Top Banner
ICANCER RESEARCH 56. 2776-2780. June 15. 19"X)| Relationship between Serum Levels of Interleukin 6, Various Disease Parameters, and Malnutrition in Patients with Esophageal Squamous Cell Carcinoma Masaaki Oka,1 Kohtaro Vaniamolo, Mutsuo Takahashi, Michinori Hakozaki, Toshihiro Abe, Norio lizuka, Shoichi Ila/ama, Katsutoshi Hirazawa, Hiroto Hayashi, Akira Tangoku, Kunitaka Hirose, Tokuhiro Ishihara, and Takashi Suzuki Department of Surgery II ¡M.O.. K. Y.. T. A.. N. !.. S. H.. Ka. H.. H. H.. A. T., T. S.¡.and Departments i>f Clinical Laboratories ¡M.T.I and Pathology I IT. /./. Yamaguchi University Scintili <tfMedicine. 1144 Kttxushi. Uhe. Yamat>uchi 755. antl Bnnneilical Research Institute. Kurelia Chemical Industry Co. Ltd.. 3-26-2. H\akunin-cho-. Shinjuku-ku. Tokyo 169 ¡M.H.. Ku. HJ. Japan ABSTRACT Scrum levels of interleukin 6 i II .-in are correlated with the disease status and prognosis in cancer patients. II.-(> Is also an important mediator of expérimentalcancer cachexia. We investigated the production of IL-6 and II.-6 receptors and expression of IL-6 mRNA by esophageal squamous car cinoma cells using immunohistochemical staining and in situ reverse traii- scription-PCK. We also measured levels of serum IL-6 using an ELISA in 50 patients with esophageal squamous cell carcinoma (ESCO to determine the correlation between serum levels of IL-6 and clinicopathological factors. 11.-ft mRNA was expressed in the primary tumor. Esophageal squamous carci noma cells produced both IL-6 and IL-6 receptor. IL-6 concentrations were significantly higher in the primary tumor than in the normal epithelium. The incidences of weight loss, tumor invasion to adjacent organs, and noncurative resection were significantly higher in ESCC patients with serum levels of IL-6 2L7 pg/ml (n = 13, group C) compared with patients with serum levels <7 pg/ml and S3 pg/ml (n = 14, group B) and <3 pg/ml (n = 23, group A). Tumor size and C-reactive protein levels were significantly higher and albu min levels were significantly lower in group C. Results suggest that IL-6, which is produced by tumor cells, may be related to various disease param eters as well as to the nutritional status in patients with ESCC. INTRODUCTION SCC2 of the esophagus has a poor prognosis because of its rapid growth and spread and the associated malnutrition due to dysphagia and cachexia ( 1). Most large investigations of patients with this type of cancer report the 5-year survival rate after surgery or radiation therapy to be below 20% (1-3). IL-6 is a multipotent cytokine with numerous biological activities (4). It plays an integral role in the induction of B-cell differentiation and IgG secretion (5) stimulates the growth and differentiation of human thymocytes and T cells (6, 7). and enhances the induction of lymphokine-activated killer cells (8) and cytotoxicity by natural killer cells (9). IL-6 is also a potent proinflammatory cytokine. It acts as an endogenous pyogen and induces the expression of acute phase protein genes including the CRP gene (10, 11). IL-6 has been found to be an important mediator of experimental cancer cachexia in the mouse C-26 tumor system (12). IL-6 is produced by a variety of cells, including T cells, B cells, monocytes, fibroblasts. keratinocytes, en- dothelial cells, astrocytes. bone marrow cells, and mesangial cells (4). Immunohistochemical studies have shown IL-6 immunoreactivity in primary squamous cell carcinomas and in a variety of adenocarcino- mas and sarcomas (13). Several human tumor cell lines, including multiple myeloma (14), renal cell carcinoma (15), melanoma (16). glio- Received 1/4/96: accepted 4/16W6. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. ' To whom requests for reprints should be addressed. Phone: SI-836(22)2264; Fax: 81-836(2212263. •¿ The abbreviations used are: SCC. squamous cell carcinoma: IL-6. interleukin 6; CRP. C-reactive protein: RT. reverse transcription: MRI. magnetic resonance imaging: niAb. monoclonal antibody: IL-6R. IL-6 receptor: DEPC. diethyl pyrocarhorate; ESC. esopha geal squamous carcinoma; ESCC. esophageal squamous cell carcinoma. blastoma (17). lung cancer (18), ovarian cancer (19), and cervical carci nomas (20), produce IL-6. The identification of an IL-6-IL-6R autocrine loop in multiple myeloma ( 14) and renal cell carcinoma ( 15) suggests that an autocrine mechanism may be involved in oncogenesis. The IL-6 produced by tumors may modulate local immunity around the tumor lesion. Clinically, serum levels of IL-6 are correlated with disease status and prognosis in patients with metastatic renal cell carcinoma (21) and epithelial ovarian cancer (22). Low concentrations of IL-6 can now be detected using commercially available IL-6 kits. In the present study, we investigated the production of IL-6 and IL-6R and expression of IL-6 mRNA in esophageal cancer cells using immunohistochemical staining and in situ RT-PCR. We also meas ured serum levels of IL-6 using an ELISA in patients with ESCC to clarify the relationship between serum levels of IL-6 and clinicopath ological factors. PATIENTS AND METHODS Patients. We studied 50 patients with SCC of the esophagus admitted to our department between 1992 and 1994 (Tables 1 and 2). None of the patients had inflammatory diseases or had reeeived any treatments, including nutritional sup port, betöreadmission and biopsy-proven diagnosis of SCC of Ihe esophagus. The location of tumors and distant métastaseswas determined by barium esophagog- raphy. chest radiography; endoscopy of the tracheobronchial tree, pharynx, larynx, and esophagus: computed tomography and MRI of the thorax and abdomen, and radionuclide bone scanning. Tumor resection was performed in 38 (76%) of 50 patients; in 12patients (24%) in whom distant métastasesor invasion to adjacent organs was continued by computed tomography and/or MRI. tumors were con sidered unresectable. Eleven patients were able to swallow liquids only. We evaluated the following physical and pathological factors: weight loss, location, tumor size, macroscopic tumor type, tumor depth, lymph node metastasis, histo lógica!type, and pTNM stage (23). In patients with unresectable tumors, the tumor size, macroscopic tumor type, tumor depth, lymph node metastasis, and the pTNM stage were evaluated by radiographie, endoscopie, and MRI findings. Curability and postoperative complications were also evaluated. Informed consent was ob tained troni all patients. Serum Sampling. Serum samples were obtained from all patients on the day before any treatment and stored at -80°C until the assayed. Serum samples were also obtained from a control population of 25 normal healthy age- and sex-matched volunteers. Surgical Specimen. Fresh surgical specimens of primary tumors and nor mal epitheliums were collected under sterile conditions from seven patients. The specimens were immediately prepared for analysis of tissue IL-6 levels, immunohistochemical staining, and in aim RT-PCR (see below). Tumorous and Normal Mucosa! Homogenates. The specimens were im mediately stored in liquid nitrogen until use. These samples were thawed, quickly weighed, placed in 2 ml PBS. and homogenized for 10 s in a tissue homogenizer. The homogenates were then centrifuged twice at 4°Cat lO.(XX)x #. and aliquots of the supernatants were prepared for the IL-6 assay (pg/g tissue). IL-6. Serum and supernatant levels of IL-6 were measured using an ELISA according to the manufacturer's instructions (Human IL-6 Immunoassay kit; Cytosereen. Biosource Co.. Ltd., Camarillo. CA). The limit of detection of the assay was 3 pg/ml. and levels below 3 pg/ml were considered undeteetable. 2776 Research. on January 22, 2020. © 1996 American Association for Cancer cancerres.aacrjournals.org Downloaded from
6

Relationship between Serum Levels of Interleukin 6 ... · Relationship between Serum Levels of Interleukin 6, Various Disease Parameters, ... endogenous pyogen and induces the expression

Dec 29, 2019

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Relationship between Serum Levels of Interleukin 6 ... · Relationship between Serum Levels of Interleukin 6, Various Disease Parameters, ... endogenous pyogen and induces the expression

ICANCER RESEARCH 56. 2776-2780. June 15. 19"X)|

Relationship between Serum Levels of Interleukin 6, Various Disease Parameters,and Malnutrition in Patients with Esophageal Squamous Cell CarcinomaMasaaki Oka,1 Kohtaro Vaniamolo, Mutsuo Takahashi, Michinori Hakozaki, Toshihiro Abe, Norio lizuka,

Shoichi Ila/ama, Katsutoshi Hirazawa, Hiroto Hayashi, Akira Tangoku, Kunitaka Hirose,Tokuhiro Ishihara, and Takashi Suzuki

Department of Surgery II ¡M.O.. K. Y.. T. A.. N. !.. S. H.. Ka. H.. H. H.. A. T., T. S.¡.and Departments i>f Clinical Laboratories ¡M.T.I and Pathology I IT. /./. YamaguchiUniversity Scintili <tfMedicine. 1144 Kttxushi. Uhe. Yamat>uchi 755. antl Bnnneilical Research Institute. Kurelia Chemical Industry Co. Ltd.. 3-26-2. H\akunin-cho-. Shinjuku-ku.

Tokyo 169 ¡M.H.. Ku. HJ. Japan

ABSTRACT

Scrum levels of interleukin 6 i II .-in are correlated with the disease statusand prognosis in cancer patients. II.-(> Is also an important mediator ofexpérimentalcancer cachexia. We investigated the production of IL-6 andII.-6 receptors and expression of IL-6 mRNA by esophageal squamous carcinoma cells using immunohistochemical staining and in situ reverse traii-scription-PCK. We also measured levels of serum IL-6 using an ELISA in 50

patients with esophageal squamous cell carcinoma (ESCO to determine thecorrelation between serum levels of IL-6 and clinicopathological factors. 11.-ft

mRNA was expressed in the primary tumor. Esophageal squamous carcinoma cells produced both IL-6 and IL-6 receptor. IL-6 concentrations were

significantly higher in the primary tumor than in the normal epithelium. Theincidences of weight loss, tumor invasion to adjacent organs, and noncurativeresection were significantly higher in ESCC patients with serum levels ofIL-6 2L7 pg/ml (n = 13, group C) compared with patients with serum levels<7 pg/ml and S3 pg/ml (n = 14, group B) and <3 pg/ml (n = 23, group A).Tumor size and C-reactive protein levels were significantly higher and albumin levels were significantly lower in group C. Results suggest that IL-6,

which is produced by tumor cells, may be related to various disease parameters as well as to the nutritional status in patients with ESCC.

INTRODUCTION

SCC2 of the esophagus has a poor prognosis because of its rapid

growth and spread and the associated malnutrition due to dysphagiaand cachexia ( 1). Most large investigations of patients with this typeof cancer report the 5-year survival rate after surgery or radiationtherapy to be below 20% (1-3).

IL-6 is a multipotent cytokine with numerous biological activities(4). It plays an integral role in the induction of B-cell differentiation

and IgG secretion (5) stimulates the growth and differentiation ofhuman thymocytes and T cells (6, 7). and enhances the induction oflymphokine-activated killer cells (8) and cytotoxicity by natural killercells (9). IL-6 is also a potent proinflammatory cytokine. It acts as an

endogenous pyogen and induces the expression of acute phase proteingenes including the CRP gene (10, 11). IL-6 has been found to be an

important mediator of experimental cancer cachexia in the mouseC-26 tumor system (12). IL-6 is produced by a variety of cells,including T cells, B cells, monocytes, fibroblasts. keratinocytes, en-

dothelial cells, astrocytes. bone marrow cells, and mesangial cells (4).Immunohistochemical studies have shown IL-6 immunoreactivity inprimary squamous cell carcinomas and in a variety of adenocarcino-

mas and sarcomas (13). Several human tumor cell lines, includingmultiple myeloma (14), renal cell carcinoma (15), melanoma (16). glio-

Received 1/4/96: accepted 4/16W6.The costs of publication of this article were defrayed in part by the payment of page

charges. This article must therefore be hereby marked advertisement in accordance with18 U.S.C. Section 1734 solely to indicate this fact.

' To whom requests for reprints should be addressed. Phone: SI-836(22)2264; Fax:81-836(2212263.

•¿�The abbreviations used are: SCC. squamous cell carcinoma: IL-6. interleukin 6; CRP.

C-reactive protein: RT. reverse transcription: MRI. magnetic resonance imaging: niAb.monoclonal antibody: IL-6R. IL-6 receptor: DEPC. diethyl pyrocarhorate; ESC. esophageal squamous carcinoma; ESCC. esophageal squamous cell carcinoma.

blastoma (17). lung cancer (18), ovarian cancer (19), and cervical carcinomas (20), produce IL-6. The identification of an IL-6-IL-6R autocrine

loop in multiple myeloma ( 14) and renal cell carcinoma ( 15) suggests thatan autocrine mechanism may be involved in oncogenesis. The IL-6

produced by tumors may modulate local immunity around the tumorlesion. Clinically, serum levels of IL-6 are correlated with disease status

and prognosis in patients with metastatic renal cell carcinoma (21) andepithelial ovarian cancer (22). Low concentrations of IL-6 can now bedetected using commercially available IL-6 kits.

In the present study, we investigated the production of IL-6 andIL-6R and expression of IL-6 mRNA in esophageal cancer cells usingimmunohistochemical staining and in situ RT-PCR. We also measured serum levels of IL-6 using an ELISA in patients with ESCC toclarify the relationship between serum levels of IL-6 and clinicopath

ological factors.

PATIENTS AND METHODS

Patients. We studied 50 patients with SCC of the esophagus admitted to ourdepartment between 1992 and 1994 (Tables 1 and 2). None of the patients had

inflammatory diseases or had reeeived any treatments, including nutritional support, betöreadmission and biopsy-proven diagnosis of SCC of Ihe esophagus. Thelocation of tumors and distant métastaseswas determined by barium esophagog-

raphy. chest radiography; endoscopy of the tracheobronchial tree, pharynx, larynx,and esophagus: computed tomography and MRI of the thorax and abdomen, andradionuclide bone scanning. Tumor resection was performed in 38 (76%) of 50

patients; in 12 patients (24%) in whom distant métastasesor invasion to adjacentorgans was continued by computed tomography and/or MRI. tumors were considered unresectable. Eleven patients were able to swallow liquids only. Weevaluated the following physical and pathological factors: weight loss, location,tumor size, macroscopic tumor type, tumor depth, lymph node metastasis, histo

lógica!type, and pTNM stage (23). In patients with unresectable tumors, the tumorsize, macroscopic tumor type, tumor depth, lymph node metastasis, and the pTNMstage were evaluated by radiographie, endoscopie, and MRI findings. Curability

and postoperative complications were also evaluated. Informed consent was ob

tained troni all patients.Serum Sampling. Serum samples were obtained from all patients on the

day before any treatment and stored at -80°C until the assayed. Serum

samples were also obtained from a control population of 25 normal healthyage- and sex-matched volunteers.

Surgical Specimen. Fresh surgical specimens of primary tumors and normal epitheliums were collected under sterile conditions from seven patients.The specimens were immediately prepared for analysis of tissue IL-6 levels,immunohistochemical staining, and in aim RT-PCR (see below).

Tumorous and Normal Mucosa! Homogenates. The specimens were immediately stored in liquid nitrogen until use. These samples were thawed, quicklyweighed, placed in 2 ml PBS. and homogenized for 10 s in a tissue homogenizer.The homogenates were then centrifuged twice at 4°Cat lO.(XX)x #. and aliquots

of the supernatants were prepared for the IL-6 assay (pg/g tissue).IL-6. Serum and supernatant levels of IL-6 were measured using an ELISA

according to the manufacturer's instructions (Human IL-6 Immunoassay kit;

Cytosereen. Biosource Co.. Ltd., Camarillo. CA). The limit of detection of theassay was 3 pg/ml. and levels below 3 pg/ml were considered undeteetable.

2776

Research. on January 22, 2020. © 1996 American Association for Cancercancerres.aacrjournals.org Downloaded from

Page 2: Relationship between Serum Levels of Interleukin 6 ... · Relationship between Serum Levels of Interleukin 6, Various Disease Parameters, ... endogenous pyogen and induces the expression

[L-6 AND KSOPHAGEAL SQUAMOUS CELL CARCINOMA

Table 1 Pulicnl clHtrdcterixtica:1CharacteristicMedian

age (yr)SexMaleFemaleDegree

of dysphagiaNoneMinimal

(unrestricteddiet)Mild(can swallow softfood)Severe

(liquids only or unable to swallow)Weight loss, over 6 months (kg)<3.023.0LocationCervicalThoracic-AbdominalTumor

size(cm)<33^1.95-7.928Macroscopic

tumor typeTumorousUlcerativeDiffuseNo.

ofpatients60.0

(37-82)464992111

2129543271415142462

CRP. Serum levels of CRP (mg/dl) were measured with an immunoturbi-

dimetric assay (latromate CRP |A|: Yatoron Co., Inc., Tokyo. Japan). Thecutoff value for the CRP assay was 0.25 mg/dl.

SCC-related Antigen. Serum concentrations of SCC-related antigen were

measured with an enzyme immunoassay kit (Dynabott. Tokyo, Japan). Thecutoff for detection of SCC-related antigen was 2.0 ng/ml.

Mouse mAbs. A mouse anti-human IL-6 niAb (IgGl class: PM1) and amouse anti-IL-6R niAb (IgGl class: MH166) were kindly provided by Chugai

Pharmaceutical Company (Shizuoka, Japan). These mAbs have been describedpreviously (15, 24, 25). Mouse IgGl was used as the control niAb.

Immunohistochemical Staining of IL-6 and IL-6R. Specimens obtainedfrom resected primary esophageal carcinomas were immediately stored at —¿�80°C

after being snap frozen in Tek OTC compound. Cryostat sections (6 /un) from thefrozen specimens were placed on glass slides and fixed in cold acetone.

A three-step immunoperoxida.se technique, using a streptavidin-peroxidaseconjugate, was used to detect IL-6 and IL-6R. Prior to immunohistochemical

staining, endogenous biotin was blocked in 0.1% avidin and 0.01% biotinsolutions using the Dako Biotin Blocking System (Dako Corp.. Carpintería.CA). and the nonspecific binding site was blocked with goat normal serum.Subsequently. mAbs (anti-IL-6 and anti-IL-6R mAb). each diluted 1:40. wereplaced on the sections and incubated overnight at 4°C.All sections then

incubated with biotinylated polyvalent anti-mouse IgG antiserum (Immunon.Pittsburgh. PA) diluted 1:5 and streptavidin-peroxidase reagent (Immunon)

diluted 1:10. Between incubations, the sections were washed three times with PBSfor 15 min each time. These sections were incubated with 3. 3'. 5, 5'-tetramelh-

ylbenzidine (True Blue Peroxidase Substrate: KPL. Inc.. Gaithersburg. MD) aschromogen. Prior to mounting, (he preparations were stained with nuclear fast redas a counterstain. To distinguish tumorous from nontumorous tissue, one frozensection from each tumor specimen was stained with H&E. The specificity of¡mmunohistochemical staining was confirmed by omitting the primary antibodiesor by replacing them with nonimmune, species-specific serum.

In Situ RT-PCR. The IL-6 PCR primers were 5'-TATCTCCCCTCCAG-GAGCCCAG (5' primerl and 5'-TCTGAGGAGAGCAGCGGTCGT (3'primer). The ß-actin PCR primers were 5'-ATGGATGATGATATCGC-CGCGCT (5' primer) and 5'-CGGACTCGTCATACTCCTGCTTG (3' prim

er). All primers were synthesized using the DNA Synthesizer 381 A (AppliedBiosytems. Foster. CA).

Specimens obtained from resected primary esophageal carcinomas andnormal esophageal epithelium were immediately fixed in buffered 4%paraformaldehyde. In situ RT-PCR detection of IL-6 niRNA in cancer cells and

mucosal cells was performed using an in .vim PCR system (GeneAmp In situPCR System 1000: Perkin Elmer/Cetus. Norwalk. CT) in 6-/un sections cut

from the fixed specimens. The sections were placed onto Perkins Elmer/Cetus//; Situ PCR glass slides, and the slides were allowed to dry at room temper

ature. Sections were first digested with 100 /xl proteinase K (20 /ig/ml; Takara.Kyoto, Japan) for 5 min at room temperature, washed twice with DEPC waterand once with I(X)% ethanol. and then air dried for IO min. Cells were thendigested with RNase-free DNase using 50 /xl DNase digestion solution, con

sisting of 5 /il DNase (10 units//il: Boehringer Mannheim, Indianapolis, IN).4.5 /il IOX DNase buffer (Boehringer Mannheim), and DEPC water whichwas placed on the sections, which were then covered with AmpliCover Discsand Clips, and placed in the GeneAmp In Situ PCR System 1000 for 12 h at37°C.The sections were then washed twice with DEPC water and once with

100% ethanol and then air dried for 2 min. RT of RNA was performed in afinal volume of 50 /¿IRNA PCR Core kit (Perkins Elmer/Cetus) consisting of25 min MgCl2, 10 niM 4 deoxynucleotide triphosphates. a random primer, 10XPCR buffer II, and RNase inhibitor, RTase. and DEPC water for 20 min at42°Cin the GeneAmp In Situ PCR System 1000. The sections were then

washed twice with DEPC water and once with 100% ethanol and then air driedfor 2 min. PCR was performed in a final volume of 50 /j.1 PCR solutioncontaining 5 /il 10-fold dilution of the PCR buffer [ 100 HIMTris-HCl (pH 8.3),500 HIMKC1. 15 min MgC12. and 1 mg/ml BSA). 5 /il 10-fold dilution of the

digoxigenin mixture, 1 /il each of the sense and antisense primers. 0.5 /il Tai/polymerase (5 units//il; Perkins Elmer/Cetus). and DEPC water. RT-PCR wasperformed for 20 cycles for both IL-6 and ß-actinusing the GeneAmp In SituPCR System I(XX).Thermal cycling was performed as follows: 94°Cfor 45 sfor denaturation. 55°Cfor 1 min for annealing, and 72°Cfor 15 s for primerextension. After completion of cycling, the slides were stored at 4°Cuntil

digoxigenin detection, which was performed according to the protocol of thedigoxigenin Nucleic Detection kit (Boehringer Mannheim).

Statistical Analysis. Statistical analysis was performed using Student's ttest for unpaired means. The ^ test with Yates' correction or Fisher's exact

test was used to evaluate the correlation between serum IL-6 levels and

clinicopathological factors. A P < 0.05 was considered to be significant.Results are represented as the mean ±SE. The Kaplan-Meier method was usedfor calculation of the postoperative survival rate, and the Cox-Mantel test was

used to determine the statistical significance of the differences.

RESULTS

IL-6 rnRNA Expression in Esophageal Carcinoma Cells. IL-6

mRNA expression in the primary tumor and normal mucosa in vivowas determined using in situ RT-PCR (Fig. 1). There was no difference of intensity of ß-actinexpression (positive control) between the

Table 2 Patient characteristics: II

CharacteristicTumor

depthNo invasion toadvenliliaInvasion

toadvcntiliaInvasiontoadjacentorgans

Lymph node metastasisNegative

PositiveHistológica!type

WelldifferentiatedModeratelydifferentiated

Poorly differentiatedUnknownDistant

métastasesNegative

PositivepTNMstage

0IIIAIIBIIIIVResectability

ResectableUnreseclableCurability

CurativeNoncurativeNo.

ofpatients18221016

34423III

1245

59344181239111920

2777

Research. on January 22, 2020. © 1996 American Association for Cancercancerres.aacrjournals.org Downloaded from

Page 3: Relationship between Serum Levels of Interleukin 6 ... · Relationship between Serum Levels of Interleukin 6, Various Disease Parameters, ... endogenous pyogen and induces the expression

IL-6 AND ESOPHAOEAL SQUAMOUS CELL CARCINOMA

Fig. 1. IL-6 mRNA expression of normal epithelium and primar)' lesion using in situ RT-PCR.There was no difference in intensity of ß-actinex

pression (positive control) between the normal epithelium and primary lesion. IL-6 mRNA was expressed strongly in esophageal cancer cells. IL-fi

mRNA expression was very weak in normal epithelial cells.

ß-actîn

Normal epithelium Primary lesion

IL-6 mRNA

Fig. 2. IL-6 (/<•/()and IL-6R (righi] immunohistochemical staining. IL-6 immunoreactivity was seen intensely in the cytoplasm of the ESC cells, whereas IL-6R immunoreactivitywas seen mainly in the cytoplasmic surface of the ESC cells. IL-6 and IL-6R. X300.

normal epithelium and primary lesion. IL-6 mRNA was expressedstrongly in esophageal cancer cells. IL-6 mRNA expression was very

weak in normal epithelial cells.Immunohistochemical Staining. Fig. 2 shows immunohistochem

ical staining of IL-6 and IL-6R. IL-6 immunoreactivity was seen

intensely in the cytoplasm of the ESC cells. On the other hand, IL-6R

immunoreactivity was seen mainly in the cytoplasmic surface of theESC cells, but, to a lesser extent, the cytoplasm of the tumor cells wasalso reacted with mAb. Immunolabeling was absent when each antibody was omitted or replaced by nonimmune, species-specific serum.

2778

Research. on January 22, 2020. © 1996 American Association for Cancercancerres.aacrjournals.org Downloaded from

Page 4: Relationship between Serum Levels of Interleukin 6 ... · Relationship between Serum Levels of Interleukin 6, Various Disease Parameters, ... endogenous pyogen and induces the expression

IL-6 AND ESOPHAGEAL SQUAMOUS CELL CARCINOMA

•¿�J-10000-<n

atra

800°"a

a=

6000*-

—¿�h_5

4000 -

uCo

uco2000-_]o-0:«**.•>:•".".0000

00

gPrimary

Normallesions

epithelia

Fig. 3. IL-6 concentrations in seven tumor lesions and seven normal epithelia. Theconcentrations of IL-6 in the primary lesions (3427.1 ±1172.3 pg/g tissue) weresignificantly higher than those in normal epithelia (336.8 ± 125.3 pg/g tissue;P = 0.0223).

IL-6 Concentrations in Tumor and Normal Epithelium Homo-genates. The concentrations of IL-6 in the primary lesions

(3427.1 ±1172.3 pg/g tissue) were significantly higher than those inthe normal epithelia (336.8 ±125.3 pg/g tissue; P = 0.0223; Fig. 3).

Serum Levels of IL-6 in Patients with Esophageal Carcinoma.Serum concentrations of IL-6 were detectable in 27 (54%) of 50

patients with ESCC (minimum, 3.07 pg/ml; maximum, 32.6 pg/ml),but in only 3 (12%) of 25 healthy volunteers (minimal, 3.1 pg/ml;maximum, 4.2 pg/ml; P = 0.00256). SCC positivity (>2.0 ng/ml) wasdetected in 14 patients (28%). The rate of IL-6 positivity was signif

icantly higher than the rate of SCC positivity in patients with esophageal cancer tf = 6.98635, P < 0.01).

ESCC patients were classified into three groups based on theirserum levels of IL-6: <3.0 pg/ml (undetectable, group A, n = 23),>3.0 but <7.0 pg/ml (group B, n = 14), and >7.0 pg/ml (group C,n = 13). The incidence of weight loss (>3 kg in the previous 6

months) was significantly higher in group C than in groups A and B(X2 = 6.3360, P = 0.042; Table 3) (11 patients who were able to

swallow liquid meals only or were unable to swallow at all wereexcluded from analysis). The incidence of invasion to adjacent organswas significantly higher in group C than in group A (Fisher,P = 0.044; Table 3). The incidence of curative resection was significantly higher in group A than in group C (Fisher, P = 0.033; Table3). The cumulative 2-year survival rate for patients in groups A. B.

and C who underwent tumor resection was 39.4%, 59.0%, and 6.2%,respectively (group A versus group C, P < 0.05; group B versusgroup C,P< 0.01; Cox-Mantel test). The tumor size was significantly

greater in group C than in groups A and B (P < 0.05; Table 4). Theserum level of albumin was significantly lower (P < 0.01) (11patients who were able to swallow liquid meals only or were unableto swallow at all were excluded from this analysis), and the CRP levelwas significantly higher in group C than in group A (P < 0.05; Table4). There was no significant difference in the incidence of lymph nodemetastasis, the pM, pTNM stage, histological type, resectability, orthe serum level of SCC among groups.

DISCUSSION

Esophageal squamous carcinoma cells produced IL-6 and expressedIL-6R. Serum levels of IL-6 were significantly higher in patients with

ESCC than in healthy controls and were correlated with various disease

parameters (including tumor size and tumor depth) and curability. The2-year survival rate for patients in groups A and B was significantly

greater than that for patients in group C. However, this difference shouldbe due to the incidence of curative resection between groups. The serumlevels of IL-6 were also correlated with the nutritional status as deter

mined by evaluation of weight loss and the serum level of albumin.IL-6 concentrations in primary tumors were 10 times greater than

those in normal epithelium in the present study. IL-6 enhances theinduction of lymphokine-activated killer cells (8) and cytotoxicity by

natural killer cells (9). In contrast, it would be interesting to investigate the cytotoxic function of tumor-infiltrating lymphocytes whichcould be blocked by very high local concentrations of IL-6 at tumorsites (26). Thus, it is possible that increased production of IL-6 by

esophageal cancer cells may contribute to the escape of tumor cellsfrom immune surveillance.

The autocrine hypothesis proposes that a cell produces a growthfactor that interacts with specific membrane receptors on its ownsurface to induce various effects such as proliferation (27). There-

Table 3 Relationship betH'et'ii serum IL-6 levels una cliniiiit¡)í¡tholoí>icíilfactors

ClinicopathologicalfactorsWeightloss*(kg)<3.0==3.0Tumor

depthNoinvasion to adjacentorgansInvasion

to adjacentorgansLymphnodemetastasisNegativePositivepM01pTNM

stageOandI11mIVHistological

typeWelldifferentiatedModeratelydifferentiatedPoorly

differentiatedResectabilityResectableUnresectableCurabilityCurativeNoncurativeA136212g1518574752124194|

T7Group"li641135911342531721045sC2gg"53109412641541032e8x-

P6.3360

0.0420.017'4.6240

0.0990.044'0.6463

0.7240.4418

0.8022.9221

0.8191.3722

0.8491.3653

0.5054.8934

0.0g70.033'

"Groups were divided by serum IL-6 levels. Group A. <3.0 pg/ml (undetectable).

group B. 2:3.0, but <7.0 pg/ml. and group C, 2:7.0 pg/ml.b Eleven patients who could swallow liquids only or were unable to swallow were

excluded in this analysis.' Group A \

Table 4 Relationship between the serum levels of IL-6 ana clinicopalhological factors

Group"Clinicopatriologica]

factorsTumor

size (cm)

Albumin(g/dl)''CRP

(mg/dl)SCC (ng/ml)5.2

3.80.64

1.5A±0.5±

O.I±0.25

±0.35.2

3.71.261.7B^±O.g0.10.71

0.48.5

3.31.822.5C±

1.3

±0.1±0.51

±0.6P<0.05*

<0.05'<0.05''

NS'

" Group A. <3.0 pg/ml (undetectable). group B, ^3.0, but <7.0 pg/ml, and group C.

&7.0 pg/ml. Values are means ±SE. Statistical analysis was performed using theANOVA procedure (Scheffe's F) and the linear correlation confidence.

' Group A \'.v.group C.' Group B i'í.group C.' Eleven patients who could swallow liquids only or were unable to swallow were

excluded in this analysis.' NS, not significant.

2779

Research. on January 22, 2020. © 1996 American Association for Cancercancerres.aacrjournals.org Downloaded from

Page 5: Relationship between Serum Levels of Interleukin 6 ... · Relationship between Serum Levels of Interleukin 6, Various Disease Parameters, ... endogenous pyogen and induces the expression

IL-6 AND ESOPHAOEAL SQUAMOUS CELL CARCINOMA

fore, the simultaneous production of IL-6 and IL-6R suggests that IL-6acts in an autocrine manner. The existence of an IL-6-IL-6R autocrine

loop in multiple myeloma ( 14) and renal cell carcinoma (15) suggests thatan autocrine mechanism may he involved in oncogenesis. Immunohisto-chemical analysis showed simultaneous production of IL-6 and IL-6R inESC cells in the present study, suggesting that an IL-6-IL-6R autocrine

loop is also involved in ESCC.IL-6 is an important mediator of experimental cancer cachexia in the

mouse C-26 tumor system (12). Antibody to murine IL-6 suppresses the

development of key features of cachexia in mice with C261VX carcinoma (28). However, the relationship between IL-6 and cachexia in

humans remains unclear. Fearon et al. (29) reported that the serum levelof IL-6 was elevated in patients with advanced colonie cancer. Falconer

et al. (30) observed an increase in the spontaneous production of tumornecrosis factor and IL-6 by isolated peripheral blood mononuclear cells

from patients with pancreatic cancer with an acute phase response, whichis related to weight loss, although serum levels of IL-6 were not different

between cancer patients with and without an acute phase response. Theyconcluded that local, rather than systemic, cytokine production may beimportant in regulating the acute phase response. In the present study, theserum level of IL-6 was correlated with nutritional status, consistent withthe hypothesis that IL-6 may contribute to malnutrition in patients with

esophageal carcinoma.The serum level of IL-6 is correlated with disease status and

prognosis in patients with metastatic renal cell carcinoma (21) andepithelial ovarian cancer (22). The present results showed that theserum level of IL-6 was correlated with disease parameters (including

tumor size and tumor depth) and curability in patients with esophagealcarcinoma. Therefore. IL-6 may be a suitable biomarker for these

patients. A few tumor markers of ESCC have been investigated.Munck-Wikland et al. (31 ) reported that 39% of ESCC patients had

elevated levels of carcinoembryonic antigen, 41% had elevated CA 50levels, and 13% had elevated CA 19-9 levels. They found no clear

correlation between elevated levels of tumor markers and the tumor

stage or tumor differentiation. Kato and Torigoe (32) identified SCC,a new tumor marker of human squamous cell carcinoma. Ikeda (33)reported that the SCC level was elevated in 42.7% of patients withESCC and was correlated with the tumor stage. In the present study,SCC levels were elevated in 28% of the patients, whereas IL-6 levelswere increased in 54% of patients, suggesting that IL-6 is a more

sensitive marker than SCC.The production of IL-6 by tumor cells may be related to various

disease parameters and to nutritional status in patients with ESCC.The simultaneous production of IL-6 and IL-6R in such patientssuggests the involvement of an IL-6-IL-6R autocrine loop in ESCC.

ACKNOWLEDGMENTS

We thank Manami Ide for her assistance in the preparation of themanuscript.

REFERENCES

1. Katlic, M. R.. Wilkins. E. W.. and Grillo. H. C. Three decades of treatment ofesophageal squamous carcinoma a! the Massachusetts General Hospital. J. Thorac.Cardiovasc. Surg.. 99: 929-938. 1990.

2. Ellis. F. H.. Jr., Gibb. S. P.. and Wutkins, E., Jr. Esophagogastrectomy: a safe, widelyapplicable, and expendiiious form of palliation for patients with carcinoma of theesophagus and cardia. Ann. Surg.. 198: 531-539, 1983.

3. Earlam. R.. and Cunha-Melo, T. R. Oesophageal squamous cell carcinoma: II. Acritical review of radiotherapy. Br. J. Surg., 67: 457-461, 1980.

4. Kishimolo, T. The biology of inlerleukin-6. Blood, 74: 1-10, 1989.

5. Muraguchi, A.. Kishimoto. T.. Miki. Y.. Kuritani. T.. Kaieda. T.. Yoshizaki. K.. andYarnamura, Y. T cell-replacing factor (TRF)-induced IgG secretion in human Bblastoid cell line and demonstration of acceptors for TRE. J. luminimi . 127: 412-

416. 1981.6. Lolz. M., Jirik. F.. Kabouridis. P., Tsoukas. S.. Mirano, T.. Kishimoto. T., and Carson,

15.

16.

17.

18.

19.

20.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33

D. A. B cell stimulating factor 2/interleukin 6 is a costimulant for human thymocytesand T lymphocytes. J. Exp. Med.. 167: 1253-1258. 1988.Okuda. M.. Kitahara. M.. Kishimoto. S.. Matsuda. T.. Mirano, T.. and Kishimoto T.IL-6/BSF-2 functions as a killer helper factor in the in vitro induction of cytotoxic Tcells. J. Immunol.. 141: 1543-1549, 1988.Gallagher. G.. Stimson. W. H., Findlay. J.. and AI-Azzawi. F. Imerleukin-6 enhancesthe induction of human lymphokine-aclivalcd killer cells. Cancer Immunol. Immu-nother..31: 49-52, 1990.Luger. T. A.. Kruttman. J.. Kimbauer. R.. Urbanski. R. A.. Schwartz. T.. Klappacher.G.. Kock. A.. Micksche. M.. Malejczyk. J.. Schauer. E.. May. T. L.. and Sehgal. P. B.INF/IL-6 augments the activity of human natural killer cells. J. Immunol., 143:1206-1209. 1989.Gauldie, J., Richards. C.. Harnish, D.. Lansdorp. P.. and Baumann. H. Interferon beta2/BSF2 shares identity with monocyte derived hepatocyte stimulating factor andregulates the major acute phase protein in liver cells. Proc. Nati. Acad. Sci. USA. 84:7251-7255. 1987.Castell. J. V.. Gomez-Lechon. M. J.. David. M.. Horano. T., Kishimolo. T.. andHeinrich. P. C. Acute phase response of human hepatocytes: regulation of acute phaseprotein synthesis by IL-6. Hepatology. 12: 1179-1186. 1990.

Strassmann. G.. Jacob. C. O., Evans. R.. Beali. D., and Fong. M. Mechanism ofexperimental cancer cachexia. Interaction between mononuclear phagocytes andcolon-26 carcinoma and its relevance to IL-6-mediated cancer cachexia. J. Immunol..I4H: 3674-3678. 1992.Tabibzadeh, S. S.. Poubouridis. D.. May. L. T.. and Sehgal. P. B. Interleukin-6immunoreactivity in human tumors. Am. J. Palhol., I35: 427-433. 1989.

Kawano. M.. Mirano. T.. Malsuda. T.. Taga. T.. Morii. Y-, Iwato. K.. Asaoku. H..Tang. B.. Tanabe. O.. Tanaka. H.. Kuramoto. A., and Kishimoto. T. Automnegeneration and requirement of BSF-2/IL-6 for human multiple myelomas. Nature(Lond.l. 332: 83-85. 1988.Miki. S.. Iwano. M.. Miki. Y.. Yamamoto. M.. Tang. B.. Yokokawa. K.. Sonoda. T..Mirano, T.. and Kishimoto, T. Interleukin-6 (IL-6) functions as an in vitro aulocrinegrowth factor in renal cell carcinomas. FEBS Lett.. 250: 607-610. 1989.

Lee. J. D., Sievers, T. M., Skotzko. M.. Chandler. C. F.. Morton. D. L.. McBride.W. H., and Economou. J. S. Interleukin-6 production by human melanoma cell lines.Lymphokine Cytokine Res., //: 161-166. 1992.Meir. E. V., Sawamura. Y.. Diserens. A., Mamou. M.. and Tribolet. N. Humanglioblastoma cells release interleukin 6 in \-irtt and in vitru. Cancer Res.. 50:6683-6688. 1990.Takizawa. H.. Ohtoshi. T.. Ohla. K.. Yamashila. N.. Hirohata. S.. Mirai. K..Hiramatsu. K.. and Ito, K. Growth inhibition of human lung cancer cell lines byinterleukin 6 in vitro: a possible role in tumor growth via an autocrine mechanism.Cancer Res.. 53: 4175-4181. 1993.Watson. J. M.. Sensinlaffar. J. L.. Berek. J. S.. and Martinez-Maza. O. Constitutiveproduction of interleukin 6 by ovarian cancer cell lines and by primary ovarian tumorcultures. Cancer Res.. 50: 6959-6965. 1990.

Eustace. D.. Han. X.. Gooding, R.. Rowbottom. A., Riches. P., and Heyderman. E.Inlerleukin-6 (IL-6) functions as an autocrine growth factor in cervical carcinomas I'M

vitro. Gynecol. Oncol.. 50: 151-159. 1993.Blay. J-Y.. Négrier.S.. Combare!, V.. Aitali. S.. Goulot. E.. Merrouche. Y..Mercatello. A.. Ravault. A.. Tourani. J-M.. Moskovtchenko. J-F.. Philip. T.. andFavrot, M. Serum level of interleukin 6 as a prognostic factor in metastatic renal cellcarcinoma. Cancer Res., 52: 3317-3322. 1992.Berek. J. S.. Chung, C., Kaldi, K., Watson. J. M.. Knox. R. M.. and Martinez-Maza.O. Serum interleukin-6 levels correlate with disease status in patients with epithelialovarian cancer. Am. J. Obstet. Gynecol.. 164: 1038-1043. 1991.

Harmanek. P.. and Sobin. L. H. (eds.) International Union Against Cancer; TNMClassification of Malignant Tumours. 4th ed. Berlin: Springer-Verlag. 1992.

Kobayashi, H.. Takeda. K.. Miyano. K.. Yamane. T.. and Sato. J. Growth of hepatomacell lines with differentiated functions in chemically defined medium. Cancer Res..42: 3858-3863. 1982.Lu, C., and Kerbel. R. S. lnterleukin-6 undergoes transition from paracrine growthinhibitor to autocrine stimulator during human melanoma progression. J. Cell Biol..120: 1281-1288. 1993.

Tanner, J., and Tosato. G. Impairment of natural killer functions by interleukin 6increases lymphoblastoid cell tumorigenicily in athymic mice. J. Clin. Invest.. 88:239-247. 1991.Sporn. M. B., and Roberts. A. B. Autocrine growth factor and cancer. Nature (Lond. ).313: 745-747. 1985.

Strassmann. G.. Fong. M.. Kenney. J. S.. and Jacob. C. O. Evidence for the involvement of interleukin 6 in experimental cancer cachexia. J. Clin. Invest.. K9: 1681-

1684, 1992.Fearon, K. C. H.. McMillan. D. C., Preston. T.. Winstanley, F. P.. Cruickshank.A. M.. and Shenkin. A. Elevated circulating interleukin-6 is associated with anacute-phase response but reduced fixed hepatic protein synthesis in patients withcancer. Ann. Surg., 213: 26-31. 1991.Falconer. J. S.. Fearon, K. C.. Plester, C. E., Ross, J. A., and Carter. D. C. Cytokines.the acute-phase response, and resting energy expenditure in cachectic patients withpancreatic cancer. Ann. Surg.. 219: 325-331, 1994.Munck-Wikland. F... Kuylenstierna. R.. Wahren. B.. Lindholm. J.. and Haglund. S.Tumor markers carcinoemhryonic antigen. C A 50. and CA 19-9 and squamous cellcarcinoma of the esophagus. Cancer (Phila.). 62: 2281-2286, 1988.

Kato. H.. and Torigoe, T. Radioimmunoassay lor tumor antigen of human squamouscell carcinoma. Cancer (Phila.). 40: 1621-1628. 1977.

Ikeda. K. Clinical and fundamental study of a squamous cell carcinoma relatedantigen (SCC-RA) for esophageal squamous cell carcinoma. J. Jpn. Surg. Soc.. 92:387-396. 1990 (in Japanese).

2780

Research. on January 22, 2020. © 1996 American Association for Cancercancerres.aacrjournals.org Downloaded from

Page 6: Relationship between Serum Levels of Interleukin 6 ... · Relationship between Serum Levels of Interleukin 6, Various Disease Parameters, ... endogenous pyogen and induces the expression

1996;56:2776-2780. Cancer Res   Masaaki Oka, Kohtaro Yamamoto, Mutsuo Takahashi, et al.   Esophageal Squamous Cell CarcinomaDisease Parameters, and Malnutrition in Patients with Relationship between Serum Levels of Interleukin 6, Various

  Updated version

  http://cancerres.aacrjournals.org/content/56/12/2776

Access the most recent version of this article at:

   

   

   

  E-mail alerts related to this article or journal.Sign up to receive free email-alerts

  Subscriptions

Reprints and

  [email protected] at

To order reprints of this article or to subscribe to the journal, contact the AACR Publications

  Permissions

  Rightslink site. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC)

.http://cancerres.aacrjournals.org/content/56/12/2776To request permission to re-use all or part of this article, use this link

Research. on January 22, 2020. © 1996 American Association for Cancercancerres.aacrjournals.org Downloaded from