Top Banner
Refrigeration and Refrigeration and cryogenics cryogenics Zakład Kriogeniki i Technologii Gazowych Zakład Kriogeniki i Technologii Gazowych Dr hab. inż. Maciej Chorowski, prof. PWr Dr hab. inż. Maciej Chorowski, prof. PWr
55
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Refrigeration and cryogenics

Refrigeration and Refrigeration and cryogenicscryogenics

Zakład Kriogeniki i Technologii GazowychZakład Kriogeniki i Technologii Gazowych

Dr hab. inż. Maciej Chorowski, prof. PWrDr hab. inż. Maciej Chorowski, prof. PWr

Page 2: Refrigeration and cryogenics

Methods of lowering the Methods of lowering the temperaturetemperature

Isentropic expansionIsentropic expansion Joule-Thomson expansionJoule-Thomson expansion Free expansion – gas exhaust Free expansion – gas exhaust

Page 3: Refrigeration and cryogenics

Gas isentropic expansionGas isentropic expansion with with external workexternal work

K

p 1 p 2

h 1

h 2

1

2

T

S

2'

Page 4: Refrigeration and cryogenics

Gas isentropic expansionGas isentropic expansion with with external workexternal work

Drop of the gas temperature:Drop of the gas temperature:

Entropy is a function of pressure and temperatureEntropy is a function of pressure and temperature

S= S(p, T)S= S(p, T)

Total differential must be equal to zero:Total differential must be equal to zero:

Differential effect of isentropic expansion Differential effect of isentropic expansion ss shows the shows the change in temperature with respect to the change of change in temperature with respect to the change of pressure:pressure:

0

dpp

SdT

T

SdS

Tp

p

T

S

s

TS

pS

dp

dT

Page 5: Refrigeration and cryogenics

Gas isentropic expansionGas isentropic expansion with with external workexternal work

We know from thermodynamicsWe know from thermodynamics

We getWe get

where: where: is coefficient of cubical expansionis coefficient of cubical expansion

pTT

v

p

S

T

cp

T

S

p

cp

T

cp

Tv

T

dp

dT p

S

s

pT

1

Page 6: Refrigeration and cryogenics

Gas isentropic expansionGas isentropic expansion with with external workexternal work

For the ideal gas:For the ideal gas:

After integrationAfter integration

p

Ts

1

1

1

2

1

2

p

p

T

T

Page 7: Refrigeration and cryogenics

Piston expanderPiston expander

G A Z G A Z

p 1, T 1, h 1 p 2, T 2, h 2

1

2

3 4

5

6p 1 p 2

Page 8: Refrigeration and cryogenics

Cryogenic turboexpanderCryogenic turboexpander

G A Z

G A Z

p 1, T 1, h 1

p 2

T 2

h 2

Page 9: Refrigeration and cryogenics

Isenthalpic Isenthalpic – Joule-Thomson - – Joule-Thomson - expansionexpansion

When gas, vapour or liquid expands adiabatically in an open system without doing any external work, and there is no increment in velocity on the system reference surface, the process is referred to as throttle expansion.

In practice, this process is implemented by installing in the gas stream some hydraulic resistance such as throttling valve, gate, calibrated orifice, capillary, and so on.

p 1

1 2

w 1 w 2

p

p 2

21121221

2221 2

1 lhhzzgwwq

Page 10: Refrigeration and cryogenics

Isenthalpic Isenthalpic – Joule-Thomson - – Joule-Thomson - expansionexpansion

K

p 1 p 2

h

h '

1

2

T

S

T 1

T 2

T

Page 11: Refrigeration and cryogenics

Temperature drop inTemperature drop in Isenthalpic Isenthalpic – Joule-Thomson - – Joule-Thomson - expansionexpansion

Enthalpy is a function of pressure and temperature:Enthalpy is a function of pressure and temperature:

h= h(p, T)h= h(p, T)

Total differential must be equal to zero:Total differential must be equal to zero:

Differential throttling effect μDifferential throttling effect μhh::

Isenthalpic Isenthalpic – Joule-Thomson - – Joule-Thomson - expansionexpansion

dTt

hdp

p

hdh

pT

p

T

h

h

T

h

p

h

dp

dT

Page 12: Refrigeration and cryogenics

Isenthalpic Isenthalpic – Joule-Thomson - – Joule-Thomson - expansionexpansion

p, MPa

100,0

50,0

25,0

10,0

5,0

1,0

0,5

3

2,5

T, K5 10 25 50 100 250 500 1000

H e

H 2

N e

Ar

N 2

pow ietrze

Page 13: Refrigeration and cryogenics

Isenthalpic Isenthalpic – Joule-Thomson - – Joule-Thomson - expansionexpansion

GasGas Maximal inversion temperature, KMaximal inversion temperature, K

eksperymenteksperyment z równania van der z równania van der WalsaWalsa

ArgonArgon 765765 ----------

AzotAzot 604604 837837

Hel – 3 Hel – 3 3939 ----------

Hel – 4 Hel – 4 4646 34,334,3

NeonNeon 230230 ----------

PowietrzePowietrze 650650 895895

MetanMetan 953953 ----------

TlenTlen 771771 10901090

WodórWodór 204,6204,6 223223

Page 14: Refrigeration and cryogenics

Free expansion (exhaust)Free expansion (exhaust)

p f

p f

p f

p f

T 0,p 0

V 0

V 1

V 2

Page 15: Refrigeration and cryogenics

1.1. Adiabatic processAdiabatic process

2.2. Non equilibrium process – gas Non equilibrium process – gas pressure and external pressure are pressure and external pressure are not the same not the same

3.3. Constant external pressure (pConstant external pressure (pff= = const.)const.)

4.4. External work against pressure pExternal work against pressure pff

Free expansion (exhaust)Free expansion (exhaust)

Page 16: Refrigeration and cryogenics

Final gas temperature:Final gas temperature:I Law of ThermodynamicsI Law of Thermodynamics

where:where:uu00, u, uf f – initial and final gas internal – initial and final gas internal

energyenergyvv00, v, vf f – initial and final gas volume– initial and final gas volume

Free expansion (exhaust)Free expansion (exhaust)

)( 00 vvpuu fff

Page 17: Refrigeration and cryogenics

For ideal gas:For ideal gas:

We get:We get:

Free expansion (exhaust)Free expansion (exhaust)

)( 00 TTcuu fvf

000 RTvp

fff RTvp

1/ Rcv

1

1

00 p

pTTT f

of

1/1 0

0

kpp

k

T

T

ff

Page 18: Refrigeration and cryogenics

Comparison of the Comparison of the processes for airprocesses for air

Page 19: Refrigeration and cryogenics

Cryogenic gas Cryogenic gas refrigeratorsrefrigerators

Page 20: Refrigeration and cryogenics

Heat exchangersHeat exchangers

Recuperative Regenerative

Page 21: Refrigeration and cryogenics

Comparison of coolersComparison of coolers

Page 22: Refrigeration and cryogenics

Refrigerators with recuperative Refrigerators with recuperative heat exchangersheat exchangers

Joule – ThomsonJoule – Thomson refrigeratorsrefrigerators

Page 23: Refrigeration and cryogenics

ExampleExampless of of miniature miniature Joule- Joule-Thomson refrigeratorThomson refrigerator

Page 24: Refrigeration and cryogenics

Claude refrigeratorsClaude refrigerators

Page 25: Refrigeration and cryogenics

Stirling coolersStirling coolers

Page 26: Refrigeration and cryogenics
Page 27: Refrigeration and cryogenics

Stirling coolerStirling cooler

Page 28: Refrigeration and cryogenics

Stirling coolerStirling cooler

Stirling cycle is realized Stirling cycle is realized in four steps : in four steps :

1.1. Step 1-2: Isothermal Step 1-2: Isothermal gas compression in gas compression in warm chamberwarm chamber

2.2. Step 2-3: Isochoric Step 2-3: Isochoric gas cooling in gas cooling in regenerator regenerator

3.3. Step 3-4:Isothermal Step 3-4:Isothermal gas expansion with gas expansion with external workexternal work

4.4. Step 4-1: Isochoric Step 4-1: Isochoric gas heating in gas heating in regeneratorregenerator

R

R

R

R

TT0q H2O

q

1

2

3

4

p

V

1

2

3

4

p m ax

p m in

V2 V1

T0

T

qH2O

q

T

T0

qH2O

q

T

V1

V2

12

3 4

s

In Stirling refrigerator a cycle In Stirling refrigerator a cycle consists of two isotherms and consists of two isotherms and two isobarstwo isobars

Page 29: Refrigeration and cryogenics

Stirling split coolerStirling split cooler

Page 30: Refrigeration and cryogenics

Stirling cooler with Stirling cooler with linear motorlinear motor

Page 31: Refrigeration and cryogenics

Efficiency of Stirling cooler Efficiency of Stirling cooler filled with ideal gasfilled with ideal gas

TT

T

ll

q

ecStr

0

1

2lnd2

1v

vRT

v

vRTl o

v

v

oc Work of isothermal compression

2

1lnd1

2v

vRT

v

vRTl

v

v

e Work of isothermal expansion

1

2lnv

vRTq

Heat of isothermal expansion

Page 32: Refrigeration and cryogenics

Stirling cooler configuration:Stirling cooler configuration:

Page 33: Refrigeration and cryogenics

Stirling cooler used for air liquefact-ion

Page 34: Refrigeration and cryogenics

Stirling cooler used for air Stirling cooler used for air liquefactionliquefaction

Page 35: Refrigeration and cryogenics

Two stage Stirling Two stage Stirling refrigeratorrefrigerator

Page 36: Refrigeration and cryogenics

Gifforda – McMahon coolerGifforda – McMahon cooler

Page 37: Refrigeration and cryogenics

Four steps of McMahon cycle:Four steps of McMahon cycle:

1.1. Filling . Filling .

2.2. Gas displacement Gas displacement

3.3. Free exhaust of the gas Free exhaust of the gas

4.4. Discharge of cold chamberDischarge of cold chamber

Efficiency of McMahon coolerEfficiency of McMahon cooler::

Gifforda – McMahon coolerGifforda – McMahon cooler

2121

21

/ln/

1/

ppTppT

ppT

oMG

Page 38: Refrigeration and cryogenics

McMahon refrigeratorMcMahon refrigerator

Page 39: Refrigeration and cryogenics

Combination of McMahon Combination of McMahon and J-T cooler, 250 mW at and J-T cooler, 250 mW at

2,5 K2,5 K

Page 40: Refrigeration and cryogenics

Pulse tube – free exhaustPulse tube – free exhaust

p f

p f

p f

p f

T 0,p 0

V 0

V 1

V 2

Page 41: Refrigeration and cryogenics

Scheme of pulse tube Scheme of pulse tube coolercooler

Page 42: Refrigeration and cryogenics

Development of pulse tube Development of pulse tube coolerscoolers

Gifford, 1963, rather curiosity that efficient cooler

Kittel, Radebaugh, 1983 orifice pulse tube

Dr. Zhu et. al., 1994, multiply by-pass pulse tube

Page 43: Refrigeration and cryogenics

Comparison of Stirling and Comparison of Stirling and orifice pulse tube coolerorifice pulse tube cooler

Page 44: Refrigeration and cryogenics

Pulse tube cooler for 77 K Pulse tube cooler for 77 K applicationsapplications

Weight:2.4 kgDimensions (l x w x h):11.4 x 11.4 x 22 cmCapacity:2.5W @ 65KUltimate low temperature:35KInput power2kW

Page 45: Refrigeration and cryogenics

Pulse tubePulse tube

Page 46: Refrigeration and cryogenics

Two stage pulse tubeTwo stage pulse tube

Page 47: Refrigeration and cryogenics

Pulse tube configurationPulse tube configuration

Page 48: Refrigeration and cryogenics

Adiabatic demagnetization Adiabatic demagnetization of paramagneticof paramagnetic

Page 49: Refrigeration and cryogenics

Paramagnetic saltsParamagnetic salts

Page 50: Refrigeration and cryogenics

Magnetic coolersMagnetic coolers

Page 51: Refrigeration and cryogenics

Magnetic coolerMagnetic cooler

Page 52: Refrigeration and cryogenics

Magnetic cooler with Magnetic cooler with moving paramagneticmoving paramagnetic

Page 53: Refrigeration and cryogenics

Three stage magnetic Three stage magnetic cooler with magnetic cooler with magnetic

regeneratorregenerator

Ceramic magnetic regenerator material Gd2O2S with an average diameter of 0.35 mm for G-M and pulse tube cryocoolers.

Page 54: Refrigeration and cryogenics

Cooler efficiency at 80 KCooler efficiency at 80 K

Page 55: Refrigeration and cryogenics

„„Family” of cryocoolersFamily” of cryocoolers