Top Banner
Refinement of Some Partition Inequalities James Mc Laughlin West Chester University [email protected] http://math.wcupa.edu/mclaughlin/ West Coast Number Theory Pacific Grove December 18, 2015
38

Refinement of Some Partition Inequalities Partitions, The Partition Counting Function Restricted Partition Functions Ferrers Diagram, Durfee Square Partition Generating Functions Partition

Mar 14, 2018

Download

Documents

halien
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Refinement of Some Partition Inequalities Partitions, The Partition Counting Function Restricted Partition Functions Ferrers Diagram, Durfee Square Partition Generating Functions Partition

Refinement of Some Partition Inequalities

James Mc Laughlin

West Chester [email protected]

http://math.wcupa.edu/∼mclaughlin/

West Coast Number TheoryPacific Grove

December 18, 2015

Page 2: Refinement of Some Partition Inequalities Partitions, The Partition Counting Function Restricted Partition Functions Ferrers Diagram, Durfee Square Partition Generating Functions Partition

Outline

q-series NotationInteger Partitions, The Partition Counting FunctionRestricted Partition FunctionsFerrers Diagram, Durfee SquarePartition Generating FunctionsPartition InequalitiesPartition Generating Functions that Track the Number ofPartsSome ExperimentationResultsConcluding Remarks

Page 3: Refinement of Some Partition Inequalities Partitions, The Partition Counting Function Restricted Partition Functions Ferrers Diagram, Durfee Square Partition Generating Functions Partition

q-series Notation

q-products: (a;q)0 := 1 and for n ≥ 1,

(a;q)n := (1− a)(1− aq) · · · (1− aqn−1)

(q;q)n := (1− q)(1− q2) · · · (1− qn) (∗)(a1, . . . ,aj ;q)n := (a1;q)n · · · (aj ;q)n

(a;q)∞ := (1− a)(1− aq)(1− aq2) · · ·(a1, . . . ,aj ;q)∞ := (a1;q)∞ · · · (aj ;q)∞

The q-binomial theorem: if |z|, |q| < 1, then

∞∑n=0

(a;q)n

(q;q)nzn =

(az;q)∞(z;q)∞

. (1)

Page 4: Refinement of Some Partition Inequalities Partitions, The Partition Counting Function Restricted Partition Functions Ferrers Diagram, Durfee Square Partition Generating Functions Partition

Special Cases of the q-binomial theorem

Special Cases of the q-binomial theorem:

∞∑n=0

zn

(q;q)n=

1(z;q)∞

, |z| < 1, |q| < 1. (2)

∞∑n=0

(−a)nqn(n−1)/2

(q;q)n= (a;q)∞, |q| < 1. (3)

Page 5: Refinement of Some Partition Inequalities Partitions, The Partition Counting Function Restricted Partition Functions Ferrers Diagram, Durfee Square Partition Generating Functions Partition

Integer Partitions

Definition: A partition of a positive integer n is a way of writingn as a sum of positive integers, where order does not matter.

Example. The partitions of 5 are

54 + 13 + 23 + 1 + 12 + 2 + 12 + 1 + 1 + 11 + 1 + 1 + 1 + 1

The summands of a partition are called parts of the partition.

The number of partitions of n is given by the partition functionp(n).For example, p(5) = 7.

Page 6: Refinement of Some Partition Inequalities Partitions, The Partition Counting Function Restricted Partition Functions Ferrers Diagram, Durfee Square Partition Generating Functions Partition

Restricted Partition Functions, I

Some well known examples of restricted partition functions arepO(n), the number of partitions of n into odd parts, and pD(n),the number of partitions of n into distinct parts.

pO(5) = 3 (5, 3 + 1 + 1, 1 + 1 + 1 + 1 + 1),pD(5) = 3 (5, 4 + 1, 3 + 2).

(PO(n) = PD(n), ∀n ∈ N)

Page 7: Refinement of Some Partition Inequalities Partitions, The Partition Counting Function Restricted Partition Functions Ferrers Diagram, Durfee Square Partition Generating Functions Partition

Restricted Partition Functions, IILet p2,3,5(n) denote the number of partitions of n into parts≡ 2,3( mod 5), andP∗(n) denote the number of partitions of n where each partfrom 1 to the largest part occurs at least twice.

p2,3,5(10) = 4 2 + 2 + 2 + 2 + 23 + 3 + 2 + 27 + 38 + 2

P∗(10) = 4 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 12 + 2 + 1 + 1 + 1 + 1 + 1 + 12 + 2 + 2 + 1 + 1 + 1 + 12 + 2 + 2 + 2 + 1 + 1

(P2,3,5(n) = P∗(n), ∀n ∈ N)

Page 8: Refinement of Some Partition Inequalities Partitions, The Partition Counting Function Restricted Partition Functions Ferrers Diagram, Durfee Square Partition Generating Functions Partition

Ferrers Diagram, Durfee Square

Page 9: Refinement of Some Partition Inequalities Partitions, The Partition Counting Function Restricted Partition Functions Ferrers Diagram, Durfee Square Partition Generating Functions Partition

Partition Generating Functions, ILet S be any set of positive integers, finite or infinite. Then thegenerating function for pS(n), the number of partitions of thepositive integer n with parts from S is

∞∑n=0

pS(n)qn =1∏

ai∈S 1− qai

= (1 + qa1 + q2a1 + q3a1 + . . . )

× (1 + qa2 + q2a2 + q3a2 + . . . )

× (1 + qa3 + q2a3 + q3a3 + . . . ) . . .

The generating function for p∗S(n), the number of partitions ofthe positive integer n with distinct parts from S is

∞∑n=0

p∗S(n)qn =

∏ai∈S

1 + qai

= (1 + qa1)(1 + qa2)(1 + qa3) . . .

Page 10: Refinement of Some Partition Inequalities Partitions, The Partition Counting Function Restricted Partition Functions Ferrers Diagram, Durfee Square Partition Generating Functions Partition

Partition Generating Functions, II

Recall that p(n) is the number of (unrestricted) partitions of n.

∞∑n=0

p(n)qn =1∏∞

k=1 1− qk =1

(q;q)∞

=∞∑

k=0

qk

(q;q)k

=∞∑

k=0

qk2

(q;q)2k

= 1 +∞∑

k=1

qk

(qk ;q)∞= 1 +

1(q;q)∞

∞∑k=1

(q;q)k−1qk

Page 11: Refinement of Some Partition Inequalities Partitions, The Partition Counting Function Restricted Partition Functions Ferrers Diagram, Durfee Square Partition Generating Functions Partition

Partition Generating Functions, III

Recall that pD(n) is the number of partitions of n into distinctpositive integers.

∞∑n=0

pD(n)qn =∞∏

k=1

(1 + qk ) = (−q;q)∞

= (1 + q)(1 + q2)(1 + q3) . . .

Page 12: Refinement of Some Partition Inequalities Partitions, The Partition Counting Function Restricted Partition Functions Ferrers Diagram, Durfee Square Partition Generating Functions Partition

Partition Generating Functions, IV

Recall that p2,3,5(n) denote the number of partitions of n intoparts ≡ 2,3( mod 5).

∞∑n=0

p2,3,5(n)qn

=1

(1− q2)(1− q3)(1− q7)(1− q8)(1− q12)(1− q13) . . .

=1

(q2;q5)∞(q3;q5)∞=

1(q2,q3;q5)∞

Page 13: Refinement of Some Partition Inequalities Partitions, The Partition Counting Function Restricted Partition Functions Ferrers Diagram, Durfee Square Partition Generating Functions Partition

Partition Inequalities, I

Fact: For each positive integer n,

p1,4,5(n)− p2,3,5(n) ≥ 0.

Alternatively, if the sequence {cn} is defined by

∞∑n=0

cnqn =1

(q,q4;q5)∞− 1

(q2,q3;q5)∞,

then cn ≥ 0,∀n ≥ 0.

Page 14: Refinement of Some Partition Inequalities Partitions, The Partition Counting Function Restricted Partition Functions Ferrers Diagram, Durfee Square Partition Generating Functions Partition

Partition Inequalities, II

Proof.By the Rogers-Ramanujan identities,

1(q,q4;q5)∞

− 1(q2,q3;q5)∞

=∞∑

k=0

qk2

(q;q)k−∞∑

k=0

qk2+k

(q;q)k

=∞∑

k=1

qk2(1− qk )

(q;q)k

=∞∑

k=1

qk2

(q;q)k−1

Page 15: Refinement of Some Partition Inequalities Partitions, The Partition Counting Function Restricted Partition Functions Ferrers Diagram, Durfee Square Partition Generating Functions Partition

Partition Inequalities, Variations and Extensions, I

Theorem (Berkovich and Garvan, 2005)

Suppose L > 0, and 1 < r < m − 1. If the sequence {en} isdefined by

∞∑n=0

enqn =1

(q,qm−1;qm)L− 1

(qr ,qm−r ;qm)L,

thenen ≥ 0, ∀n ≥ 0⇐⇒ r - m − r and m − r - r .

Page 16: Refinement of Some Partition Inequalities Partitions, The Partition Counting Function Restricted Partition Functions Ferrers Diagram, Durfee Square Partition Generating Functions Partition

Partition Inequalities, Variations and Extensions, II

Theorem (Andrews, 2011)

If L > 0, and the sequence {fn} is defined by

∞∑n=0

fnqn =1

(q,q5,q6;q8)L− 1

(q2,q3,q7;q8)L,

thenfn ≥ 0,∀n ≥ 0.

Page 17: Refinement of Some Partition Inequalities Partitions, The Partition Counting Function Restricted Partition Functions Ferrers Diagram, Durfee Square Partition Generating Functions Partition

Partition Inequalities, Variations and Extensions, III

Theorem (Berkovich and Grizzell, 2012)For any L > 0, and any odd y > 1, the q-series expansion of

1(q,qy+2,q2y ;q2y+2)L

− 1(q2,qy ,q2y+1;q2y+2)L

=∞∑

n=0

a(L, y ,n)qn

has only non-negative coefficients. Furthermore, the coefficienta(L, y ,n) is 0 if and only if either

n ∈ {2,4,6, . . . , y + 1} ∪ {y} or (L, y ,n) = (1,3,9).

Page 18: Refinement of Some Partition Inequalities Partitions, The Partition Counting Function Restricted Partition Functions Ferrers Diagram, Durfee Square Partition Generating Functions Partition

Partition Inequalities, Variations and Extensions, IV

Theorem (Berkovich and Grizzell, 2012)For any L > 0, and any odd y > 1, and any x with1 < x ≤ y + 2, the q-series expansion of

1(q,qx ,q2y ;q2y+2)L

− 1(q2,qy ,q2y+1;q2y+2)L

=∞∑

n=0

a(L, x , y ,n)qn

has only non-negative coefficients. Furthermore, the coefficienta(L, y ,n) is 0 if and only if either . . . .

Page 19: Refinement of Some Partition Inequalities Partitions, The Partition Counting Function Restricted Partition Functions Ferrers Diagram, Durfee Square Partition Generating Functions Partition

Partition Inequalities, Variations and Extensions, V

Theorem (Berkovich and Grizzell, 2013)

For any octuple of positive integers (L,m, x , y , z, r ,R, ρ), theq-series expansion of

1(qx ,qy ,qz ,qrx+Ry+ρz ;qm)L

− 1(qrx ,qRy ,qρz ,qx+y+z ;qm)L

=∞∑

n=0

a(L, x , y , z, r ,R, ρ,n)qn

has only non-negative coefficients.

Page 20: Refinement of Some Partition Inequalities Partitions, The Partition Counting Function Restricted Partition Functions Ferrers Diagram, Durfee Square Partition Generating Functions Partition

Partition Inequalities, Variations and Extensions, VI

Theorem (Berkovich and Grizzell, 2013)

For any positive integers m,n, y, and z, with gcd(n, y) = 1, andintegers K and L, with K ≥ L ≥ 0,

1(qz ;qm)K (qnyz ;qnm)L

− 1(qyz ;qm)K (qnz ;qnm)L

=∞∑

k=0

a(K ,L, x , y , z,n,m, k)qk

has only non-negative coefficients.

Page 21: Refinement of Some Partition Inequalities Partitions, The Partition Counting Function Restricted Partition Functions Ferrers Diagram, Durfee Square Partition Generating Functions Partition

Partition Generating Functions that Track the Numberof Parts

Let S be any set of positive integers, finite or infinite. Then thegenerating function for pS(m,n), the number of partitions of thepositive integer n with exactly m parts from S is

∞∑n=0

pS(m,n)smqn =1∏

ai∈S 1− sqai

= (1 + sqa1 + s2q2a1 + s3q3a1 + . . . )

× (1 + sqa2 + s2q2a2 + s3q3a2 + . . . )

× (1 + sqa3 + s2q2a3 + s3q3a3 + . . . ) . . .

The generating function for p∗S(n), the number of partitions ofthe positive integer n with distinct parts from S is

∞∑n=0

p∗S(n)qn =

∏ai∈S

1 + sqai

= (1 + sqa1)(1 + sqa2)(1 + sqa3) . . .

Page 22: Refinement of Some Partition Inequalities Partitions, The Partition Counting Function Restricted Partition Functions Ferrers Diagram, Durfee Square Partition Generating Functions Partition

Partition Inequalities that Track the Number of Parts

Q. If the polynomials {fn(s)} are defined by

∞∑n=0

fn(s)qn =1

(sq, sq4;q5)∞− 1

(sq2, sq3;q5)∞,

are there situations where the coefficients in fn(s) are allnon-negative?

Page 23: Refinement of Some Partition Inequalities Partitions, The Partition Counting Function Restricted Partition Functions Ferrers Diagram, Durfee Square Partition Generating Functions Partition

Experimental Output

n fn(s)1 s

2 − s + s2

3 − s + s3

4 s − s2 + s4

5 s5

6 s − s2 + s6

7 − s + s2 − s3 + s4 + s7

8 − s + s2 − s4 + s5 + s8

9 s − s2 + s6 + s9

10 s7 + s10

Page 24: Refinement of Some Partition Inequalities Partitions, The Partition Counting Function Restricted Partition Functions Ferrers Diagram, Durfee Square Partition Generating Functions Partition

Experimental Output

11 s − s2 + s3 − s4 + s6 + s8 + s11

12 − s + 2s2 − s3 + s4 − s5 + s7 + s9 + s12

13 − s + s2 + s5 − s6 + s7 + s8 + s10 + s13

14 s − 2s2 + s3 + s6 − s7 + s8 + s9 + s11 + s14

15 s7 + s9 + s10 + s12 + s15

16 s − 2s2 + 2s3 − s4 + s6 + s8 + s10 + s11 + s13 + s16

17 − s + 2s2 − 3s3 + 3s4 − s5 + s7 + 2s9 + s11 + s12

+ s14 + s17

18 − s + 2s2 − s3 + 2s5 − 2s6 + s7 + s8 + 2s10 + s12

+ s13 + s15 + s18

19 s − 2s2 + 2s3 − s4 + 2s6 − s7 + s8 + s9 + s10 + 2s11

+ s13 + s14 + s16 + s19

20 s5 + s7 + s9 + s10 + s11 + 2s12 + s14 + s15 + s17 + s20

Page 25: Refinement of Some Partition Inequalities Partitions, The Partition Counting Function Restricted Partition Functions Ferrers Diagram, Durfee Square Partition Generating Functions Partition

Experimentation, II

5 s5

10 s10 + s7

15 s15 + s12 + s10 + s9 + s7

20 s20 + s17 + s15 + s14 + 2s12 + s11 + s10 + s9 + s7 + s5

25 s25 + s22 + s20 + s19 + 2s17 + s16 + 2s15 + 2s14 + s13

+ 3s12 + s11 + 2s10 + 2s9 + 2s7 + s5

30 s30 + s27 + s25 + s24 + 2s22 + s21 + 2s20 + 2s19 + s18

+ 4s17 + 2s16 + 3s15 + 4s14 + s13 + 5s12 + 2s11 + 2s10

+ 3s9 + 3s7 + s5

35 s35 + s32 + s30 + s29 + 2s27 + s26 + 2s25 + 2s24 + s23

+ 4s22 + 2s21 + 4s20 + 5s19 + 2s18 + 7s17 + 4s16 + 5s15

+ 7s14 + 2s13 + 7s12 + 4s11 + 3s10 + 5s9 + 4s7 + s5

Page 26: Refinement of Some Partition Inequalities Partitions, The Partition Counting Function Restricted Partition Functions Ferrers Diagram, Durfee Square Partition Generating Functions Partition

First Theorem

Theorem (Mc L. 2015)

Let M ≥ 5 be a positive integer, and let a and b be integerssuch that 1 ≤ a < b < M/2 and gcd(a,M) = gcd(b,M) = 1.Define the integers c(m,n) by

1(sqa, sqM−a;qM)∞

− 1(sqb, sqM−b;qM)∞

:=∑

m,n≥0

c(m,n)smqn. (4)

(i) Then c(m,Mn) ≥ 0 for all integers m ≥ 0,n ≥ 0.(ii) If, in addition, M is even, then c(m,Mn + M/2) ≥ 0 for allintegers m ≥ 0,n ≥ 0.

Page 27: Refinement of Some Partition Inequalities Partitions, The Partition Counting Function Restricted Partition Functions Ferrers Diagram, Durfee Square Partition Generating Functions Partition

Partitions Interpretation

Corollary

Let M, a and b be as in Theorem 7. Letpa,M,m(n) = # partitions of n into exactly m parts, each≡ ±a( mod M),and letpb,M,m(n) = # partitions of n into exactly m parts, each≡ ±b( mod M).

Then

(i) pa,M,m(nM) ≥ pb,M,m(nM) for all integers n ≥ 1, and allintegers m, 1 ≤ m ≤ Mn.

(ii) If M is even, then pa,M,m(nM + M/2) ≥ pb,M,m(nM + M/2)for all integers n ≥ 0, and integers m with 1 ≤ m ≤ Mn + M/2.

Page 28: Refinement of Some Partition Inequalities Partitions, The Partition Counting Function Restricted Partition Functions Ferrers Diagram, Durfee Square Partition Generating Functions Partition

Proof of First Theorem

Proof.We recall a special case of the q-binomial theorem:

1(z;q)∞

=∞∑

n=0

zn

(q;q)n. (5)

Hence

1(sqa, sqM−a;qM)∞

− 1(sqb, sqM−b;qM)∞

=∑

j,k≥0

sj+kqa(j−k)+kM

(qM ;qM)j(qM ;qM)k−

∑j,k≥0

sj+kqb(j−k)+kM

(qM ;qM)j(qM ;qM)k(6)

Set j + k =: m, so that j = m − k and the right side of (6)becomes

Page 29: Refinement of Some Partition Inequalities Partitions, The Partition Counting Function Restricted Partition Functions Ferrers Diagram, Durfee Square Partition Generating Functions Partition

Proof, Continued

Proof Continued.∑m≥0

smm∑

k=0

qa(m−2k)+kM − qb(m−2k)+kM

(qM ;qM)m−k (qM ;qM)k(7)

Next, we restrict the values of k so that when the inner sum isexpanded as a power series, it contains only those powers of qwhose exponents are multiples of M(so that the series multiplying sm is

∑∞n=0 c(m,Mn)qMn).

Since gcd(a,M) = gcd(b,M) = 1, this means restricting k sothat M|(m − 2k).

If m is even, then k = m/2 is such a value, andqa(m−2k)+km − qb(m−2k)+km = 0 in this case.

Hence we need only consider those k in the intervals0 ≤ k < m/2 and m/2 < k ≤ m satisfyingm − 2k ≡ 0( mod M).

Page 30: Refinement of Some Partition Inequalities Partitions, The Partition Counting Function Restricted Partition Functions Ferrers Diagram, Durfee Square Partition Generating Functions Partition

Proof, Continued

Proof Continued.

sm

∑0≤k<m/2

+∑

m/2<k≤m

qa(m−2k)+kM − qb(m−2k)+kM

(qM ;qM)m−k (qM ;qM)k

Note that(1) every k ′ in the upper interval may be expressed ask ′ = m − k , for some k in the lower interval;(2) every k in the lower interval can be similarly matched with ak ′ in the upper interval;

(3) m − 2k ≡ 0( mod M)⇐⇒ m − 2(m − k) ≡ 0( mod M);

(4) the denominators of the summands remain invariant underthe transformation k ↔ m − k .

Page 31: Refinement of Some Partition Inequalities Partitions, The Partition Counting Function Restricted Partition Functions Ferrers Diagram, Durfee Square Partition Generating Functions Partition

Proof, Continued

Proof Continued.

∑m,n≥0

c(m,Mn)smqMn =∑m≥0

sm∑

0≤k<m/2M|m−2k

qa(m−2k)+kM − qb(m−2k)+kM

+ q−a(m−2k)+(m−k)M − q−b(m−2k)+(m−k)M

(qM ;qM)m−k (qM ;qM)k

=∑m≥0

sm∑

0≤k<m/2M|m−2k

qa(m−2k)+kM(1− q(m−2k)(b−a))(1− q(m−2k)(M−b−a))

(qM ;qM)m−k (qM ;qM)k

Page 32: Refinement of Some Partition Inequalities Partitions, The Partition Counting Function Restricted Partition Functions Ferrers Diagram, Durfee Square Partition Generating Functions Partition

Proof, Continued

Proof Continued.Finally,- M|(m − 2k)(b − a) and M|(m − 2k)(M − b − a);

- the conditions on a and b give that they are different multiplesof M, each less than (m − k)M;

- the factors (1− q(m−2k)(b−a)) and (1− q(m−2k)(M−b−a)) arecancelled by two different factors in the q-product (qM ;qM)m−k ;

- the remaining factors in the denominators may be expandedas geometric series with only non-negative coefficients, and theclaim at (i) above follows;

- The claim at (ii) follows similarly, upon noting that

m − 2k ≡ M/2( mod M)

⇐⇒ m − 2(m − k) ≡ −M/2 ≡ M/2( mod M).

Page 33: Refinement of Some Partition Inequalities Partitions, The Partition Counting Function Restricted Partition Functions Ferrers Diagram, Durfee Square Partition Generating Functions Partition

Second Theorem

Theorem (Mc L. 2015)

Let M ≥ 5 be a positive integer, and let a and b be integerssuch that 1 ≤ a < b < M/2 and gcd(a,M) = gcd(b,M) = 1.Define the integers d(m,n) by

(−sqa,−sqM−a;qM)∞ − (−sqb,−sqM−b;qM)∞

:=∑

m,n≥0

d(m,n)smqn. (8)

(i) Then d(m,Mn) ≥ 0 for all integers m ≥ 0,n ≥ 0.(ii) If, in addition, M is even, then d(m,Mn + M/2) ≥ 0 for allintegers m ≥ 0,n ≥ 0.

Page 34: Refinement of Some Partition Inequalities Partitions, The Partition Counting Function Restricted Partition Functions Ferrers Diagram, Durfee Square Partition Generating Functions Partition

Partitions Interpretation

Corollary

Let M, a and b be as in Theorem 9. Let

p∗a,M,m(n) denote the number of partitions of n into exactly mdistinct parts ≡ ±a( mod M), and let

p∗b,M,m(n) denote the number of partitions of n into exactly mdistinct parts ≡ ±b( mod M).

Then

(i) p∗a,M,m(nM) ≥ p∗b,M,m(nM) for all integers n ≥ 1, and allintegers m, 1 ≤ m ≤ Mn.

(ii) If M is even, then p∗a,M,m(nM + M/2) ≥ p∗b,M,m(nM + M/2)for all integers n ≥ 0, and integers m with 1 ≤ m ≤ Mn + M/2.

Page 35: Refinement of Some Partition Inequalities Partitions, The Partition Counting Function Restricted Partition Functions Ferrers Diagram, Durfee Square Partition Generating Functions Partition

Sketch of Proof

Sketch of Proof.Recall

(−a;q)∞ =∞∑

n=0

anqn(n−1)/2

(q;q)n. (9)

The application of this to the infinite products leads to

∑m,n≥0

d(m,n)smqn =∑m≥0

smm∑

k=0

(qa(m−2k)+kM − qb(m−2k)+kM)qM[(m−k)(m−k−1)/2+k(k−1)/2]

(qM ;qM)m−k (qM ;qM)k

The proof now follows similarly.

Page 36: Refinement of Some Partition Inequalities Partitions, The Partition Counting Function Restricted Partition Functions Ferrers Diagram, Durfee Square Partition Generating Functions Partition

No Finite Analogues

It does not appear that replacing “∞” with a positive integer L inTheorems 7 and 9 “works”. In other words, if L is a positiveinteger, and

1(sqa, sqM−a;qM)L

− 1(sqb, sqM−b;qM)L

:=∑

m,n≥0

c(m,n)smqn, (10)

it does not appear to be the case that c(m,Mn) ≥ 0 for all mand n, and likewise for the other theorem.Perhaps there is some restricted version of such a theorem thatis valid?

Page 37: Refinement of Some Partition Inequalities Partitions, The Partition Counting Function Restricted Partition Functions Ferrers Diagram, Durfee Square Partition Generating Functions Partition

Injective Proofs

Let M ≥ 5 and 1 ≤ a < b < M/2 be integers. For integers1 ≤ m ≤ n let pa,M,m(n) = # partitions of n into exactly m parts,each≡ ±a( mod M),and letpb,M,m(n) = # partitions of n into exactly m parts, each≡ ±b( mod M).Can you find an injection from the partitions counted bypb,M,m(Mn) to those counted by pa,M,m(Mn)?Mind Floss: (1) Consider the partition of kMb consisting kMparts of size b.Find a partition of kMb into kM parts, where each part is ≡ ±a(mod M).

(2) Consider the partition of kM(M − b) consisting kM parts ofsize M − b.Find a partition of kM(M − b) into kM parts, where each part is≡ ±a( mod M).

Page 38: Refinement of Some Partition Inequalities Partitions, The Partition Counting Function Restricted Partition Functions Ferrers Diagram, Durfee Square Partition Generating Functions Partition

The End.