Top Banner
Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References Regular Behaviours with Names On the Rational Fixpoint of Endofunctors on Nominal Sets Stefan Milius, Lutz Schröder, Thorsten Wißmann December 1, 2015 Last update: December 1, 2015 Thorsten Wißmann December 1, 2015 1 / 28
60

Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of...

Apr 19, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

Regular Behaviours with NamesOn the Rational Fixpoint of Endofunctors on Nominal Sets

Stefan Milius, Lutz Schröder, Thorsten Wißmann

December 1, 2015

Last update: December 1, 2015

Thorsten Wißmann December 1, 2015 1 / 28

Page 2: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

Regular Behaviours with NamesOn the Rational Fixpoint of Endofunctors on Nominal Sets

States &Transitions

(Functor-)Coalgebras

Fresh Names,Renaming& Binding

FiniteDescription

Finitely Presentable Objects(orbit-finite in Nom)

+

Thorsten Wißmann December 1, 2015 2 / 28

Page 3: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

Regular Behaviours with Names

On the Rational Fixpoint of Endofunctors on Nominal Sets

States &Transitions

(Functor-)Coalgebras

Fresh Names,Renaming& Binding

FiniteDescription

Finitely Presentable Objects(orbit-finite in Nom)

+

Thorsten Wißmann December 1, 2015 2 / 28

Page 4: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

Regular Behaviours with Names

On the Rational Fixpoint of Endofunctors on Nominal Sets

States &Transitions

(Functor-)Coalgebras

Fresh Names,Renaming& Binding

FiniteDescription

Finitely Presentable Objects(orbit-finite in Nom)

+

Thorsten Wißmann December 1, 2015 2 / 28

Page 5: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

Regular Behaviours with Names

On the Rational Fixpoint of Endofunctors on Nominal Sets

States &Transitions

(Functor-)Coalgebras

Fresh Names,Renaming& Binding

FiniteDescription

Finitely Presentable Objects(orbit-finite in Nom)

+

Thorsten Wißmann December 1, 2015 2 / 28

Page 6: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

Regular Behaviours with Names

On the Rational Fixpoint of Endofunctors on Nominal Sets

States &Transitions

(Functor-)Coalgebras

Fresh Names,Renaming& Binding

FiniteDescription

Finitely Presentable Objects(orbit-finite in Nom)

+

Thorsten Wißmann December 1, 2015 2 / 28

Page 7: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

Regular Behaviours with Names

On the Rational Fixpoint of Endofunctors on Nominal Sets

States &Transitions

(Functor-)Coalgebras

Fresh Names,Renaming& Binding

FiniteDescription

Finitely Presentable Objects(orbit-finite in Nom)

+

Thorsten Wißmann December 1, 2015 2 / 28

Page 8: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

The Framework of Nominal Sets

Support for a Sf(V)

Finite permutations on V

-action · : Sf(V)× X → X

“S ⊆ V supports x ∈ X ”, if for all π ∈ Sf(V)

π fixes S︸ ︷︷ ︸π(v)=v ∀v∈S

=⇒ π fixes x︸ ︷︷ ︸π·x=x

(X , ·) a Nominal Set“·” a Sf(V)-action & every x ∈ X finitely supported

x , y in the same orbit of (X , ·)if there is σ with σ · x = y .

V2 + 1 ∼=

a

b c

Either infinite

(a, b)

(b, a) (c , a)

(a, d)

or singleton

(a b)

(b c)

(ac)

(ab)

(b d)

(b c)

(cad)

π (a b)

Thorsten Wißmann December 1, 2015 3 / 28

Page 9: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

The Framework of Nominal Sets

Support for a Sf(V)

Finite permutations on V

-action · : Sf(V)× X → X

“S ⊆ V supports x ∈ X ”, if for all π ∈ Sf(V)

π fixes S︸ ︷︷ ︸π(v)=v ∀v∈S

=⇒ π fixes x︸ ︷︷ ︸π·x=x

(X , ·) a Nominal Set“·” a Sf(V)-action & every x ∈ X finitely supported

x , y in the same orbit of (X , ·)if there is σ with σ · x = y .

V2 + 1 ∼=

a

b c

Either infinite

(a, b)

(b, a) (c , a)

(a, d)

or singleton

(a b)

(b c)

(ac)

(ab)

(b d)

(b c)

(cad)

π (a b)

Thorsten Wißmann December 1, 2015 3 / 28

Page 10: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

The Framework of Nominal Sets

Support for a Sf(V)

Finite permutations on V

-action · : Sf(V)× X → X

“S ⊆ V supports x ∈ X ”, if for all π ∈ Sf(V)

π fixes S︸ ︷︷ ︸π(v)=v ∀v∈S

=⇒ π fixes x︸ ︷︷ ︸π·x=x

(X , ·) a Nominal Set“·” a Sf(V)-action & every x ∈ X finitely supported

x , y in the same orbit of (X , ·)if there is σ with σ · x = y .

V2 + 1 ∼=

a

b c

Either infinite

(a, b)

(b, a) (c , a)

(a, d)

or singleton

(a b)

(b c)

(ac)

(ab)

(b d)

(b c)

(cad)

π (a b)

Thorsten Wißmann December 1, 2015 3 / 28

Page 11: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

The Framework of Nominal Sets

Support for a Sf(V)

Finite permutations on V

-action · : Sf(V)× X → X

“S ⊆ V supports x ∈ X ”, if for all π ∈ Sf(V)

π fixes S︸ ︷︷ ︸π(v)=v ∀v∈S

=⇒ π fixes x︸ ︷︷ ︸π·x=x

(X , ·) a Nominal Set“·” a Sf(V)-action & every x ∈ X finitely supported

x , y in the same orbit of (X , ·)if there is σ with σ · x = y .

V2 + 1 ∼=

a

b c

Either infinite

(a, b)

(b, a) (c , a)

(a, d)

or singleton

(a b)

(b c)

(ac)

(ab)

(b d)

(b c)

(cad)

π (a b)

Thorsten Wißmann December 1, 2015 3 / 28

Page 12: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

What is it good for?

Instances of regular behaviours with names:Regular λ-trees

LX

Lifting of a Set-functor (Part 1)

= V + V × X + X × X

Regular λ-trees modulo α-equivalence

LαX = V + [V]X + X × X

Regular Nominal Automata

KX = 2× XV × [V]X

Quotient of a lifting (Part 2)

? How to prove them being rational fixpointsof appropriate endofunctors on nominal sets? ?

qX

Thorsten Wißmann December 1, 2015 4 / 28

Page 13: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

What is it good for?

Instances of regular behaviours with names:Regular λ-trees

LX

Lifting of a Set-functor (Part 1)

= V + V × X + X × X

Regular λ-trees modulo α-equivalence

LαX = V + [V]X + X × X

Regular Nominal Automata

KX = 2× XV × [V]X

Quotient of a lifting (Part 2)

? How to prove them being rational fixpointsof appropriate endofunctors on nominal sets? ?

qX

Thorsten Wißmann December 1, 2015 4 / 28

Page 14: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

What is it good for?

Instances of regular behaviours with names:Regular λ-trees

LX

Lifting of a Set-functor (Part 1)

= V + V × X + X × X

Regular λ-trees modulo α-equivalence

LαX = V + [V]X + X × X

Regular Nominal Automata

KX = 2× XV × [V]X

Quotient of a lifting (Part 2)

? How to prove them being rational fixpointsof appropriate endofunctors on nominal sets? ?

qX

Thorsten Wißmann December 1, 2015 4 / 28

Page 15: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

What is it good for?

Instances of regular behaviours with names:Regular λ-trees

LX

Lifting of a Set-functor (Part 1)

= V + V × X + X × X

Regular λ-trees modulo α-equivalence

LαX = V + [V]X + X × X

Regular Nominal Automata

KX = 2× XV × [V]X

Quotient of a lifting (Part 2)

? How to prove them being rational fixpointsof appropriate endofunctors on nominal sets? ?

qX

Thorsten Wißmann December 1, 2015 4 / 28

Page 16: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

Part 1: Localizable Liftings

Thorsten Wißmann December 1, 2015 5 / 28

Page 17: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

Regular Behaviours in Set

. . . and in Nom

If

F : Set→ Set

. . . lifts to . . . F̄ : Nom→ Nom

finite

locallyfinite

arbitrary

%F

νF

orbit-finite

locallyorbit-finite

arbitrary

%F̄

νF̄

6=

?

6=

Conditions?Group action?

Adámek, Milius, Velebil’06; Milius’10

Thorsten Wißmann December 1, 2015 6 / 28

Page 18: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

Regular Behaviours in Set . . . and in Nom

If

F : Set→ Set

. . . lifts to . . .

F̄ : Nom→ Nom

finite

locallyfinite

arbitrary

%F

νF

orbit-finite

locallyorbit-finite

arbitrary

%F̄

νF̄

6=

?

6=

Conditions?Group action?

Adámek, Milius, Velebil’06; Milius’10

Thorsten Wißmann December 1, 2015 6 / 28

Page 19: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

Regular Behaviours in Set . . . and in Nom

If F : Set→ Set . . . lifts to . . . F̄ : Nom→ Nom

finite

locallyfinite

arbitrary

%F

νF

orbit-finite

locallyorbit-finite

arbitrary

%F̄

νF̄

6=

?

6=

Conditions?Group action?

Adámek, Milius, Velebil’06; Milius’10

Thorsten Wißmann December 1, 2015 6 / 28

Page 20: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

Liftings

Sf(V)-action on X

T -algebra structure on X for the monad T = Sf(V)×_

Liftings ⇐⇒ Distributive Laws

SetT SetT

Set Set

U U

F

⇐⇒λ : TF → FTpreserving

monad structure

Thorsten Wißmann December 1, 2015 7 / 28

Page 21: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

Properties of liftings of Sf(V)×_ over F : Set (1)

F̄ Nom-restrictingF̄ maps nominal sets to nominal sets.

ExamplesClosed under finite products, coproducts, composition.For (Y , ·) non-nominal, KX = Y not Nom-restricting.

Thorsten Wißmann December 1, 2015 8 / 28

Page 22: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

Properties of liftings of Sf(V)×_ over F : Set (2)

λ : Sf(V)× F_→ F (Sf(V)×_) localizableFor each W ⊆ V, λ restricts to λ : Sf(W )×F_→ F (Sf(W )×_)

ExamplesClosed under finite products, coproducts, composition,constants.For F = IdSet, λ(π, x)

∼= IdSetT

= (g · π · g−1) not localizable.

Thorsten Wißmann December 1, 2015 9 / 28

Page 23: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

Assumptions

Assumption: F̄ : Nom a localizable lifting, i.e.1 F̄ comes from a Nom-restricting distributive law λ over

F = UF̄D.2 This λ is localizable

ExamplesConstants, Identity.Closed under finite products, coproducts, composition.In particular: Polynomials in NomLX = V + V × X + X × X

For the strength of any finitary F : Set canonically defines alocalizable lifting to Nom

Thorsten Wißmann December 1, 2015 10 / 28

Page 24: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

Assumptions

Assumption: F̄ : Nom a localizable lifting, i.e.1 F̄ comes from a Nom-restricting distributive law λ over

F = UF̄D.2 This λ is localizable

ExamplesConstants, Identity.Closed under finite products, coproducts, composition.In particular: Polynomials in NomLX = V + V × X + X × X

For the strength of any finitary F : Set canonically defines alocalizable lifting to Nom

Thorsten Wißmann December 1, 2015 10 / 28

Page 25: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

LFP in Set vs LFP in Nom

LemmaIf for c : C → F̄C , the underlying c : C → FC is lfp in Set, thenc : C → F̄C is lfp in Nom.

LemmaIf c : C → F̄C , with C orbit-finite, then the underlying c : C → FCis lfp in Set.

Corollaryc : C → F̄C lfp in Nom iff the underlying c : C → FC is lfp in Set.

Thorsten Wißmann December 1, 2015 11 / 28

Page 26: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

LFP in Set vs LFP in Nom

LemmaIf for c : C → F̄C , the underlying c : C → FC is lfp in Set, thenc : C → F̄C is lfp in Nom.

LemmaIf c : C → F̄C , with C orbit-finite, then the underlying c : C → FCis lfp in Set.

Corollaryc : C → F̄C lfp in Nom iff the underlying c : C → FC is lfp in Set.

Thorsten Wißmann December 1, 2015 11 / 28

Page 27: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

LFP in Set vs LFP in Nom

LemmaIf for c : C → F̄C , the underlying c : C → FC is lfp in Set, thenc : C → F̄C is lfp in Nom.

LemmaIf c : C → F̄C , with C orbit-finite, then the underlying c : C → FCis lfp in Set.

Corollaryc : C → F̄C lfp in Nom iff the underlying c : C → FC is lfp in Set.

Thorsten Wißmann December 1, 2015 11 / 28

Page 28: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

(%F , r) from Set to Sf(V)-sets

Lemma(%F , r) carries a canonical group action making r equivariant.

Proof.

Sf(V)× %F id×r−−−→ Sf(V)× F (%F )λ%F−−→ F (Sf(V)× %F )

is lfp because λ is localizable.νF has canonical Sf(V)-set structure (Bartels’04; Plotkin, Turi’97)This map is just the restriction to %F .

Thorsten Wißmann December 1, 2015 12 / 28

Page 29: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

(%F , r) from Set to Sf(V)-sets

Lemma(%F , r) carries a canonical group action making r equivariant.

Proof.

Sf(V)× %F id×r−−−→ Sf(V)× F (%F )λ%F−−→ F (Sf(V)× %F )

is lfp because λ is localizable.νF has canonical Sf(V)-set structure (Bartels’04; Plotkin, Turi’97)This map is just the restriction to %F .

Thorsten Wißmann December 1, 2015 12 / 28

Page 30: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

Coinduction

Definition: Coalgebra iteration

For c : C → HC put c(n+1) ≡(C HnC Hn+1Cc(n) Hnc )

.

LemmaLet H : Set be finitary. If for H-coalgebras (C , c) and (D, d)

X C HnC

D HnD Hn1

p1

p2

c(n)

Hn!

d (n) Hn!

commutes for all n < ω, then c† · p1 = d† · p2.

Thorsten Wißmann December 1, 2015 13 / 28

Page 31: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

Finite support for %F

LemmaAny t ∈ %F is supported by

s(t) =⋃n≥0

supp(r (n)(t)) where r (n) : %F → F n(%F )

and where the support of r (n)(t) is taken in F̄ nD(%F ).

LemmaFor any t ∈ %F , s(t) is finite.

Thorsten Wißmann December 1, 2015 14 / 28

Page 32: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

Finite support for %F

LemmaAny t ∈ %F is supported by

s(t) =⋃n≥0

supp(r (n)(t)) where r (n) : %F → F n(%F )

and where the support of r (n)(t) is taken in F̄ nD(%F ).

LemmaFor any t ∈ %F , s(t) is finite.

Thorsten Wißmann December 1, 2015 14 / 28

Page 33: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

Universal Property

TheoremThe lifted (%F , r) is the rational fixpoint of F̄ .

Proof.Consider c : C → F̄C with C orbit-finite.

1 c is lfp in Set, then c† : (C , c)→ (%F , r) in Set2 Equivariant j : (%F , r) � (νF , τ)

Not in Nomin Sf(V)-sets3 Equivariant j · c† : (C , c)→ (νF , τ) in Sf(V)-sets4 c† : (C , c)→ (%F , r) equivariant

Thorsten Wißmann December 1, 2015 15 / 28

Page 34: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

Universal Property

TheoremThe lifted (%F , r) is the rational fixpoint of F̄ .

Proof.Consider c : C → F̄C with C orbit-finite.

1 c is lfp in Set, then c† : (C , c)→ (%F , r) in Set2 Equivariant j : (%F , r) � (νF , τ)

Not in Nomin Sf(V)-sets3 Equivariant j · c† : (C , c)→ (νF , τ) in Sf(V)-sets4 c† : (C , c)→ (%F , r) equivariant

Thorsten Wißmann December 1, 2015 15 / 28

Page 35: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

Examples

λ-trees LX = V + V × X + X × X

%L̄ in Nom = rational λ-trees (not modulo α-equivalence)νL in Set = all λ-treesνL̄ in Nom = λ-trees involving finitely many variables

Kurz, Petrisan, Severi, de Vries’13

Canonical Liftings F̄ : Nom of F : Set%F̄ in Nom = %F with discrete nominal structure

Unordered Trees: FX = B(X ) + VνF = unordered trees with some leaves labelled in V%F = those with finitely many subtrees%F̄ = those with renaming of the leaves

Thorsten Wißmann December 1, 2015 16 / 28

Page 36: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

Examples

λ-trees LX = V + V × X + X × X

%L̄ in Nom = rational λ-trees (not modulo α-equivalence)νL in Set = all λ-treesνL̄ in Nom = λ-trees involving finitely many variables

Kurz, Petrisan, Severi, de Vries’13

Canonical Liftings F̄ : Nom of F : Set%F̄ in Nom = %F with discrete nominal structure

Unordered Trees: FX = B(X ) + VνF = unordered trees with some leaves labelled in V%F = those with finitely many subtrees%F̄ = those with renaming of the leaves

Thorsten Wißmann December 1, 2015 16 / 28

Page 37: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

Examples

λ-trees LX = V + V × X + X × X

%L̄ in Nom = rational λ-trees (not modulo α-equivalence)νL in Set = all λ-treesνL̄ in Nom = λ-trees involving finitely many variables

Kurz, Petrisan, Severi, de Vries’13

Canonical Liftings F̄ : Nom of F : Set%F̄ in Nom = %F with discrete nominal structure

Unordered Trees: FX = B(X ) + VνF = unordered trees with some leaves labelled in V%F = those with finitely many subtrees%F̄ = those with renaming of the leaves

Thorsten Wißmann December 1, 2015 16 / 28

Page 38: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

Part 2: Quotients of Nom-functors

Thorsten Wißmann December 1, 2015 17 / 28

Page 39: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

Regular Behaviours in Nom

. . . and their quotients

F : Nom→ Nom

qH : Nom→ Nom

orbit-finite

locallyorbit-finite

arbitrary

%F

νF

orbit-finite

locallyorbit-finite

arbitrary

%H

νH

?

?

6=

Conditions?Group action?

Thorsten Wißmann December 1, 2015 18 / 28

Page 40: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

Regular Behaviours in Nom . . . and their quotients

F : Nom→ Nom

q

H : Nom→ Nom

orbit-finite

locallyorbit-finite

arbitrary

%F

νF

orbit-finite

locallyorbit-finite

arbitrary

%H

νH

?

?

6=

Conditions?Group action?

Thorsten Wißmann December 1, 2015 18 / 28

Page 41: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

Regular Behaviours in Nom . . . and their quotients

F : Nom→ Nomq

H : Nom→ Nom

orbit-finite

locallyorbit-finite

arbitrary

%F

νF

orbit-finite

locallyorbit-finite

arbitrary

%H

νH

?

?

6=

Conditions?Group action?

Thorsten Wißmann December 1, 2015 18 / 28

Page 42: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

Quotients of coalgebras

F : Nomq� H : Nom

Definition: QuotientA quotient from a : A→ FA to c : C → HC :

some h : A � C withA FA HA

C HC

a

h

qA

Hhc

TheoremIf every orbit-finite H-coalgebra is a quotient

How to prove that?

of an orbit-finiteF -coalgebra, then %H is a quotient of %F .

Proof.Epi-laws for jointly-epic the families.

Thorsten Wißmann December 1, 2015 19 / 28

Page 43: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

Quotients of coalgebras

F : Nomq� H : Nom

Definition: QuotientA quotient from a : A→ FA to c : C → HC :

some h : A � C withA FA HA

C HC

a

h

qA

Hhc

TheoremIf every orbit-finite H-coalgebra is a quotient

How to prove that?

of an orbit-finiteF -coalgebra, then %H is a quotient of %F .

Proof.Epi-laws for jointly-epic the families.

Thorsten Wißmann December 1, 2015 19 / 28

Page 44: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

Quotients of coalgebras

F : Nomq� H : Nom

Definition: QuotientA quotient from a : A→ FA to c : C → HC :

some h : A � C withA FA HA

C HC

a

h

qA

Hhc

TheoremIf every orbit-finite H-coalgebra is a quotient

How to prove that?

of an orbit-finiteF -coalgebra, then %H is a quotient of %F .

Proof.Epi-laws for jointly-epic the families.

Thorsten Wißmann December 1, 2015 19 / 28

Page 45: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

Quotients of coalgebras

F : Nomq� H : Nom

Definition: QuotientA quotient from a : A→ FA to c : C → HC :

some h : A � C withA FA HA

C HC

a

h

qA

Hhc

TheoremIf every orbit-finite H-coalgebra is a quotient

How to prove that?

of an orbit-finiteF -coalgebra, then %H is a quotient of %F .

Proof.Epi-laws for jointly-epic the families.

Thorsten Wißmann December 1, 2015 19 / 28

Page 46: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

Constructing a quotient backwards

Definition

X < Y = {(x , y) ∈ X × Y | supp(x) ⊆ supp(y)}

Substrength of a functor F : sX ,Y : FX < Y → F (X < Y ),

with F outl ·sX ,Y = outl (not necessarily natural).

Construction for c : C → HC

B = maxx∈C| supp(x)| + max

x∈Cminy∈FC

qC (y)=c(x)

| supp(y)|.

W ⊆ VB of tuples with distinct components.F -Coalgebra on C <W .

Thorsten Wißmann December 1, 2015 20 / 28

Page 47: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

Constructing a quotient backwards

Definition

X < Y = {(x , y) ∈ X × Y | supp(x) ⊆ supp(y)}

Substrength of a functor F : sX ,Y : FX < Y → F (X < Y ),

with F outl ·sX ,Y = outl (not necessarily natural).

Construction for c : C → HC

B = maxx∈C| supp(x)| + max

x∈Cminy∈FC

qC (y)=c(x)

| supp(y)|.

W ⊆ VB of tuples with distinct components.F -Coalgebra on C <W .

Thorsten Wißmann December 1, 2015 20 / 28

Page 48: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

Something like “projective objects” in Nom

Definition: strongly supportedSome x ∈ X is strongly supported iff

π · x = x =⇒ ∀v ∈ supp(x) : π(v) = v

ExamplesW is strongly supported. Pf(V) not.

Proposition (Mentioned already in Kurz, Petrisan, Velebil’10)X ,Y nominal sets, X strongly supported, O ⊆ X a choice of oneelement from each orbit. Then any map f0 : O → Y with

supp(f0(x)) ⊆ supp(x)

extends uniquely to an equivariant f : X → Y .

Thorsten Wißmann December 1, 2015 21 / 28

Page 49: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

Applied to our C < W

LemmaThere is an equivariant map f : C <W → FC such that:

C <W FC

C HC

f

outl qC

c

Propositionc : C → HC is via outl a quotient of the orbit-finite

C <W FC <W F (C <W )f̄ sC ,W

(where f̄ (x ,w) = (f (x),w)).

CorollaryIf a finitary F : Nom has a substrength, and q : F � H, then%F � %H (applying q level-wise).

Thorsten Wißmann December 1, 2015 22 / 28

Page 50: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

Applied to our C < W

LemmaThere is an equivariant map f : C <W → FC such that:

C <W FC

C HC

f

outl qC

c

Propositionc : C → HC is via outl a quotient of the orbit-finite

C <W FC <W F (C <W )f̄ sC ,W

(where f̄ (x ,w) = (f (x),w)).

CorollaryIf a finitary F : Nom has a substrength, and q : F � H, then%F � %H (applying q level-wise).

Thorsten Wißmann December 1, 2015 22 / 28

Page 51: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

Applied to our C < W

LemmaThere is an equivariant map f : C <W → FC such that:

C <W FC

C HC

f

outl qC

c

Propositionc : C → HC is via outl a quotient of the orbit-finite

C <W FC <W F (C <W )f̄ sC ,W

(where f̄ (x ,w) = (f (x),w)).

CorollaryIf a finitary F : Nom has a substrength, and q : F � H, then%F � %H (applying q level-wise).

Thorsten Wißmann December 1, 2015 22 / 28

Page 52: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

Applicability

The only restricting requirement: F having a sub-strengthH and q: arbitrary

Lemma1 Identity and constant functors have a sub-strength.2 The class of functors with a sub-strength is closed under finite

products, arbitrary coproducts, and functor composition.

Thorsten Wißmann December 1, 2015 23 / 28

Page 53: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

Example: λ-trees modulo α-equivalence

LX = V + V × X + X × Xq

LαX = V + [V]X + X × X

Definition: Rational α-equivalence class of λ-trees= contains some rational λ-tree

λ-trees%L = rational λ-treesνL = λ-trees with finitely many variables involved

λ-trees modulo α-equivalence%Lα = rational λ-trees modulo α-equivalenceνLα = λ-trees with finitely many free variables but possiblyinfinitely many bound variables

Kurz, Petrisan, Severi, de Vries’13

qX

/

Thorsten Wißmann December 1, 2015 24 / 28

Page 54: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

Example: Exponentiation

FX = V × X ×∐

n∈N(V × X )nq

(_)V

Definition

q̄X (a, d ,(v1, x1), . . . , (vn, xn), b)

=

{xi if i = min1≤j≤n(vj = b) exists(a b) · d otherwise.

Theorem: q component-wise surjective

For some f ∈ XV , {a1, . . . , an} = supp(f ) and a ∈ V \ supp(f ), wehave

q̄X (a, f (a), (a1, f (a1)), . . . , (an, f (an)), b) = f (b) for all b ∈ V.

Thorsten Wißmann December 1, 2015 25 / 28

Page 55: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

Example: Automata

Various Kinds of Nominal AutomataFX = 2× XV

KX = 2× XV × [V]X

NX = 2× Pf(XV)× Pf([V]X )

Thorsten Wißmann December 1, 2015 26 / 28

Page 56: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

Main Results

Nominal Sets:finitely supportedSf(V)-action

Rational Fixpoint:orbit-finiteBehaviours

Final Coalgebra:Infinite

BehavioursEE ♥♥

If F̄ : Nom is localizable lifting of F : Setthen %F̄ is %F with canonical Sf(V)-action

If G : Nom is a quotient H : Nom with asubstrength then %G is a quotient of %H

EEfails

Thorsten Wißmann December 1, 2015 27 / 28

Page 57: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

Main Results

Nominal Sets:finitely supportedSf(V)-action

Rational Fixpoint:orbit-finiteBehaviours

Final Coalgebra:Infinite

BehavioursEE ♥♥

If F̄ : Nom is localizable lifting of F : Setthen %F̄ is %F with canonical Sf(V)-action

If G : Nom is a quotient H : Nom with asubstrength then %G is a quotient of %H

EEfails

Thorsten Wißmann December 1, 2015 27 / 28

Page 58: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

Open Questions

About Localizable LiftingsIs every non-localizable Lifting isomorphic to localizable one?If not, are there applications of non-localizable liftings?

About SubstrengthsRational Fixpoint of quotients of functors without substrength?Are there applications?

Thorsten Wißmann December 1, 2015 28 / 28

Page 59: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

Jiří Adámek, Stefan Milius, Jiří Velebil. “IterativeAlgebras at Work”. In: Mathematical Structures inComputer Science 16.6 (2006), pp. 1085–1131.DOI: 10.1017/S0960129506005706.

Falk Bartels. On Generalised Coinduction andProbabilistic Specification Formats: DistributiveLaws in Coalgebraic Modelling. 2004.

Alexander Kurz, Daniela Petrisan, Paula Severi,Fer-Jan de Vries. “Nominal Coalgebraic Data Typeswith Applications to Lambda Calculus”. In: LogicalMethods in Computer Science 9.4 (2013).

Alexander Kurz, Daniela Petrisan, Jiri Velebil.“Algebraic Theories over Nominal Sets”. In: CoRRabs/1006.3027 (2010).

Thorsten Wißmann December 1, 2015 ∞ / 28

Page 60: Regular Behaviours with Names - On the Rational Fixpoint ...re06... · Thorsten Wißmann December 1, 2015 1 / 28. IntroductionPart 1: Localizable LiftingsPart 2: Quotients of Nom-functorsSummaryReferences

Introduction Part 1: Localizable Liftings Part 2: Quotients of Nom-functors Summary References

Stefan Milius. “A Sound and Complete Calculus forfinite Stream Circuits”. In: Logic in ComputerScience, LICS 2010. IEEE Computer Society. 2010,pp. 449–458.

Gordon Plotkin, Daniele Turi. “Towards aMathematical Operational Semantics”. In: Logic inComputer Science, LICS 1997. IEEE, 1997,pp. 280–291.

Thorsten Wißmann December 1, 2015 ∞ / 28