Top Banner
1 Regulating Solid State Diffusion in Semiconductor Processing Edmund G. Seebauer Department of Chemical Engineering University of Illinois at Urbana-Champaign Support: NSF, DOE, Chartered Semiconductor
47

Regulating Solid State Diffusion in Semiconductor …eseebauer/talks/Ssdiffusion.pdf1 Regulating Solid State Diffusion in Semiconductor Processing Edmund G. Seebauer Department of

Jul 06, 2018

Download

Documents

hoangthuan
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Regulating Solid State Diffusion in Semiconductor …eseebauer/talks/Ssdiffusion.pdf1 Regulating Solid State Diffusion in Semiconductor Processing Edmund G. Seebauer Department of

1

Regulating Solid State Diffusion in Semiconductor Processing

Edmund G. SeebauerDepartment of Chemical Engineering

University of Illinois at Urbana-Champaign

Support: NSF, DOE, Chartered Semiconductor

Page 2: Regulating Solid State Diffusion in Semiconductor …eseebauer/talks/Ssdiffusion.pdf1 Regulating Solid State Diffusion in Semiconductor Processing Edmund G. Seebauer Department of

2

MOSFET Schematic

Source Gate Drain

Silicon substrate

Interconnect

Glass

SiO2Channel

Silicide

Poly-Si

Heavily-doped Si

Page 3: Regulating Solid State Diffusion in Semiconductor …eseebauer/talks/Ssdiffusion.pdf1 Regulating Solid State Diffusion in Semiconductor Processing Edmund G. Seebauer Department of

3

International Technology Roadmap for Semiconductors

! Feature size decreases 30% per 3 yrs! Cost/function decreases 50% per 3 yrs

Page 4: Regulating Solid State Diffusion in Semiconductor …eseebauer/talks/Ssdiffusion.pdf1 Regulating Solid State Diffusion in Semiconductor Processing Edmund G. Seebauer Department of

4

Transistor Scaling and Diffusion

! Surface/volume ratios increase! Surface/interface diffusion can dominate transport! Nonthermal means needed to enhance surface diffusion

Page 5: Regulating Solid State Diffusion in Semiconductor …eseebauer/talks/Ssdiffusion.pdf1 Regulating Solid State Diffusion in Semiconductor Processing Edmund G. Seebauer Department of

5

Application: Hemispherical Grained Silicon for DRAMs

! Formed by heating amorphous Si

! Crystallization begins at free surface

! Grains mushroom from surface by surface diffusion

! Rough surface increases capacitance/area

Page 6: Regulating Solid State Diffusion in Semiconductor …eseebauer/talks/Ssdiffusion.pdf1 Regulating Solid State Diffusion in Semiconductor Processing Edmund G. Seebauer Department of

6

UIUC-grown HSG

Top view Cross-section

100µµµµm100µµµµm

Page 7: Regulating Solid State Diffusion in Semiconductor …eseebauer/talks/Ssdiffusion.pdf1 Regulating Solid State Diffusion in Semiconductor Processing Edmund G. Seebauer Department of

7

Application: Reflow

! Smooths surfaces of! Al, Cu for metallization

! Glasses for passivation

! Submicron length scales → surface diffusion dominates

! Simulators model effects accurately

Cu on 0.35µm trench

450°C375°C

Page 8: Regulating Solid State Diffusion in Semiconductor …eseebauer/talks/Ssdiffusion.pdf1 Regulating Solid State Diffusion in Semiconductor Processing Edmund G. Seebauer Department of

8

Application: Sputter DepositionBallistic flux shadowing Diffusional smoothing

Simulation byGROFILMS

Actual Ti film

Process simulators can predict growth behavior

Page 9: Regulating Solid State Diffusion in Semiconductor …eseebauer/talks/Ssdiffusion.pdf1 Regulating Solid State Diffusion in Semiconductor Processing Edmund G. Seebauer Department of

9

Surface Second Harmonic Generation

! Interface polarization P ~ χ1•E + χ2:EE + …

! χ1 yields everyday reflection: adsorption insensitive

! χ2 yields SHG: adsorption sensitive

! For centrosymmetric bulk, χ2 ≠ 0 only at interface

ν2ν

Laser PMT

Filter

Page 10: Regulating Solid State Diffusion in Semiconductor …eseebauer/talks/Ssdiffusion.pdf1 Regulating Solid State Diffusion in Semiconductor Processing Edmund G. Seebauer Department of

10

Second Harmonic Microscopy

Laser

Array

! Spatially resolved SHG, D from profile spreading

! Image before and after heating

! Magnification ~ 20x, diffraction limited

Page 11: Regulating Solid State Diffusion in Semiconductor …eseebauer/talks/Ssdiffusion.pdf1 Regulating Solid State Diffusion in Semiconductor Processing Edmund G. Seebauer Department of

11

Experimental Set-up

! Signal averaging at 10 Hz takes ~ 5 min

! Imaging does not induce profile spreading

J. Opt. Soc. Am. B 10 (1993) 546

Page 12: Regulating Solid State Diffusion in Semiconductor …eseebauer/talks/Ssdiffusion.pdf1 Regulating Solid State Diffusion in Semiconductor Processing Edmund G. Seebauer Department of

12

0.0 0.5 1.0 1.50

2

4

6

θθθθ

SH S

igna

l (ar

b un

its)

Calibration Curve: Ge on Si(111)

! Developed by Auger spectroscopy

! Linear up to ~0.7 ML

Page 13: Regulating Solid State Diffusion in Semiconductor …eseebauer/talks/Ssdiffusion.pdf1 Regulating Solid State Diffusion in Semiconductor Processing Edmund G. Seebauer Department of

13

Diffused Step

SH S

igna

l (ar

b un

its)

Pixel Number

350 400 450 500 5500.2

0.4

0.6

0.8

1.0

1.2

Diffused Step

θ θθθ Ge

Position (µm)300 450 600 750

0.0

0.2

0.4

0.6

Second Harmonic Images: Ge on Si(111)

Unprocessed profiles After image processing

Page 14: Regulating Solid State Diffusion in Semiconductor …eseebauer/talks/Ssdiffusion.pdf1 Regulating Solid State Diffusion in Semiconductor Processing Edmund G. Seebauer Department of

14

T (oC)

D (c

m2 /s

)

1000/T (K-1)0.85 0.90 0.95 1.00 1.05 1.10

10-11

10-10

10-9

10-8

Do = 6 x 102 cm2/s

840 780 730 680

Ea= 2.48 eV

Arrhenius Plot: Ge on Si(111)

Phys. Rev. B 55 (1997) 13304

! Activation energy, prefactor both enormous

! Independent of surface concentration

Page 15: Regulating Solid State Diffusion in Semiconductor …eseebauer/talks/Ssdiffusion.pdf1 Regulating Solid State Diffusion in Semiconductor Processing Edmund G. Seebauer Department of

15

Surface Diffusion Physics on Si at High T

" Composite surface diffusivity DM depends on:

" Mobility of mobile species

" Number of mobile species

" Etotal = Ehop + Epair formation ≈ 0.5 + 2.0 eV

" Do,total = (10-3 cm2/s) exp(∆Spair formation/kT)

≈ 106

Page 16: Regulating Solid State Diffusion in Semiconductor …eseebauer/talks/Ssdiffusion.pdf1 Regulating Solid State Diffusion in Semiconductor Processing Edmund G. Seebauer Department of

16

Illumination-Influenced Surface Diffusion: Experimental Results

390440 350 315635 560 495

T (oC)

D (c

m2 /s

)

1000/T (K-1)1.1 1.2 1.3 1.4 1.5 1.6 1.7

10-11

10-10

10-9

10-8

10-7

,, n

p

Illuminated

Thermal

! In, Ge, Sb on Si(111)Phys. Rev. Lett. 81 (1998) 1259Phys. Rev. B 61 (2000) 13710

! Measured by second harmonic microscopy

! D increases for n-type, decreases for p-type material

Page 17: Regulating Solid State Diffusion in Semiconductor …eseebauer/talks/Ssdiffusion.pdf1 Regulating Solid State Diffusion in Semiconductor Processing Edmund G. Seebauer Department of

17

Surface Diffusion Physics on Si at High T

" Composite surface diffusivity DM depends on:

" Number of vacancies,mobile atoms

" Numbers depend on charge state

" For all adsorbates (at 2 W/cm2):" Ediff changes by 0.3 eV" Prefactor changes by ~ 100×

" Invariance with adsorbate suggests underlying commonality: Ionization of surface vacancies

Page 18: Regulating Solid State Diffusion in Semiconductor …eseebauer/talks/Ssdiffusion.pdf1 Regulating Solid State Diffusion in Semiconductor Processing Edmund G. Seebauer Department of

18

Quantum Calculations

MotivationCharge states of Si surface vacancies unknown, difficult to measure experimentally

Quantum calculations can predict vacancy energy levels and formation energies

ImplementationAb-initio pseudopotential calculation using DFT

Supercell approach, periodic boundary conditions

CASTEP software (Accelrys Inc.)

Si(100)-(2×1) surface: mono- and divacancy

Page 19: Regulating Solid State Diffusion in Semiconductor …eseebauer/talks/Ssdiffusion.pdf1 Regulating Solid State Diffusion in Semiconductor Processing Edmund G. Seebauer Department of

19

Formation Energies for Si Monovacancy

" Four stable charge states (+2,0,-1,-2)

" Comparable results for other vacancy types

Si surface supports a variety of charged vacancies, consistent with picture for optically driven diffusion

Fermi Energy (eV)0.0 0.2 0.4 0.6 0.8 1.0 1.2

Form

atio

n En

ergy

(eV)

-1

0

1

2

-2

-1

+2

+1

0

Upper Monovacancy0 K

Page 20: Regulating Solid State Diffusion in Semiconductor …eseebauer/talks/Ssdiffusion.pdf1 Regulating Solid State Diffusion in Semiconductor Processing Edmund G. Seebauer Department of

20

Analogies between Surface, Bulk Diffusion

Bulk Surface

Hopping Interstitial motion Adatom motion

diffusion Vacancy motion Vacancy motion

Kick-in/kick-out Exchange

Overall mass Clustering Islanding transport Vacancy-interstitial

formation Vacancy-adatom

formation

Point defect ionization

Point defect ionization

Page 21: Regulating Solid State Diffusion in Semiconductor …eseebauer/talks/Ssdiffusion.pdf1 Regulating Solid State Diffusion in Semiconductor Processing Edmund G. Seebauer Department of

21

Bulk Diffusion Physics in Si at High T

" Rate of total mass transport depends on:

" Mobility to mobile species

" Number of mobile species

" Numbers and mobilities may depend on charge state → photoexcitation

Page 22: Regulating Solid State Diffusion in Semiconductor …eseebauer/talks/Ssdiffusion.pdf1 Regulating Solid State Diffusion in Semiconductor Processing Edmund G. Seebauer Department of

22

Ultrashallow Junction Formation

" Implantation leaves lattice damage

" Dopant must be activated electrically

" High-powered lamps

" Rapid heating/cooling

" Defects promote unwanted diffusion

Ion Implantation

Rapid Thermal Annealing

Page 23: Regulating Solid State Diffusion in Semiconductor …eseebauer/talks/Ssdiffusion.pdf1 Regulating Solid State Diffusion in Semiconductor Processing Edmund G. Seebauer Department of

23

Measurement of Bulk Diffusion

" Isotopically-depleted layer grown epitaxially via LPCVD

30Si28Si (natural)

30Si (depleted)

30Si (natural)

28Si (enriched)

" 30Si step profile created

" Doping level uniform (eliminates drift effects)

Page 24: Regulating Solid State Diffusion in Semiconductor …eseebauer/talks/Ssdiffusion.pdf1 Regulating Solid State Diffusion in Semiconductor Processing Edmund G. Seebauer Department of

24

1e+17

1e+18

1e+19

1e+20

1e+21

1e+22

100 200 300 400 500 600

x (nm)

30Si

(cm

-3)

hvdarkas-grown

Non-thermal Illumination Effects: p-type

! 850ºC, 4 hr, 1×1019 cm-3 p-type, 0.05 W/cm2

D(hν) = 7×10-16 cm2/s

D(dark) = 1×10-15

cm2/s

Diffusion inhibition by a factor of 1.5

Page 25: Regulating Solid State Diffusion in Semiconductor …eseebauer/talks/Ssdiffusion.pdf1 Regulating Solid State Diffusion in Semiconductor Processing Edmund G. Seebauer Department of

25

Non-thermal Illumination Effects in Bulk Si

! 900ºC, 30 min, 1×1019 cm-3 n-type, 2 W/cm2

1e+17

1e+18

1e+19

1e+20

1e+21

1e+22

100 200 300 400 500 600

x (nm)

30Si

(cm

-3)

hvdarkas-grown

D(hν) = 9×10-14 cm2/s

D(dark) = 1×10-15

cm2/s

Diffusion enhancement by

a factor of 90

Results like surface diffusion, impt in rapid thermal processing

Page 26: Regulating Solid State Diffusion in Semiconductor …eseebauer/talks/Ssdiffusion.pdf1 Regulating Solid State Diffusion in Semiconductor Processing Edmund G. Seebauer Department of

26

Application for Nonthermally-Driven Diffusion: Nanoparticle Growth on a-Si

• Anneal (645°C)

75 sec 90 sec 105 sec

Motivated by Hemispherical Grained Si growth for DRAMs

• Grow amorphous Si by chemical vapor deposition

• Grain growth rate may be nonthermally influenced

Page 27: Regulating Solid State Diffusion in Semiconductor …eseebauer/talks/Ssdiffusion.pdf1 Regulating Solid State Diffusion in Semiconductor Processing Edmund G. Seebauer Department of

27

Directed Self-Assembly Using Amorphous Semiconductors

Ostwald ripening

Expose a-Si with subcritical nuclei to hν or e-beam just below crystallization temp

100µµµµm

Dots, walls 2 – 200+ nm

Page 28: Regulating Solid State Diffusion in Semiconductor …eseebauer/talks/Ssdiffusion.pdf1 Regulating Solid State Diffusion in Semiconductor Processing Edmund G. Seebauer Department of

28

Applications of Self-Assembly Method

! Nonvolatile memory at high density, low power! Sensors! Photonic band gap materials! Flat panel displays! Solar cells! On-chip nanopore devices for probing electrical

activity of biological molecules

Particle arrays, walls, narrow pores for:

Page 29: Regulating Solid State Diffusion in Semiconductor …eseebauer/talks/Ssdiffusion.pdf1 Regulating Solid State Diffusion in Semiconductor Processing Edmund G. Seebauer Department of

29

Diffusion at Solid Interfaces: Copper in Interconnect Structures

! Diffusion of Cu at interfaces remains uninvestigated! Barrier layers

! Etch stops

! Interlayer dielectrics

! Could be major means of transport during processing, use

! Problems with line-to-line shorting, Si deep levels…

We seek to make first measurements of Cu diffusion at these interfaces

Page 30: Regulating Solid State Diffusion in Semiconductor …eseebauer/talks/Ssdiffusion.pdf1 Regulating Solid State Diffusion in Semiconductor Processing Edmund G. Seebauer Department of

30

Problems

! Inaccessibility of solid-solid interfaces! Electron, ion spectroscopies no good

! Small number of diffusing atoms (< 1 monolayer)

! Need for probe with interface specificity! Raman, IR, ellipsometry no good

We employ optical second harmonic microscopy

Page 31: Regulating Solid State Diffusion in Semiconductor …eseebauer/talks/Ssdiffusion.pdf1 Regulating Solid State Diffusion in Semiconductor Processing Edmund G. Seebauer Department of

31

Second Harmonic Microscopy at Solid Interfaces

Laser

Array

Solid 1

Solid 2

! Implementation similar to free surfaces

! Create profile ex situ

! Image through transparent overlayer

Page 32: Regulating Solid State Diffusion in Semiconductor …eseebauer/talks/Ssdiffusion.pdf1 Regulating Solid State Diffusion in Semiconductor Processing Edmund G. Seebauer Department of

32

Measurement Concept

! Position Cu source near one end of interface

! Heat structure

! Freeze concentration profile and image

! Structure below made at Chartered Semiconductor

SiO2

Si3N4

Si3N4

Cu! 5 nm Ta

separates Cu from ILD

Page 33: Regulating Solid State Diffusion in Semiconductor …eseebauer/talks/Ssdiffusion.pdf1 Regulating Solid State Diffusion in Semiconductor Processing Edmund G. Seebauer Department of

33

Preliminary Imaging Results

700°C

! Profiles are very flat! Diffusion through Ta barrier rate limiting

! Diffusion at upper or lower interface?

Page 34: Regulating Solid State Diffusion in Semiconductor …eseebauer/talks/Ssdiffusion.pdf1 Regulating Solid State Diffusion in Semiconductor Processing Edmund G. Seebauer Department of

34

Low-Energy Ion-Surface Interactions

! In beam-assisted deposition, plasma etching, effects of substrate T usually ignored

! In much early work, Eion >> kT

! Repulsive potentials govern

! Now Eion closer to kT, leading to possible E-T interactions

! Attractive potentials more important

! Question: What are mechanisms for these interactions?

! Now nearly virgin territory

Page 35: Regulating Solid State Diffusion in Semiconductor …eseebauer/talks/Ssdiffusion.pdf1 Regulating Solid State Diffusion in Semiconductor Processing Edmund G. Seebauer Department of

35

Ge/Si(111) Surface Diffusion: Physical-Chemical Interactions

Dion, 54 eV

860 770 690 620T (oC)

D (c

m2 /s

)

1000/T (K-1)

0.88 0.96 1.04 1.1210-11

10-10

10-9

Dion, 35 eV

Dthermal

Dion, 65 eV

Two temperature regimes:

Low T → only prefactor increasesHigh T → prefactor and Ediff decrease

Phys. Rev. Lett., 82 (1999) 1185

Page 36: Regulating Solid State Diffusion in Semiconductor …eseebauer/talks/Ssdiffusion.pdf1 Regulating Solid State Diffusion in Semiconductor Processing Edmund G. Seebauer Department of

36

Calculation Method: MD Simulation

! Si or Ge (111)-(1×1)! Ne+, Ar+, Xe+ < 65 eV! Stillinger-Weber/

Universal pot.

! Monitor frequency (per ion) of 4 possible events:

Page 37: Regulating Solid State Diffusion in Semiconductor …eseebauer/talks/Ssdiffusion.pdf1 Regulating Solid State Diffusion in Semiconductor Processing Edmund G. Seebauer Department of

37

Energy Effects, Constant T

E (eV)10 20 30 40 50 60 70

Per

Impa

ct P

roba

bilit

ies

0.0

0.1

0.2

0.3

0.4 SputteringAdatom formationKnockinBulk vacancy

Ar-Si, 1100K

Thresholds

Determine EThres where f ≤ 0.01

Fits use f = A (E1/2 – EThres1/2)

Page 38: Regulating Solid State Diffusion in Semiconductor …eseebauer/talks/Ssdiffusion.pdf1 Regulating Solid State Diffusion in Semiconductor Processing Edmund G. Seebauer Department of

38

Temperature Effects, Constant E

T (K)0 200 400 600 800 1000 1200

Per i

mpa

ct p

roba

bilit

y

0.0

0.1

0.2 Ar-Si sputtering65eV

Threshold temperature exists!

Occurs for all events, such as sputtering, knock-in

Fits use f = A(T – TThres)

Page 39: Regulating Solid State Diffusion in Semiconductor …eseebauer/talks/Ssdiffusion.pdf1 Regulating Solid State Diffusion in Semiconductor Processing Edmund G. Seebauer Department of

39

At Threshold, T and Ion Energy are Coupled

T (K)0 200 400 600 800 1000 1200

E Thre

s(eV)

0

20

40

60

80

Si

Ge

Direct trade-off between E and TETotal = σkT + EThres (new result!)

~100eV ~10-65eV ~10-65eV

Large amplification factor σ ~ 103

Ar-Si sputtering

Page 40: Regulating Solid State Diffusion in Semiconductor …eseebauer/talks/Ssdiffusion.pdf1 Regulating Solid State Diffusion in Semiconductor Processing Edmund G. Seebauer Department of

40

Physics: Ion Mass Variation

Atomic Number

0 10 20 30 40 50 60

E Tota

l(eV)

80

120

160

200

240

σ σσσ

-2400

-2000

-1600

-1200

-800

-400

(Ne) (Ar) (Xe)

Si Sputtering

Look for “standard” momentum matching effectsExpect big variation with mass, but observe little

Page 41: Regulating Solid State Diffusion in Semiconductor …eseebauer/talks/Ssdiffusion.pdf1 Regulating Solid State Diffusion in Semiconductor Processing Edmund G. Seebauer Department of

41

Chemistry: Substrate Variation

T (K)0 200 400 600 800 1000 1200

E Thre

s(eV)

0

20

40

60

80

Si

Ge

σ (slope) invariant

ETotal (intercept) scales with cohesive energy, melting temp

! Look for bond strength effects

Page 42: Regulating Solid State Diffusion in Semiconductor …eseebauer/talks/Ssdiffusion.pdf1 Regulating Solid State Diffusion in Semiconductor Processing Edmund G. Seebauer Department of

42

Experimental Energy Effects

E (eV)0 20 40 60

D (1

0-10 c

m2 /s

)

0.5

1.0

1.5

2.0

2.5

3.0Ar-Si(111) 900K

Threshold

Determine EThres where D increases, using SHM

Fits use: Dion = A (E1/2 – EThres1/2) + Dthermal

Page 43: Regulating Solid State Diffusion in Semiconductor …eseebauer/talks/Ssdiffusion.pdf1 Regulating Solid State Diffusion in Semiconductor Processing Edmund G. Seebauer Department of

43

E-T Coupling Strength Matches Simulation

T (K)880 920 960 1000 1040

E Thre

s (eV

)

12

14

16

18

20

22

24

Ar-Si

ETotal σσσσ

Sim. 70 to 100 700 Expt. 110 1200

Page 44: Regulating Solid State Diffusion in Semiconductor …eseebauer/talks/Ssdiffusion.pdf1 Regulating Solid State Diffusion in Semiconductor Processing Edmund G. Seebauer Department of

44

Unimportance of Ion Mass Matches Simulation

Atomic Number

0 10 20 30 40 50 60

E Tota

l(eV

)

80

120

160

200

240

σ σσσ

-2400

-2000

-1600

-1200

-800

(Ne) (Ar) (Xe)

Low T (900-1000K)

Observe almost no variations!

Page 45: Regulating Solid State Diffusion in Semiconductor …eseebauer/talks/Ssdiffusion.pdf1 Regulating Solid State Diffusion in Semiconductor Processing Edmund G. Seebauer Department of

45

Apparent Mechanism

! Low E! Long-range interaction! Corrugation flat! Nonlocal momentum transfer

! High E! Short-range interaction! Corrugation rough! Local momentum transfer

! Intermediate E! Medium-range interaction! Corrugation asperities only if

target atom ~0.3 A off site

Page 46: Regulating Solid State Diffusion in Semiconductor …eseebauer/talks/Ssdiffusion.pdf1 Regulating Solid State Diffusion in Semiconductor Processing Edmund G. Seebauer Department of

46

Summary

! New, nonthermal ways (hν, ions) to transport semiconductor atoms have come to light

! Numerous applications in microelectronic processing (RTP, dry etching, ion-assisted deposition) and nanotechnology

! Solid interfaces SHM imaging demonstrated

Page 47: Regulating Solid State Diffusion in Semiconductor …eseebauer/talks/Ssdiffusion.pdf1 Regulating Solid State Diffusion in Semiconductor Processing Edmund G. Seebauer Department of

47

Acknowledgements to:

! Postdocs! Harry Ho Yeung Chan

! Graduate Students! Kapil Dev! Rod Ditchfield! Mike Jung! Diana Llera-Hurlburt! Shih Hwee Tey! Mike Wang