𝑑𝑥

𝑑𝑡𝐴𝑥 +

𝑑𝑦

𝑑𝑡𝐴𝑦 +

𝑑𝑧

𝑑𝑡𝐴𝑧 𝑑𝑡

Page 7: Relativistic Mechanics and Electromagnetic Field Theory 611 spring 20... · 2020. 3. 17. · • Special Relativity and Electrodynamics by Prof. Leonard Susskind, part of the Theoretical

Relativistic Equations of Motion

Spring 2020 Prof. Sergio B. Mendes 7

𝐿 = −𝑚 𝑐2

𝛾− 𝑞 Φ + 𝑞 ሶ𝑥𝑚 𝐴𝑚

𝜕𝐿

𝜕𝑥𝑖=

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑥𝑖

− 𝑞𝜕Φ

𝜕𝑥𝑖+ 𝑞 ሶ𝑥𝑚

𝜕𝐴𝑚𝜕𝑥𝑖

=

=𝑑

𝑑𝑡𝛾 𝑚 ሶ𝑥𝑖 + 𝑞

𝜕𝐴𝑖𝜕𝑡

+ 𝑞 ሶ𝑥𝑚𝜕𝐴𝑖𝜕𝑥𝑚

𝑑

𝑑𝑡𝛾 𝑚 ሶ𝑥𝑖 + 𝑞 𝐴𝑖

Page 8: Relativistic Mechanics and Electromagnetic Field Theory 611 spring 20... · 2020. 3. 17. · • Special Relativity and Electrodynamics by Prof. Leonard Susskind, part of the Theoretical

Relativistic Lorentz Force

Spring 2020 Prof. Sergio B. Mendes 8

− 𝑞𝜕Φ

𝜕𝑥𝑖− 𝑞

𝜕𝐴𝑖𝜕𝑡

+ 𝑞 ሶ𝑥𝑚𝜕𝐴𝑚𝜕𝑥𝑖

−𝜕𝐴𝑖𝜕𝑥𝑚

=𝑑

𝑑𝑡𝛾 𝑚 ሶ𝑥𝑖

𝑞 𝐸𝑖 + 𝑞 𝜖𝑖𝑚𝑘 ሶ𝑥𝑚 𝐵𝑘 =𝑑

𝑑𝑡𝛾 𝑚 ሶ𝑥𝑖

𝐵𝑘 = 𝜖𝑘𝑛𝑙𝜕𝐴𝑙

𝜕𝑥𝑛

𝜖𝑚𝑘𝑖 𝐵𝑘= 𝜖𝑚𝑘𝑖 𝜖𝑘𝑛𝑙

𝜕𝐴𝑙

𝜕𝑥𝑛= − 𝜖𝑘𝑚𝑖 𝜖𝑘𝑛𝑙

𝜕𝐴𝑙

𝜕𝑥𝑛=𝜕𝐴𝑚

𝜕𝑥𝑖−𝜕𝐴𝑖

𝜕𝑥𝑚

Page 9: Relativistic Mechanics and Electromagnetic Field Theory 611 spring 20... · 2020. 3. 17. · • Special Relativity and Electrodynamics by Prof. Leonard Susskind, part of the Theoretical

Relativistic Lorentz Force

Spring 2020 Prof. Sergio B. Mendes 9

− 𝑞𝜕Φ

𝜕𝑥𝑖− 𝑞

𝜕𝐴𝑖𝜕𝑡

+ 𝑞 ሶ𝑥𝑚𝜕𝐴𝑚𝜕𝑥𝑖

−𝜕𝐴𝑖𝜕𝑥𝑚

=𝑑

𝑑𝑡𝛾 𝑚 ሶ𝑥𝑖

− 𝑞 𝑐𝜕𝛷𝑐

𝜕𝑥𝑖− 𝑞 𝑐

𝜕𝐴𝑖𝑐 𝜕𝑡

+ 𝑞 ሶ𝑥𝑚𝜕𝐴𝑚𝜕𝑥𝑖

−𝜕𝐴𝑖𝜕𝑥𝑚

=

− 𝑞 𝑐 𝜕𝑖𝐴0 + 𝜕0𝐴

𝑖 + 𝑞 ሶ𝑥𝑚 𝜕𝑖𝐴𝑚 − 𝜕𝑚𝐴

𝑖 =

𝑞 𝑐 𝜕𝑖𝐴0 − 𝜕0𝐴𝑖 + 𝑞 ሶ𝑥𝑚 𝜕𝑖𝐴𝑚 − 𝜕𝑚𝐴

𝑖 =

Page 10: Relativistic Mechanics and Electromagnetic Field Theory 611 spring 20... · 2020. 3. 17. · • Special Relativity and Electrodynamics by Prof. Leonard Susskind, part of the Theoretical

Relativistic Lorentz Force, cont.

Spring 2020 Prof. Sergio B. Mendes 10

𝑞 𝑐 𝜕𝑖𝐴0 − 𝜕0𝐴𝑖 + 𝑞 ሶ𝑥𝑚 𝜕𝑖𝐴𝑚 − 𝜕𝑚𝐴

𝑖 =𝑑

𝑑𝑡𝛾 𝑚 ሶ𝑥𝑖

𝑑𝑡

𝑑𝜏𝑞 𝑐 𝜕𝑖𝐴0 − 𝜕0𝐴𝑖 + 𝑞

𝑑𝑡

𝑑𝜏

𝑑𝑥𝑚

𝑑𝑡𝜕𝑖𝐴

𝑚 − 𝜕𝑚𝐴𝑖 =

𝑑𝑡

𝑑𝜏

𝑑

𝑑𝑡𝛾 𝑚 ሶ𝑥𝑖

𝑑𝑡

𝑑𝜏×

𝑞𝑑𝑥0

𝑑𝜏𝜕𝑖𝐴0 − 𝜕0𝐴𝑖 + 𝑞

𝑑𝑥𝑚

𝑑𝜏𝜕𝑖𝐴

𝑚 − 𝜕𝑚𝐴𝑖 =

𝑑

𝑑𝜏𝛾 𝑚 ሶ𝑥𝑖

− 𝑞 𝑢𝜇 𝐹𝜇𝑖 =

𝑑𝑝𝑖

𝑑𝜏

− 𝑞𝑑𝑥0𝑑𝜏

𝜕0𝐴𝑖 − 𝜕𝑖𝐴0 − 𝑞𝑑𝑥𝑚𝑑𝜏

𝜕𝑚𝐴𝑖 − 𝜕𝑖𝐴𝑚 =𝑑

𝑑𝜏𝛾 𝑚 ሶ𝑥𝑖

Page 11: Relativistic Mechanics and Electromagnetic Field Theory 611 spring 20... · 2020. 3. 17. · • Special Relativity and Electrodynamics by Prof. Leonard Susskind, part of the Theoretical

Relativistic Canonical Momenta ofa Charged Particle on Given EM Fields

Spring 2020 Prof. Sergio B. Mendes 11

𝑃𝑖 ≡𝜕𝐿

𝜕 ሶ𝑥𝑖= 𝛾 𝑚 ሶ𝑥𝑖 + 𝑞 𝐴𝑖

𝐿 = −𝑚 𝑐2

𝛾− 𝑞 Φ + 𝑞 ሶ𝑥𝑚 𝐴𝑚

Page 12: Relativistic Mechanics and Electromagnetic Field Theory 611 spring 20... · 2020. 3. 17. · • Special Relativity and Electrodynamics by Prof. Leonard Susskind, part of the Theoretical

Spring 2020 Prof. Sergio B. Mendes 12

𝐻 = 𝑃𝑛 ሶ𝑥𝑛 +𝑚 𝑐2

𝛾+ 𝑞 Φ − 𝑞 ሶ𝑥𝑚 𝐴𝑚

= 𝛾 𝑚 ሶ𝑥𝑛 + 𝑞 𝐴𝑛 ሶ𝑥𝑛 +𝑚 𝑐2

𝛾+ 𝑞 Φ − 𝑞 ሶ𝑥𝑚 𝐴𝑚

= 𝛾 𝑚 𝑐2ሶ𝑥𝑛2

𝑐2+

1

𝛾2+ 𝑞 Φ

= 𝛾 𝑚 𝑐2 + 𝑞 Φ

𝐻 = 𝑃𝑛 ሶ𝑥𝑛 − 𝐿

𝐿 = −𝑚 𝑐2

𝛾− 𝑞 Φ + 𝑞 ሶ𝑥𝑚 𝐴𝑚

𝑃𝑖 ≡𝜕𝐿

𝜕 ሶ𝑥𝑖= 𝛾 𝑚 ሶ𝑥𝑖 + 𝑞 𝐴𝑖

Relativistic Hamiltonian of a Charged Particle on Given EM Fields

Page 13: Relativistic Mechanics and Electromagnetic Field Theory 611 spring 20... · 2020. 3. 17. · • Special Relativity and Electrodynamics by Prof. Leonard Susskind, part of the Theoretical

13Prof. Sergio B. MendesSpring 2019

= න −𝜇 𝑐2

𝛾− 𝜌 Φ + 𝜌 ሶ𝑥𝑚 𝐴𝑚 𝑑𝑉

= න −𝜇 𝑐2

𝛾− 𝜌 Φ + 𝐽𝑚 𝐴𝑚 𝑑𝑉

= න −𝜇 𝑐2

𝛾− 𝐽𝜇 𝐴

𝜇 𝑑𝑉

𝜇 𝑑𝑉 ≡ 𝑑𝑚

𝐿 = −𝑚 𝑐2

𝛾− 𝑞 Φ + 𝑞 ሶ𝑥𝑚 𝐴𝑚

ℒ𝑚𝑒𝑐ℎ + ℒ𝑖𝑛𝑡 = −𝜇 𝑐2

𝛾− 𝐽𝜇 𝐴

𝜇

Relativistic Lagrangian Density of a Charged Particle on Specified EM Fields

𝜌 𝑑𝑉 ≡ 𝑑𝑞

𝜌 ሶ𝑥𝑚 𝑑𝑉 ≡ 𝐽𝑚 𝑑𝑉

Page 14: Relativistic Mechanics and Electromagnetic Field Theory 611 spring 20... · 2020. 3. 17. · • Special Relativity and Electrodynamics by Prof. Leonard Susskind, part of the Theoretical

14Prof. Sergio B. MendesSpring 2018

ℒ = ℒ 𝐴𝜇 , 𝜕𝛽𝐴𝛼

𝜕𝛽𝜕ℒ

𝜕 𝜕𝛽𝐴𝛼=

𝜕ℒ

𝜕𝐴𝛼

Euler-Lagrange Equations for Continuous Fields

Page 15: Relativistic Mechanics and Electromagnetic Field Theory 611 spring 20... · 2020. 3. 17. · • Special Relativity and Electrodynamics by Prof. Leonard Susskind, part of the Theoretical

15Prof. Sergio B. MendesSpring 2018

𝜕ℒ

𝜕𝐴𝛼= − 𝐽𝛼

𝜕𝛽𝜕ℒ

𝜕𝛽𝐴𝛼

𝜕𝛽𝜕ℒ

𝜕 𝜕𝛽𝐴𝛼=

𝜕ℒ

𝜕𝐴𝛼

1

𝜇0𝜕𝛽𝐹𝛽𝛼 = 𝐽𝛼

Relativistic Lagrangian Density of EM Fields on Specified Charge Motion

proof on next slide

ℒ𝑖𝑛𝑡 + ℒ𝑓𝑖𝑒𝑙𝑑 = − 𝐽𝜇 𝐴𝜇 −

1

4 𝜇0𝐹𝜇𝜈 𝐹

𝜇𝜈

= 𝜕𝛽 −1

𝜇0𝐹𝛽𝛼

Page 16: Relativistic Mechanics and Electromagnetic Field Theory 611 spring 20... · 2020. 3. 17. · • Special Relativity and Electrodynamics by Prof. Leonard Susskind, part of the Theoretical

16Prof. Sergio B. MendesSpring 2018

ℒ = −1

4 𝜇0𝐹𝜇𝜈 𝐹

𝜇𝜈 − 𝐽𝜇 𝐴𝜇

𝜕ℒ

𝜕 𝜕𝛽𝐴𝛼= −

1

4 𝜇0

𝜕 𝐹𝜇𝜈 𝐹𝜇𝜈

𝜕 𝜕𝛽𝐴𝛼

= −1

4 𝜇0

𝜕 𝑔𝜇𝛾 𝑔𝜈𝛿 𝜕𝛾𝐴𝛿 − 𝜕𝛿𝐴𝛾 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇

𝜕 𝜕𝛽𝐴𝛼

= −𝑔𝜇𝛾 𝑔𝜈𝛿

4 𝜇0𝛿𝛽𝛾𝛿𝛼𝛿 − 𝛿𝛽𝛿𝛿𝛼𝛾 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 + 𝜕𝛾𝐴𝛿 − 𝜕𝛿𝐴𝛾 𝛿𝛽𝜇𝛿𝛼𝜈 − 𝛿𝛽𝜈𝛿𝛼𝜇

= −1

4 𝜇0

𝜕 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇

𝜕 𝜕𝛽𝐴𝛼

= −1

4 𝜇0𝑔𝜇𝛽 𝑔𝜈𝛼 − 𝑔𝜇𝛼 𝑔𝜈𝛽 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 + 𝜕𝛾𝐴𝛿 − 𝜕𝛿𝐴𝛾 𝑔𝛽𝛾 𝑔𝛼𝛿 − 𝑔𝛼𝛾 𝑔𝛽𝛿

= −1

4 𝜇0𝜕𝛽𝐴𝛼 − 𝜕𝛼𝐴𝛽 − 𝜕𝛼𝐴𝛽 − 𝜕𝛽𝐴𝛼 + 𝜕𝛽𝐴𝛼 − 𝜕𝛼𝐴𝛽 − 𝜕𝛼𝐴𝛽 − 𝜕𝛽𝐴𝛼

= −1

𝜇0𝐹𝛽𝛼

Proof:

Page 17: Relativistic Mechanics and Electromagnetic Field Theory 611 spring 20... · 2020. 3. 17. · • Special Relativity and Electrodynamics by Prof. Leonard Susskind, part of the Theoretical

17Prof. Sergio B. MendesSpring 2018

Page 18: Relativistic Mechanics and Electromagnetic Field Theory 611 spring 20... · 2020. 3. 17. · • Special Relativity and Electrodynamics by Prof. Leonard Susskind, part of the Theoretical

18Prof. Sergio B. MendesSpring 2018

Relativistic Hamiltonian of EM Fields on Specified Charge Motion

𝐻 =

𝑖

𝜕𝐿

𝜕 ሶ𝑞𝑖ሶ𝑞𝑖 − 𝐿𝑖 𝑞𝑖 , ሶ𝑞𝑖 , 𝑡

ℋ𝛼𝛽=

𝜕ℒ

𝜕 𝜕𝛼𝐴𝛾𝜕𝛽𝐴𝛾 − 𝑔𝛼

𝛽ℒ

= −1

𝜇0𝐹𝛼𝛾 𝜕

𝛽𝐴𝛾 − 𝑔𝛼𝛽

−1

4 𝜇0𝐹𝜇𝜈 𝐹

𝜇𝜈 − 𝐽𝜇 𝐴𝜇

Page 19: Relativistic Mechanics and Electromagnetic Field Theory 611 spring 20... · 2020. 3. 17. · • Special Relativity and Electrodynamics by Prof. Leonard Susskind, part of the Theoretical

19Prof. Sergio B. MendesSpring 2018

= −1

𝜇0𝐹𝛼𝛾 𝐹𝛽𝛾 + 𝜕𝛾𝐴𝛽 +

1

4 𝜇0𝐹𝜇𝜈 𝐹

𝜇𝜈𝑔𝛼𝛽+ 𝐽𝜇 𝐴

𝜇𝑔𝛼𝛽

ℋ𝛼𝛽= −

1

𝜇0𝐹𝛼𝛾 𝜕

𝛽𝐴𝛾 − 𝑔𝛼𝛽

−1

4 𝜇0𝐹𝜇𝜈 𝐹

𝜇𝜈 − 𝐽𝜇 𝐴𝜇

= −1

𝜇0𝐹𝛼𝛾 𝐹

𝛽𝛾 −1

𝜇0𝐹𝛼𝛾 𝜕

𝛾𝐴𝛽 +1

4 𝜇0𝐹𝜇𝜈 𝐹

𝜇𝜈𝑔𝛼𝛽+ 𝐽𝜇 𝐴

𝜇𝑔𝛼𝛽

= −1

𝜇0𝐹𝛼𝛾 𝐹

𝛽𝛾 −1

𝜇0𝜕𝛾 𝐴𝛽 𝐹𝛼𝛾 − 𝐴𝛽 𝜕𝛾𝐹𝛼𝛾 +

1

4 𝜇0𝐹𝜇𝜈 𝐹

𝜇𝜈𝑔𝛼𝛽+ 𝐽𝜇 𝐴

𝜇𝑔𝛼𝛽

= −1

𝜇0𝐹𝛼𝛾 𝐹

𝛽𝛾 −1

𝜇0𝜕𝛾 𝐴𝛽 𝐹𝛼𝛾 − 𝐽𝛼 𝐴

𝛽 +1

4 𝜇0𝐹𝜇𝜈 𝐹

𝜇𝜈𝑔𝛼𝛽+ 𝐽𝜇 𝐴

𝜇𝑔𝛼𝛽

= −1

𝜇0𝐹𝛼𝛾 𝐹

𝛽𝛾 +1

4 𝜇0𝐹𝜇𝜈 𝐹

𝜇𝜈𝑔𝛼𝛽− 𝐽𝛼 𝐴

𝛽 + 𝐽𝜇 𝐴𝜇𝑔𝛼

𝛽−

1

𝜇0𝜕𝛾 𝐴𝛽 𝐹𝛼𝛾

Page 20: Relativistic Mechanics and Electromagnetic Field Theory 611 spring 20... · 2020. 3. 17. · • Special Relativity and Electrodynamics by Prof. Leonard Susskind, part of the Theoretical

20Prof. Sergio B. MendesSpring 2018

= 𝑇𝛼𝛽− 𝐽𝛼 𝐴

𝛽 + 𝐽𝜇 𝐴𝜇𝑔𝛼

𝛽−

1

𝜇0𝜕𝛾 𝐴𝛽 𝐹𝛼𝛾

𝑇𝛼𝛽≡ −

1

𝜇0𝐹𝛼𝛾 𝐹

𝛽𝛾 +1

4 𝜇0𝐹𝜇𝜈 𝐹

𝜇𝜈𝑔𝛼𝛽

ℋ𝛼𝛽= −

1

𝜇0𝐹𝛼𝛾 𝐹

𝛽𝛾 +1

4 𝜇0𝐹𝜇𝜈 𝐹

𝜇𝜈𝑔𝛼𝛽− 𝐽𝛼 𝐴

𝛽 + 𝐽𝜇 𝐴𝜇𝑔𝛼

𝛽−

1

𝜇0𝜕𝛾 𝐴𝛽 𝐹𝛼𝛾

when: 𝐽𝜇 = 0

ℋ𝛼𝛽= 𝑇𝛼

𝛽−

1

𝜇0𝜕𝛾 𝐴𝛽 𝐹𝛼𝛾

𝜕𝛼ℋ𝛼𝛽= 𝜕𝛼𝑇𝛼

𝛽−

1

𝜇0𝜕𝛼𝜕𝛾 𝐴𝛽 𝐹𝛼𝛾 = 𝜕𝛼𝑇𝛼

𝛽

and

Page 21: Relativistic Mechanics and Electromagnetic Field Theory 611 spring 20... · 2020. 3. 17. · • Special Relativity and Electrodynamics by Prof. Leonard Susskind, part of the Theoretical

21Prof. Sergio B. MendesSpring 2018

𝑇𝛼𝛽 =

𝑢𝑐𝑔𝑥𝑐𝑔𝑦𝑐𝑔𝑧

𝑐𝑔𝑥𝑇𝑥𝑥𝑇𝑦𝑥𝑇𝑧𝑥

𝑐𝑔𝑦𝑇𝑥𝑦𝑇𝑦𝑦𝑇𝑧𝑦

𝑐𝑔𝑧𝑇𝑥𝑧𝑇𝑦𝑧𝑇𝑧𝑧

𝛽 = 0

𝜕𝛼𝑇𝛼0 = 𝜕0 𝑢 + 𝜕1 𝑐𝑔𝑥 + 𝜕2 𝑐𝑔𝑦 +𝜕3 𝑐𝑔𝑧 =

1

𝑐

𝜕𝑢

𝜕𝑡+ 𝛁. 𝑺

𝛽 = 𝑖

𝜕𝛼𝑇𝛼𝑖 = 𝜕0 𝑐𝑔𝑖 + 𝜕𝑗𝑇𝑗𝑖 =

𝜕𝑔𝑖𝜕𝑡

+𝜕𝑇𝑥𝑖𝜕𝑥

+𝜕𝑇𝑦𝑖𝜕𝑦

+𝜕𝑇𝑦𝑖𝜕𝑧