Top Banner
Alpers, C.N., and Brimhall, G.H., 1989, Paleohydrologic evolution and geochemical dynamics of cumulative supergene enrichment at La Escondida, Atacama desert, northern Chile: Economic Geology, v. 84, p. 229–255. Anderson, J.A., 1982, Characteristics of leached capping and techniques of appraisal, in Titley, S.R., ed., Advances in geology of the porphyry copper deposits, southwestern North America: Tucson, University of Arizona Press, p. 275–295. Balassone, G., Rossi, M., Boni, M., Stanley, G., and McDermott, P., 2008, Mineralogical and geochemical characterisation of non-sulphide Zn-Pb mineralisation at Silvermines and Galmoy (Irish Midlands): Ore Geology Reviews, v. 33, No.2, p. 168–186. Blain, C.F., and Andrew, R.L., 1977, Sulphide weathering and the evaluation of gossans in mineral exploration: Minerals Science and Engineering, v. 9, p. 119–149. Blanchard, R., 1968, Interpretation of leached outcrops: Nevada Bureau of Mines, Bulletin 66, 215 p. Blanchard, R., and Boswell, P.F., 1925, Notes on the oxidation products derived from chalcopyrite: Economic Geology, v. 20, p. 613–638. Boni, M., Balassone, M., Arseneau, V., Schmidt, P., 2009, e non sulphide zinc deposit at Accha (Southern Peru), geological and mineralogical characterisation: Economic Geology, v. 98, p. 749–771. Braxton, D.P., Cooke, D.P., Ignacio, A.M., Rye, R.O., and Waters, P.J., 2009, Ultra-deep oxidation and exotic copper formation at the late Pliocene Boyongan and Bayugo porphyry copper-gold deposits, Surigao, Philippines: Geology, mineralogy, paleoaltimetry and their implications for geologic, physiographic and tectonic controls, in Titley, S.R., ed., Supergene environments, processes and products: Society of Economic Geologists, Special publication No. 14, p. 103–120. Chavez, W.X., 2000, Supergene oxidation of copper deposits: zoning and distribution of copper oxide minerals: Society of Economic Geologists newsletter, No. 41, p. 10–21. Groves, I.M., Carman, C.E., and Dunlop, W.J., 2003, Geology of the Beltana willemite deposit, Flinders Ranges, South Australia: Economic Geology, v. 98, p. 797–818. Gustafson, L.B., and Hunt, J.P., 1975, e porphyry copper deposit at El Salvador, Chile: Economic Geology, v. 70, p. 875–912. Hitzman, M.W., Reynolds, N.A., Sangster, P.F., Allan, C.R., and Carman, C.E., 2003, Classification, genesis and exploration guides for nonsulphide zinc deposits: Economic Geology, v. 98, p. 685–714. Kelly, G.R., 1976, Oxidation and supergene enrichment of the Siberia lode vein system, Emuford, North Queensland: Unpublished M.Sc. esis, James Cook University. Queensland, Australia, p. 168 Loghry, J.D., 1972, Characteristics of favourable cappings from several southwestern porphyry copper deposits: Unpublished M.S. thesis, Tucson, University of Arizona, p. 112. Munchmeyer, C., 1996, Exotic deposits products of lateral migration o supergene solutions from porphyry copper deposits: Society of Economic Geologists special Publication No. 5, p. 43–58. Nickel, E.H., Allchurch, P.D., Mason, M.G., and Wilmshurst, J.R., 1977, Supergene alteration at the Perseverance nickel deposit, Agnew, Western Australia: Economic Geology, v. 72, p. 184–203. Nickel, E.H., Ross, J.R., and ornber, M.R., 1974. e supergene alteration of pyrrhotite- pentlandite ore at Kambalda, Australia: Economic Geology, v. 69, p. 93–107. References R. Taylor, Gossans and Leached Cappings: Field Assessment, DOI 10.1007/978-3-642-22051-7, © Springer-Verlag Berlin Heidelberg 2011 141
6

References - Springer978-3-642-22051-7/1.pdfREFERENCES Ortiz, F.J., 1995, Discovery of the Escondida porphyry copper deposit in the Antofagasta region, northern Chile, March 1982,

Mar 18, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: References - Springer978-3-642-22051-7/1.pdfREFERENCES Ortiz, F.J., 1995, Discovery of the Escondida porphyry copper deposit in the Antofagasta region, northern Chile, March 1982,

Alpers, C.N., and Brimhall, G.H., 1989, Paleohydrologic evolution and geochemical dynamics of cumulative supergene enrichment at La Escondida, Atacama desert, northern Chile: Economic Geology, v. 84, p. 229–255.

Anderson, J.A., 1982, Characteristics of leached capping and techniques of appraisal, in Titley, S.R., ed., Advances in geology of the porphyry copper deposits, southwestern North America: Tucson, University of Arizona Press, p. 275–295.

Balassone, G., Rossi, M., Boni, M., Stanley, G., and McDermott, P., 2008, Mineralogical and geochemical characterisation of non-sulphide Zn-Pb mineralisation at Silvermines and Galmoy (Irish Midlands): Ore Geology Reviews, v. 33, No.2, p. 168–186.

Blain, C.F., and Andrew, R.L., 1977, Sulphide weathering and the evaluation of gossans in mineral exploration: Minerals Science and Engineering, v. 9, p. 119–149.

Blanchard, R., 1968, Interpretation of leached outcrops: Nevada Bureau of Mines, Bulletin 66, 215 p.

Blanchard, R., and Boswell, P.F., 1925, Notes on the oxidation products derived from chalcopyrite: Economic Geology, v. 20, p. 613–638.

Boni, M., Balassone, M., Arseneau, V., Schmidt, P., 2009, Th e non sulphide zinc deposit at Accha (Southern Peru), geological and mineralogical characterisation: Economic Geology, v. 98, p. 749–771.

Braxton, D.P., Cooke, D.P., Ignacio, A.M., Rye, R.O., and Waters, P.J., 2009, Ultra-deep oxidation and exotic copper formation at the late Pliocene Boyongan and Bayugo porphyry copper-gold deposits, Surigao, Philippines: Geology, mineralogy, paleoaltimetry and their implications for geologic, physiographic and tectonic controls, in Titley, S.R., ed., Supergene environments, processes and products: Society of Economic Geologists, Special publication No. 14, p. 103–120.

Chavez, W.X., 2000, Supergene oxidation of copper deposits: zoning and distribution of copper oxide minerals: Society of Economic Geologists newsletter, No. 41, p. 10–21.

Groves, I.M., Carman, C.E., and Dunlop, W.J., 2003, Geology of the Beltana willemite deposit, Flinders Ranges, South Australia: Economic Geology, v. 98, p. 797–818.

Gustafson, L.B., and Hunt, J.P., 1975, Th e porphyry copper deposit at El Salvador, Chile: Economic Geology, v. 70, p. 875–912.

Hitzman, M.W., Reynolds, N.A., Sangster, P.F., Allan, C.R., and Carman, C.E., 2003, Classifi cation, genesis and exploration guides for nonsulphide zinc deposits: Economic Geology, v. 98, p. 685–714.

Kelly, G.R., 1976, Oxidation and supergene enrichment of the Siberia lode vein system, Emuford, North Queensland: Unpublished M.Sc. Th esis, James Cook University. Queensland, Australia, p. 168

Loghry, J.D., 1972, Characteristics of favourable cappings from several southwestern porphyry copper deposits: Unpublished M.S. thesis, Tucson, University of Arizona, p. 112.

Munchmeyer, C., 1996, Exotic deposits products of lateral migration o supergene solutions from porphyry copper deposits: Society of Economic Geologists special Publication No. 5, p. 43–58.

Nickel, E.H., Allchurch, P.D., Mason, M.G., and Wilmshurst, J.R., 1977, Supergene alteration at the Perseverance nickel deposit, Agnew, Western Australia: Economic Geology, v. 72, p. 184–203.

Nickel, E.H., Ross, J.R., and Th ornber, M.R., 1974. Th e supergene alteration of pyrrhotite-pentlandite ore at Kambalda, Australia: Economic Geology, v. 69, p. 93–107.

References

R. Taylor, Gossans and Leached Cappings: Field Assessment, DOI 10.1007/978-3-642-22051-7,© Springer-Verlag Berlin Heidelberg 2011

141

Page 2: References - Springer978-3-642-22051-7/1.pdfREFERENCES Ortiz, F.J., 1995, Discovery of the Escondida porphyry copper deposit in the Antofagasta region, northern Chile, March 1982,

REFERENCES

Ortiz, F.J., 1995, Discovery of the Escondida porphyry copper deposit in the Antofagasta region, northern Chile, March 1982, in Pierce, R.W., and Bolm, J.G., eds., Porphyry copper deposits of the American Cordillera: Arizona Geological Society digest 20, p. 613–624.

Reich, R., Palacios, C., Parada, A.M., Fehn, U., Cameron, E.M., Legbourne, M.I., and Zuniga, A., 2008, Atacamite formation by deep saline waters in copper deposits from the Atacama desert, Chile: evidence from fl uid inclusions, groundwater geochemistry, TEM, and 36Cl data: Mineralium Deposita, v. 43, p. 663–675.

Reichert, J., 2009, A geochemical model of supergene carbonate hosted non sulphide zinc deposits, in Titley, S.R.; ed, Supergene environments, processes and products: Society of Economic Geologists, Special publication No. 14, p. 69–76.

Reichert, J., and Borg, G., 2007, Numerical simulation and a geochemical model of supergene carbonate-hosted non-sulphide zinc deposits: Ore Geology Reviews, 33, p. 134–151.

Rivera, S.L., Alcota, H., Fontecilla, C., and Kovacic, P., 2009, Supergene modifi cation of porphyry columns and the application to exploration with special reference to the southern part and the Chuquicamata district, Chile, in Titley, S.R., ed., Supergene environments, processes and products: Society of Economic Geologists, Special publication No. 14, p. 1–14.

Saegart, W.E., Madera, A., and Kilpatrick, B.E., 1974, Geology and mineralogy of La Caridad porphyry copper deposit, Sonora, Mexico: Economic Geology, v. 69, p. 1060–1077.

Sillitoe, H.R., 2005, Supergene oxidised and enriched porphyry copper and related deposits; Economic Geology 100th Anniversary Volume, p. 723–768.

Sillitoe, R.H., 2007, Hypogene reinterpretation of supergene silver enrichment at Chanarcillo, northern Chile: Economic Geology, v. 102, p. 777–781.

Sillitoe, R.H., 2009, Supergene silver enrichment reassessed: in Titley, S.R.; ed, Supergene environments, processes and products: Society of Economic Geologists, Special publication No. 14, p. 15–32.

Szczerba, M., and Sawlowicz, Z., 2009, Remarks on the origin of cerussite in the upper Silesian Zn-Pb deposits, Poland: Mineralogia, v. 40, No. 1–4, p. 54–64.

Taylor, R. G., 2009, Ore textures: Berlin, Springer-Verlag, 287 p.

Th ornber, M.R., and Taylor, G.F., 1992, Th e mechanisms of sulphide oxidation and gossan formation, in Butt, C.R.M., and Zeegers, H., eds, Regolith exploration geochemistry in tropical and subtropical terrains (in Govett, G.J.S., ed., Handbook of exploration geochemistry) Amsterdam, Elsevier, v. 4, p. 119–138.

Titley, S.R., 1982, Th e style and progress of mineralisation and alteration in porphyry copper systems, American southwest, in Titley, S.R., ed., Advances in geology of the porphyry copper deposits, southwestern North America: Tucson, University of Arizona Press, p. 93–116.

Titley, S.R., and Marozas, D.C., 1995, Processes and products of supergene copper enrichment, in Pierce, F.W., and Bolm, J.G., eds., Porphyry copper deposits of the American Cordillera: Tucson, Arizona Geological Society Digest 20, p. 156–168.

Titley, S.R., Th ompson, R.C., Haynes, F.M., Manske, S., Robinson, L.C., White, J.L., 1986, Evolution of fractures and alteration in Sierrita – Esperanza hydrothermal system, Pima County, Arizona: Economic Geology, v. 81, p. 343–370.

142

Page 3: References - Springer978-3-642-22051-7/1.pdfREFERENCES Ortiz, F.J., 1995, Discovery of the Escondida porphyry copper deposit in the Antofagasta region, northern Chile, March 1982,

Index

AAcid forming sulphides 114Adamite 62, 64, 66Alunite 136Anglesite 55, 56, 59Annabergite 68, 69Antlerite 40, 48, 51, 128, 132Argillic alteration 16Armouring 21Arsenic secondary minerals 68Arsenopyrite-Scorodite 98Arsenopyrite-scorodite boxwork 98Atacamite 40, 47, 51, 128, 131Aurichalcite 62, 67Autunite 75Azurite 40, 46, 47, 128

BBismuth ochre 71, 72Black oxide 130Black oxide zones 126Botryoidal limonite 27, 104Boxwork 77Boxworks and related features 77Broad scale – fi rst impressions 21Brochantite 40, 48, 51, 128, 131, 133, 134, 135Bromargyrite 71

CCarbonate boxwork 99Carnotite 73, 75Cellular pyrite pseudomorphs 82Cellular structures 77Cerargyrite 71Cerargyrite (Horn silver) 73Cerussite 13, 30, 55, 56, 58Cervantite 70Chalcanthite 40, 47, 50, 128Chalcocite 40, 42, 45, 49, 54, 103, 121, 133, 134, 135, 137Chalcocite supergene enrichment zone 121Chalcopyrite boxworks 85Chalcosiderite 40, 48, 53Chalcotrichite 46

Chalcotrichite (Hair copper) 40Chenevixite 126, 128Chert-jasper 95Chrysocolla 40, 47, 50, 128, 131Classic epithermal layering 18Clay 12, 16Clay alteration 16Columnar limonite 27Composition of ribbing 79Conichalcite 126, 128Copper clays 128Copper (native copper) 40Copper “oxide” zone 129Copper pitch 42, 128Copper secondary minerals 41Copper wad 128Covellite 40, 49, 54Crackle/stockwork recognition 108Crednerite 128Crocoite 55, 57, 61Cuprite 40, 43, 44, 45, 128, 129

DDioptase 40, 48, 52

EEh/pH environment 8Electrochemical reaction 4Embolite 71Erythrite 70, 102Exotic copper oxide 130Exotic copper oxide deposits 126Exotic goethitic limonite 36Exotic limonite 23Exotic or transported limonite 26

FFalse gossan – Century mine area 106False gossan – Olivine gabbro 106False gossans 104False gossan –Serpentinite 105

143

Page 4: References - Springer978-3-642-22051-7/1.pdfREFERENCES Ortiz, F.J., 1995, Discovery of the Escondida porphyry copper deposit in the Antofagasta region, northern Chile, March 1982,

INDEX144

Ferrimolybdite 71Flooded boxwork 79Fluorite 102Fringing limonite 23

GGalena boxwork 94Galena-cerussite-massicot-minium 93Galena “gossan” 93Galena residual kernels 93Garnet boxwork 101Garnet boxworks 100Garnierite 68, 69Gaspeite 68, 69, 95General profi le of oxidising ore 7Goethite 13, 14, 22, 34, 123Goethite dominant leached capping 123Gossan 9Granular cerussite 92

HHaematite 14, 22, 34, 36, 133, 134, 135Haematite dominant capping 122Haematite, goethite, jarosite proportions 114Haematitic 36Haematitic leached capping 109Hemimorphite 13, 14, 15, 33, 62, 63, 66Horn silver 71Hydrolytic reaction 3Hydrozincite 14, 62, 63, 66

IIndigenous and fringing limonite 25Indigenous haematite 135Indigenous limonite 23, 26, 81, 97, 115Indigenous – Live limonite 25, 36Initial Recognition 9Iodargyrite 71Iridescent limonite 27Iron secondary minerals 34

JJarosite 22, 34, 36Jarosite dominant leached capping 124Jarositic limonite 138

KKnobbly texture of breccia 29Krőhnkite 128

LLayering 29Leached capping – goethite/jarosite 112Leached capping – jarositic ± minor goethite 112Leached capping – oxidised copper style 111Leached capping profi le 109, 110Leached cappings 9, 11Leached cappings in porphyry copper systems 107Lead secondary minerals 55Lepidocrocite 22Liebethenite 128Limonite 9, 22, 23Limonite colour charts 118Limonite colours in relation to haematite – goethite

– jarosite proportions 119Limonite mapping 118Limonite nomenclature

Arborescent 23Botryoidal 24Caked 24Cellular 24Coagulated, Fused 24Columnar 24Concretionary 24Craggy 24Earthy 24Flaky 24Flat 24Granular 24Iridescent 24Live 24Mammilated 24Massive 24Nodular 24Pitch 24Pulverulent 24Relief 24Reniform 24Stalactitic 24Varnished 24Vitreous 24

Limonitic gossan 12Linarite 40, 48, 52Litharge 55, 57Live limonite 122Loghry model 115Ludjibaite 53

Page 5: References - Springer978-3-642-22051-7/1.pdfREFERENCES Ortiz, F.J., 1995, Discovery of the Escondida porphyry copper deposit in the Antofagasta region, northern Chile, March 1982,

145INDEX

MMalachite 19, 20, 40, 46, 47, 128, 132Manganese oxides 14, 22, 38, 39, 104, 135Manganese wad 38Manganite 38Maroon coloured indigenous limonite 110Massicot 55, 59, 60Melanterite 34, 35, 37Metaautunite 75Metaschoepite 75Metatorbernite 75Metatyuyamite 75Metauranospinite 75Mimetite 55, 57, 60Minium 55, 57, 59, 60Molybdic ochre 71, 72Molybdite 71

NNative copper 42, 44Native silver 73Negative pseudomorphs of molybdenite 103Negative vegetation anomaly 12Neoticite 38, 39, 128Neutralising power of the host rocks 23Nickel secondary minerals 68Nickel sulphide “gossan-ironstone” 96

OOchres 71Olivenite 40, 48, 53Ovoid-cubic pseudomorphs of cobaltite 103Oxidation collapse 29Oxidation profi le 8Oxidation profi le at Grasberg Cu-Au mine 136Oxide copper ore 109Oxide zone 126

PParamelaconite 128Paratacamite 48Pathways producing boxworks, in situ granular clusters and positive and negative pseudomorphs 78Pitch limonite 44, 128Plumbojarosite 55, 57, 60Porphyry copper systems 107Psedomalachite 128

Pseudomalachite 40, 48, 53Psilomilane 38Pyrite cellular 82Pyrite cellular sponge 83Pyrite – cellular sponge boxwork 84Pyrite – dominant leached capping and gossan 81Pyrite – cellular boxwork 83Pyrite – negative pseudomorphs 81Pyrite – pseudomorphs 81Pyrite – rectangular boxwork 84Pyrite – remnant boxwork? 84Pyrolusite 38Pyromorphite 55, 57, 61Pyrrhotite boxworks 85Pyrrhotite cellular sponge 86

QQuartz textures 21Quartz veining 9

RRecent discoveries 11Reichenbachite 53Relief limonite 24, 25Rib development 79Ribs 78Rodembolite 71Rosasite 62, 67

SSampleite 128Sauconite 13, 14, 62, 63Schoepite 75Schoepite-meteshoepite 76Scorodite 19, 68, 70, 97Secondary minerals 5, 9, 33Secondary silver minerals 71Siderite 22Siderite (carbonate) boxwork 99Siliceous jasperoidal alteration 96Silver 73Smithsonite 13, 14, 62, 63, 65Sphalerite boxworks 87, 90, 91Sphalerite crack/fracture 88Sphalerite dissolution 89Sphalerite replacement 89Stability relations of some copper minerals 41Stibiconite 70, 71Structural preservation – breccia, shear fabric 31

Page 6: References - Springer978-3-642-22051-7/1.pdfREFERENCES Ortiz, F.J., 1995, Discovery of the Escondida porphyry copper deposit in the Antofagasta region, northern Chile, March 1982,

INDEX146

Structural preservation – layering 30Styles of ribbing 78Supergene copper sulphides 49Supergene enrichment 112, 113Supergene modifi cation 5

TTenorite 40, 43, 45, 128Th eoretical Perspectives 3Torbernite 74, 75Torbernite-Metatorbernite 76Transported limonite 138Tungstic ochre 71, 72Tungstite 71Turquoise 40, 48, 52, 128Types of leached cappings and gossanous exposures

Clay dominant ± minor limonite ± secondary minerals – limited exposure inconspicuous 20

Clay dominated ± limonite – conspicuous 16Inconspicuous with no obvious limonite, clay,

or secondary minerals 20Limonite dominant ± clay, secondary minerals

– conspicuous 12Limonite dominant ± secondary minerals –

conspicuous 13Limonite dominated – conspicuous 15Limonite dominated – inconspicuous 16Limonite dominated ± secondary minerals –

conspicuous 15Limonite dominated ± secondary minerals –

conspicuous 14Limonite dominated with signifi cant clay –

conspicuous 16

Quartz dominant – conspicuous 18Quartz dominant – hidden 17, 18Quartz dominant ± limonite ± secondary

minerals – limited exposure – inconspicuous 19

Quartz dominant, minor limonite – concealed inconspicuous 19

Quartz – newly exposed 17Typical stockwork texture – pophyry copper system 121Tyuyamite 75Tyuyamunite-Carnotite 76

UUranium secondary minerals 74Uranospinite 75Uranospinite-Metauranospinite 76

VVanadinite 57Vivianite 34, 37Vuggy silica 9Vuggy-silica at surface 18Vuggy-silica capping 18

WWillemite 62, 64, 67Wulfenite 55, 57, 61

ZZincian clay 63Zinc oxide or non sulphide zinc deposits 13Zinc secondary minerals 62