Top Banner
Relativistic Coulomb Excitation: from RISING to PreSPEC Outline Rare ISotope INvestigation at GSI Coulomb excitation experiments at relativistic energies PreSPEC & AGATA Characteristic CE parameters Experimental conditions for relativistic CE Feasibility studies for future experiments Multi-step excitations Investigation of symmetries M1 & E2 excitations Hans-Jürgen Wollersheim GSI Helmholtzzentrum für Schwerionenforschung for the PreSPEC Collaboration
32

Relativistic Coulomb Excitation: from RISING to PreSPEC

Dec 30, 2015

Download

Documents

blythe-garza

Relativistic Coulomb Excitation: from RISING to PreSPEC. Outline R are IS otope IN vestigation at G SI Coulomb excitation experiments at relativistic energies PreSPEC & AGATA Characteristic CE parameters Experimental conditions for relativistic CE - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Relativistic Coulomb Excitation: from RISING to PreSPEC

Relativistic Coulomb Excitation:from RISING to PreSPEC

Outline

Rare ISotope INvestigation at GSI Coulomb excitation experiments at relativistic energies PreSPEC & AGATA Characteristic CE parameters Experimental conditions for relativistic CE Feasibility studies for future experiments

Multi-step excitations Investigation of symmetries M1 & E2 excitations

Hans-Jürgen Wollersheim

GSI Helmholtzzentrum für Schwerionenforschung

for the PreSPEC Collaboration

Page 2: Relativistic Coulomb Excitation: from RISING to PreSPEC

Rare ISotope INvestigation at GSI

Nuclear structure of exotic nuclei studied by secondary fragmentation and relativistic Coulomb excitation

g-factor measurements

Isomeric γ- and β-decay studies

The Accelerators:UNILAC (injector) - E<15 AMeV

SIS – E<2 AGeV HI beams ranging up to 238U

Beam Currents: 109 - 1010 pps

FRS → secondary radioactive ion beams:

• Fragmentation or fission of primary beams

• High secondary beam energies (100 -700 AMeV)

• Fully stripped ions

• Reactions on a secondary target

• Implantation inside a stopper

Page 3: Relativistic Coulomb Excitation: from RISING to PreSPEC

Rare ISotope INvestigation at GSI

Fast beam campaign (2003-2005)

g-factor campaign (2005)

Stopped beam campaign (2006-2009)

EUROBALL Cluster Detectors

beam tracking system

+ Miniball – Hector

• FRS: excellent spectrometer with in-flight A and Z selection energy resolution: ~ 1 GeV • EUROBALL: excellent γ-ray spectrometer intrinsic energy resolution: ~ 2 keV

131Sn 132Sn

Page 4: Relativistic Coulomb Excitation: from RISING to PreSPEC

Rare ISotope INvestigation at GSI

EUROBALL Cluster Detectors Miniball: HPGe segmented detectors

HECTOR Large 14.5 x 17 cm BaF2 Detectors

CATE : ΔE-E telescope event by event beam identification

Coulomb Excitation at Relativistic Energy

New Shell structure at N>>Z Relativistic Coulomb excitation of nuclei near 100Sn Triaxiality in even-even core nuclei of N=75 isotones E1 Collectivity in neutron rich nuclei 68Ni

nucleus σ (mb)

56Cr 91

108Sn 314

136Nd 338 / 2180

beam

Page 5: Relativistic Coulomb Excitation: from RISING to PreSPEC

Relativistic Coulomb Excitationof 54,56,58Cr → 197Au

Identification before the secondary target

after secondary target

γ-efficiency = 2.8% , ΔEγ = 1.6% (1.3MeV, d=70cm)

Page 6: Relativistic Coulomb Excitation: from RISING to PreSPEC

2

22

0

0

cos1

sin

E

E

mmmmR

mmd

30arctan622.0

mmR 700

mmd 59

with

Doppler Effect Doppler Broadening Δ

%6.10

0

E

E

2

2

2 cos11

cos

2

0

int

E

E r 00pfor

Page 7: Relativistic Coulomb Excitation: from RISING to PreSPEC

2

2

2

2

0

0

cos11

cos

E

E

Doppler EffectDoppler Broadening Δβ

%6

ring angular range

1 10.50-21.30

2 27.60-38.40

3 30.60-41.40

2

0

int

E

E r

2

2

cos1

sin

00pfor

Page 8: Relativistic Coulomb Excitation: from RISING to PreSPEC

Velocity distribution at the moment of a prompt γ-ray decay after the production of 36Ca.

(E=130 AMeV and different 9Be target thicknesses)

target thickness

[mg/cm2]

ΔEγ0/Eγ0

[%]

300 3.4

500 3.8

700 5.3

ring angular range

1 10.50-21.30

2 27.60-38.40

3 30.60-41.40

Doppler EffectDoppler Broadening Δβ

%9

DSAM lifetime method

P. Doornenbal et al. Nucl.Instr.Meth. A613 (2010), 218

2

2

2

2

0

0

cos11

cos

E

E

2

0

int

E

E r

2

2

cos1

sin

00pfor

Page 9: Relativistic Coulomb Excitation: from RISING to PreSPEC

PreSPEC and AGATA

LYCCA

BeamDirection

Detectorat rear

10 ATC+ 5 double Cluster detectors beam pipe diameter = 12cm

chamber diameter = 46 cm

S2´-configuration:10 AGATA Triple Cluster+ 5 double Cluster detectors

γ-efficiency = 17.5% γγ-efficiency = 2.5%

resolution (FWHM)

intrinsic spatial

resolution

8.5 keV 5 mm

4 keV 2 mm

Page 10: Relativistic Coulomb Excitation: from RISING to PreSPEC

Coulomb excitation of exotic nucleibasic concepts

r

V

r

below Coulomb barrier

Mapping energy to radial separation

21 iii RRC 3/13/1 8.076.028.1 ii AAR

Nuclear half-density radius of a Fermi mass distribution:

with

100 AMeV

Inter-nuclear potentialTwo forces:1. Coulomb force (long range, repulsive)2. Nuclear force (short range, attractive)

Potential barrier due to the compensation between the two

(Coulomb barrier)

Page 11: Relativistic Coulomb Excitation: from RISING to PreSPEC

Validity of classical Coulomb trajectoriesbasic concepts

wave

particle

η calculated at 100AMeV

1v

eZZaη

2TP

Sommerfeld parameter:

>> 1 requirement for a (semi-) classical treatment of equations of motion (hyperbolic trajectories )

100 AMeV

Page 12: Relativistic Coulomb Excitation: from RISING to PreSPEC

Classical Coulomb trajectoriesbasic concepts

1cosh war

Hyperbolic trajectory:

ε = sin-1(θcm/2) eccentricity of orbit

wwv

at

sinh

distance of closest approach:

impact parameter:

angular momentum :

2

θsin1

a )(θ D cm1-

cm

2

θcot

a b cm

2cot cmL

100 AMeV

Page 13: Relativistic Coulomb Excitation: from RISING to PreSPEC

100 AMeV

Nuclear interaction radius

fmCCR TP 3int Nuclear interaction radius:

CP, CT half-density radii

nuclear absorption:

35.649.4int

TPTP

CCCCR

dttrW2

expP-1 abs

Wa

CCtrWtrW 21

0 exp

σtotal = σel + σinel + σreactionσtotal ≈ σinel + σreaction

Page 14: Relativistic Coulomb Excitation: from RISING to PreSPEC

‘Safe‘ bombarding energy requirement

fmCCR TP 3int Nuclear interaction radius:

CP, CT half-density radii

Pure Coulomb excitation requires amuch larger distance between the nuclei”safe energy” requirement

35.649.4int

TPTP

CCCCR

100 AMeV

Page 15: Relativistic Coulomb Excitation: from RISING to PreSPEC

100 AMeV

‘Safe‘ bombarding energy requirement

fmCCD TP 5min

Rutherford scattering only if Dmin is large compared to nuclear radii + surfaces:

CP, CT half-density radii

choose adequate beam energy (D > Dmin for all ) low-energy Coulomb excitation limit scattering angle, i.e. select impact parameter b > Dmin

high-energy Coulomb excitation

Dmin < 1% deviation from Coulomb excitation

Page 16: Relativistic Coulomb Excitation: from RISING to PreSPEC

Electromagnetic interaction acting between two colliding nuclei. Inelastic scattering: kinetic energy is transferred into nuclear excitation energy Monopole-multipole interaction Target and projectile excitation possible

Coulomb excitation of exotic nuclei

Excitation probability

(or inelastic cross section) is a

measure of the collectivity of

the nuclear state of interest

100 AMeV

Page 17: Relativistic Coulomb Excitation: from RISING to PreSPEC

100 AMeV

High-energy Coulomb excitationstraight line approximation

distance of closest approach:

impact parameter:

2

θsin1

a )(θ D cm1-

cm

2

θcot

a b cm

straight line approximation

DZ

2- D b 22

0

2P2

cm

eZT

straight line for large Ecm: b = D

zero degree detector

LYCCALYCCA

Lund York Cologne CAlorimeter

TOF

ΔEE

s = 3.1 m

Page 18: Relativistic Coulomb Excitation: from RISING to PreSPEC

High-energy Coulomb excitationgrazing angle and angular coverage of LYCCA

b=5.2 fm D

For nonrelativistic projectiles:

220

2

int

1/4

2sin2

cm

eZZawith

aR

a TP

For relativistic projectiles ( ):

int22

0

2

1/4

12

Rcm

eZZ TP

labcm

distance of closest approach: 2

θsin1

a )(θ D cm1-

cm

at 100 MeV/u

graz

ing

angl

e (m

rad)

projectile mass number A1

Coulomb excitation: 4/11 lab

Page 19: Relativistic Coulomb Excitation: from RISING to PreSPEC

High-energy Coulomb excitationgrazing angle

136Xe on 208Pb at 700 MeV/u

excitation of giant dipole resonance

A.Grünschloß et al., Phys. Rev. C60 051601 (1999)

Protons Neutrons

π ν

mradfmR 7.50.15 4/1int Coulomb ex.

12

220

2

cm

eZZD TP

For relativistic projectiles ( ):labcm

Page 20: Relativistic Coulomb Excitation: from RISING to PreSPEC

High-energy Coulomb excitationangular momentum transfer

Excitation occurs only if nuclear (rotational) period is long compared to the collision time:

„sudden approximation“ if >> ~ 10-22 s

2sin

/

/ 1 cmexc

av

E

20

2

4 av

QeZq P

ξ measures suddenness of interaction

qJL cm 20max 2

3

q measures strength

maximum angular momentum transfer

2sin 1 cm

cmcoll v

a exc

nucl E

aD

c

Eexc

VC

Page 21: Relativistic Coulomb Excitation: from RISING to PreSPEC

High-energy Coulomb excitationangular momentum transfer

Excitation occurs only if nuclear (rotational) period is long compared to the collision time:

„sudden approximation“ if >> ~ 10-22 s

2sin

/

/ 1 cmexc

av

E

20

2

4 av

QeZq P

ξ measures suddenness of interaction

q measures strength

maximum angular momentum transfer

2sin 1 cm

cmcoll v

a exc

nucl E

aD

c

Eexc

qJL cm 20max 2

3

Page 22: Relativistic Coulomb Excitation: from RISING to PreSPEC

High-energy Coulomb excitationenergy transfer

1 ξ measures suddenness of interaction

aD

c

Eexccm

„adiabatic limit“ for (single-step) excitation ξ=1

aDcEexc

maximum energy transfer:VC

Page 23: Relativistic Coulomb Excitation: from RISING to PreSPEC

High-energy Coulomb excitationexcitation energy and angular momentum transfer

1

aDcEexc

energy transfer (for single-step excitation):

VC VC

cmP

av

QeZL

14 2

02

max

angular momentum transfer:

Page 24: Relativistic Coulomb Excitation: from RISING to PreSPEC

High-energy Coulomb excitationtriaxiality in even-even nuclei (N=76)

T.R. Saito et al. Phys.Lett. B669 (2008), 19

21+→0+

22+→0+

22+→21

+

22+→21

+

22+→0+

First observation of a second excited 2+ state populated in a Coulomb experiment at 100 AMeV using EUROBALL and MINIBALL Ge-detectors.

shape symmetry collective strength

Page 25: Relativistic Coulomb Excitation: from RISING to PreSPEC

Symmetries of the Intrinsic Hamiltonian:axial symmetry, reflection-symmetric

P: parity (reflection)R: rotation by 1800

T: time reversal

P: parity (reflection)RT: rotation by 1800

AND time reversal(which reverses K)

K = angular momentum projection on symmetry axis

high-K orbitals near the Fermi surface

178Hf

31y

K=0

J

Kmax

J

2/72/112/132/7 :: ghif E. Lubkiewicz et al. Z. Phys. A355 (1996), 191

abrasion ablation

Production of isomeric beams:

Page 26: Relativistic Coulomb Excitation: from RISING to PreSPEC

Symmetries of the Intrinsic Hamiltonian:axial symmetry, reflection-asymmetric

RP: rotation & reflectionT: time reversal

RPT: need all three operations

K = angular momentum projection on symmetry axis

In a nucleus with octupole deformation, the center of mass and center of charge tend to separate, creating a non-zero electric dipole moment.

226Ra 226Ra

H.J. Wollersheim et al. Nucl. Phys. A556 (1993), 261

Page 27: Relativistic Coulomb Excitation: from RISING to PreSPEC

High-energy Coulomb excitationcross sections for E1, E2 and E3 excitations

beEB

MeVE255.0)10;1(

3.13

WuEB

MeVE

9)20;2(

086.4

WuEB

MeVE

34)30;3(

615.2

Conclusion:

1) The lower multipolarities are dominant

136Xe → 208Pb

1/ln2

210;

1

222

22

forbb

forB

bec

eZ

a

P

*10

Page 28: Relativistic Coulomb Excitation: from RISING to PreSPEC

)(),(

)(),(

022

2

1

022

2

1

MfM

EfE

fIIMBac

eZ

fIIEBav

eZ

K. Alder et al., RMP 28 (56) 432

Coulomb excitationM1 and E2 excitations, full analytical description

200~%7~;~2

M

E

M

E cvv

c

Conclusion:1) The lower multipolarities are dominant

2) For a given multipole order, electric transitions

are more likely than magnetic transitions

Page 29: Relativistic Coulomb Excitation: from RISING to PreSPEC

High-energy Coulomb excitationM1 and E2 excitations

p1/2 ???

1/2-

3/2-

5/2-

15071745

0

15071745

89Y

1/2-

3/2-

5/2-

845

403

0403

845

87Rb

1/2-

3/2-

5/2- 345

1191

0345

1191

85Br

(1/2)-

(5/2,3/2)- -

(3/2,5/2)- -

0

306

669

306

363

83As

1p (ℓ=1)

j < =

ℓ-½

1p1/2

j> = ℓ+½

1p3/2

B(M1;j>j<) 1 N2

Unique signature!!!

N=50

rate = 105 s-1 · 1021 cm-2 · 0.5·10-27 cm2 · 10% = 22 h-1

85Br → 197Au at 100 MeV/u

Page 30: Relativistic Coulomb Excitation: from RISING to PreSPEC

• Neutron-deficient sd-shell nuclei and mirror symmetry at the proton drip line: 25Si, 29S and 33ArProposal by P. Reiter, M.A. Bentley, D. Rudolph

• Coulomb excitation of 104SnProposal by M. Gorska, J. Cederkall

• Mixed-symmetry states and Coulomb excitation of 88KrProposal by J. Jolie, N. Marginean

First Fast-Beam PreSPEC Proposals

Page 31: Relativistic Coulomb Excitation: from RISING to PreSPEC

AGATA Physics Workshop 2010 (AGATA@GSI) 4-7 May 2010 Istanbul, TURKEY

30 LOI´s for fast-beam campaign

Relativistic Coulomb excitation B(E2)-values lifetimes (DSAM, RDDS) g-factor (high-velocity transient field technique)

Fragmentation reactions lifetimes (DSAM, RDDS)

Proton scattering (LH2 target) spectroscopic factors

Call for Fast-Beam PreSPEC Proposals

Recoil-Distance Doppler-Shift Method

Page 32: Relativistic Coulomb Excitation: from RISING to PreSPEC

AGATA increases-sensitivity ≈ 10x

LYCCA-0 provides mass resolution up to A ≈ 100

SIS/FRS intensitiesincrease up to ≈ 10x

Tracking det. and EDAQ upgrade increase max. rate and throughput 10x

PreSPEC Fast Beam Campaignconvener: M. Bentley

Very attractive and competitivespectroscopy themes

Unique combination of beams, set-up and people

PreSPEC Fast-Beam Campaigngreat perspectives …