Top Banner
Endüstri Mühendisliği Dergisi Ödül Almış Çalışma Cilt: 28 Sayı: 3 Sayfa: (20-34) 20 BİYOGAZ ENERJİ ÜRETİM TESİSİ İÇİN BİYOKÜTLE LOJİSTİK YÖNETİMİ Kürşad DERİNKUYU 1* , Berke TARAKÇIOĞLU 2 , İrem Melis KOÇ 1 , Eren SAZAK 1 , Doğaç ZENGİN 1 1 TOBB Ekonomi ve Teknoloji Üniversitesi, Endüstri Mühendisliği Bölümü, Ankara [email protected], [email protected], [email protected], [email protected] 2 BENDİS Holding A.Ş., Ankara [email protected] Geliş Tarihi: 02.11.2017; Kabul Ediliş Tarihi: 12.12.2017 ÖZ Yenilenebilir enerji türlerinden olan biyokütleden biyogaz elde eden elektrik santrali, enerji üretim hedefine ulaşabilmesi için hayvansal atık kullanmakta olup, bunun için çevredeki yaklaşık 150 çiftlikle iş birliğine gitmiştir. Bu çalışmada, tesisin atık ihtiyacını mevcut çiftliklerden taşımak için atık miktarı, çiftlik sayısı ve birbirlerine yakınlığı çoklu amaç fonksiyonları altında incelenmesi yapılmış olup araç sayısı ve her bir aracın günlük rota maliyeti en küçüklenmiştir. Çalışmada bir matematiksel model önerilmiş ve 4 aşamalı bir çözüm geliştirme sezgiseli oluşturulmuştur. Sezgiselin ilk aşamasında Fisher ve Jaikumar kümelendirme algoritması modifikasyondan geçirilerek çiftliklerin atık miktarı, çiftlik sayısı ve birbirlerine yakınlık ölçütlerini amaç fonksiyonu olarak ele alan matematiksel bir alt model oluşturulmuştur. Bu ilk modelden elde edilen küme bilgileri doğrultusunda ikinci aşamada her bir küme için Gezgin Satıcı Problemi çözülmüştür. Üçüncü aşamada, ilk iki aşamada elde edilen çıktılar ile birlikte çiftlikler arası mesafe, mesai saatleri ve operasyonel süre kısıtları gözetilerek araç sayısını minimize eden bir alt model geliştirilmiştir. Son aşamada, Çok Yüksek Boyutlu Komşuluk Arama Sezgiseli geliştirilmiştir. İnşa edilen sezgisel, ilk aşamada geliştirme öncesi toplam yolu ortalama %10 civarında azaltmıştır. Çok Yüksek Boyutlu Komşuluk Arama Sezgiseli sonrasında ise ilave olarak %7’lik bir düşüş gözlemlenmiştir. Son olarak, ihtiyaç duyulan araç sayısında ise %30’luk bir iyileşme sağlanmıştır. Bu iyileştirmelerin sonucunda işçi, araç ve yakıt masrafları olarak yıllık yaklaşık 573.944 TL kazanç sağlanacağı öngörülmektedir. Anahtar Kelimeler: Biyokütle, çok amaçlı kümelendirme, çok yüksek boyutlu komşuluk arama sezgiseli, araç rotalama problemi BIOMASS LOGISTICS MANAGEMENT FOR BIOGAS POWER PRODUCTION FACILITY ABSTRACT The biogas power plant, which generates energy from biomass, uses animal waste to reach its energy production target, and it hasstarted to collaborate with about 150 farms within the area. In this project, the amount of waste in farms, the number of farms and their proximity to each other are examined under multi-objective functions to transport the waste needs of the plant from the farms, then the number of vehicles and the costs of daily routes of these vehicles are minimized. In this study, a mathematical model is introduced and a 4-step solution development heuristic has been built. In the first stage of the heuristic, by modifying the Fisher and Jaikumar clustering algorithm, a mathematical sub-model which takes the amount of waste of farms, the number of farms and their closeness to each other as objective function is formed. With the cluster information obtained from the first model, the Travelling Salesman Problem was solved for each cluster in the second stage. In the third phase, a sub-model which minimizes the number of vehicles considering the distances between the farms, working hours and operational time constraints is developed in the light of the outputs obtained from the first two phases. At the last stage, Very Large Scale Neighborhood Search algorithm is developed. The heuristic has reduced the total path near 10% in the first stage. After the VLSN Search, an additional 7% decrease is observed. Lastly, 30% reduction is achieved in the number of vehicles. As a result of these improvements, it is predicted that approximately 573.944 Turkish Liras would be gained annually from the cost of labor, vehicle and fuel. Keywords: Biomass, multi objective clustering, very large scale neighborhood search, vehicle routing problem * İletişim yazarı 37. Yöneylem Araştırması ve Endüstri Mühendisliği Ulusal Kongresi Öğrenci Proje Yarışması’nda ödül kazanan çalışma ilgili öğretim üyelerinin katkılarıyla düzen- lenmiş halini EM Dergisi yayın politikası doğrultusunda yayımlıyoruz.
15

REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9157/11/... · Optimization of physical factors affecting the production of thermo-stable organic solvent-tolerant

Oct 07, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9157/11/... · Optimization of physical factors affecting the production of thermo-stable organic solvent-tolerant

REFERENCES:

Page 2: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9157/11/... · Optimization of physical factors affecting the production of thermo-stable organic solvent-tolerant

References

Ph.D. Thesis of Shah Kunal Nareshkumar [1091] Page 163

Abusham, R. A., R. N. Z. R. A. Rahman, A. B. Salleh and M. Basri. 2009.

Optimization of physical factors affecting the production of thermo-stable organic

solvent-tolerant protease from a newly isolated halo tolerant Bacillus subtilis strain

Rand. Microbial Cell Factories. 8:20.

Adinarayana, K., P. Ellaiah, and D. S. Prasad. 2003. Purification and partial

characterization of thermostable serine alkaline protease from a newly isolated

Bacillus subtilis PE-11. AAPS PharmSciTech. 4: 56.

Adlercreutz, P. 1996. Modes of using enzymes in organic media. In Enzymatic

Reactions in Organic Media; Koskinen, AM.P., Klibanov, A.M., Eds.; Chapman &

Hall: London, UK. pp. 9–37.

Ahmed, E. H., T. Raghavendra and D. Madamwar. 2010b. A thermostable

alkaline lipase from a local isolate Bacillus subtilis EH 37: characterization, partial

purification, and application in organic synthesis. Appl. Biochem. Biotechnol. 160:

2102-2113.

Ahmed, E. H., T. Raghavendra, D. Madamwar. 2010a. An alkaline lipase from

organic solvent tolerant Acinetobacter sp. EH28: Application for ethyl caprylate

synthesis. Bioresour. Technol. 101: 3628-3634.

Akolkar, A. V., G. M. Deshpande, K. N. Raval, D. Durai, A. S. Nerurkar and A.

J. Desai. 2008. Organic solvent tolerance of Halobacterium sp. SP1(1) and its

extracellular protease. Journal of Basic Microbiology. 48: 421–425.

Anwar, A., and M. Saleemuddin. 1998. Alkaline proteases: a review. Bioresour.

Technol. 64: 175–83.

Aono, R., M. Ito, A. Inoue and K. Horikoshi. 1992. Isolation of novel toluene-

tolerant strain of Pseudomonas aeruginosa. Biosci. Biotech. Biochem. 1: 145-146.

Aono, R., M. Kobayashi, H. Nakajima, and H. Kobayashi. 1995. A close

correlation between improvement of organic solvent tolerance levels and alteration of

resistance towards low levels of multiple antibiotics in Escherichia coli. Biosci.

Biotechnol. Biochem. 59: 213–218.

Aono, R., T. Negishi, and H. Nakajima. 1994. Cloning of organic solvent tolerance

gene ostA that determines n-hexane tolerance level in Escherichia coli. Appl.

Environ. Microb. 60: 4624-4626.

Page 3: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9157/11/... · Optimization of physical factors affecting the production of thermo-stable organic solvent-tolerant

References

Ph.D. Thesis of Shah Kunal Nareshkumar [1091] Page 164

Asako, H., K. Kobayashi, and R. Aono. 1999. Organic solvent tolerance of

Escherichia coli is independent of OmpF levels in the membrane. Appl. Environ.

Microbiol. 65: 294-296.

Auffret, M., D. Labbe, G. Thouand, C. W. Greer, and F. Fayolle-Guichard. 2009.

Degradation of a mixture of hydrocarbons, gasoline, and diesel oil additives by

Rhodococcus aetherivorans and Rhodococcus wratislaviensis. Appl. Environ. Microb.

75:7774–7782.

Azevedo, A. M., D. M. F. Prazeres, J. M. S. Cabral, and L. P. Fonseca. 2001. J.

Mol. Catal. B Enzym. 15: 147-153.

Bayoumi, A. R., S. S. El louboudey, M. N. Sidkey, and M. A. Abd-el-rahman.

2007. Production, purification and characterization of thermoalkalophilic lipase for

application in bio-detergent industry. J. Appl. Sci. Res. 3: 1752-1765.

Berglund, P., and Hutt, K. 2000. Biocatalytic synthesis of enantiopure compounds

using lipases. In: Patel, R.N. (Ed.), Stereoselect. Biocatal.. Marcel Dekker, New York,

p. 932.

Bjorn, M. J., P. A. Sokol, and B. H. Iglewski. 1979. Influence of iron on yield of

extracellular products in Pseudomonas aeruginosa culture. J. Bacteriol. 138: 193–

200.

Bordusa, F. 2002. Proteases in organic synthesis. Chem. Rev. 102: 4817–4867.

Brodkorb, T. S., and R. L. Legge. 1992. Enhanced biodegradation of phenanthrene

in oil tar-contaminated soils supplemented with Phanerochaete chrysosporium. Appl.

Environ. Microbiol. 58: 3117–3121.

Bruce, L. J., and A. J. Daugulis. 1991. Solvent selection strategies for extractive

biocatalysis. Biotechnol. Prog. 7: 116–124.

Cadirci, B. H., and I. Yasa. 2010. An organic solvents tolerant and thermotolerant

lipase from Pseudomonas fluorescens P21. J. Mol. Catal. B Enzym. 64: 155-161.

Callow, M. E., and J. A. Callow. 2000. Substratum location and zoospore behaviour

in the fouling alga Enteromorpha. Biofouling. 15: 49–56.

Page 4: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9157/11/... · Optimization of physical factors affecting the production of thermo-stable organic solvent-tolerant

References

Ph.D. Thesis of Shah Kunal Nareshkumar [1091] Page 165

Cardenas, F., S. M. De Castro, M. J. Sanchez-Montero, V. J. Sinisterra, M.

Vamaseda, W. S. Elson, and W. S. Alvarez. 2001. Novel microbial lipases: catalytic

activity in reactions in organic media. Enzyme Microb. Technol. 28: 145–154.

Castro-Ochoa, C. D. L., R. C. Gomez, V. G. Alfaro, and O. R. Ros. 2005.

Screening, purification and characterization of the thermoalkalophilic lipase produced

by Bacillus thermoleovorans CCR11. Enzyme Microb. Technol. 37: 648–654.

Chaphalkar, S., and S. Dey. 1994. Some aspects of production of extracellular

protease from Streptomyces diastaticus. J. Microb. Technol. 9: 85–100.

Chen, H., J. Yao, L. Wang, F. Wang, E. Bramanti, T. Maskow, and G. Zaray.

2009. Evaluation of solvent tolerance of microorganisms by microcalorimetry.

Chemosphere. 74: 1407-1411.

Chen, K., and F. H. Arnold. 1991. Enzyme engineering for non-aqueous solvents:

random mutagenesis to enhance activity of subtilisin E in polar organic media.

Biotechnology (NY). 9: 1073–1077.

Clark, D.S., and J. E. Bailey. 1984. Deactivation of alpha-chymotrypsin and alpha-

chymotrypsin-CNBr-Sepharose 4B conjugates in aliphatic alcohols. Biochim.

Biophys. Acta. 788: 181–188.

Cooksey, K. E., and B. Wigglesworth-Cooksey. 1995. Adhesion of bacteria and

diatoms to surfaces in the sea: a review. Aquat. Microb. Ecol. 9: 87–96.

Cruden, D. L., J. H. Wolfram, R. D. Rogers, and D. T. Gibson. 1992.

Physiological properties of a pseudomonas strain which grows with p-xylene in a two-

phase (organic-aqueous) medium. Appl. Environ. Microbiol. 58: 2723-2729.

Dagley S. 1986. Microbial metabolism of aromatic compounds. In: Moo-Young M.

(ed) Comprehensive Biotechnology, vol 1. The Principles of Biotechnology:

Scientific Fundamentals. Pergamon Press, Oxford.

Dandavate, V., J. Jinjala, H. Keharia, and D. Madamwar. 2009. Production,

partial purification and characterization of organic solvent tolerant lipase from

Burkholderia multivorans V2 and its application for ester synthesis. Bioresour.

Technol. 100: 3374-3381.

de Bont, J. A. M. 1998. Solvent-tolerant bacteria in biocatalysis. Trends Biotechnol.

16: 493-499.

Page 5: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9157/11/... · Optimization of physical factors affecting the production of thermo-stable organic solvent-tolerant

References

Ph.D. Thesis of Shah Kunal Nareshkumar [1091] Page 166

Dean, B. J. 1985. Recent findings on the genetic toxicology of benzene, toluene,

xylenes and phenols. Mutat. Res. 145:153–181.

DeSantis, G., Jones, B.J. 1999. Chemical modification of enzymes for enhanced

functionality. Curr. Opin. Biotechnol. 10: 324–330.

Devi, P., C. G. Naik, and C. Rodrigues. 2006. Biotransformation of citrinin to

decarboxycitrinin using an organic solvent-tolerant marine bacterium, Moraxella sp.

MB1. Mar. Biotechnol. 8: 129-138.

Devinny et al. 1999. Biofiltration for air pollution control, third ed., Lewis

publishers, Boca Raton, FL.

Divakar, K., J. D. A. Priya, and P. Gautam. 2010. Purification and characterization

of thermostable organic solvent-stable protease from Aeromonas veronii PG01. J.

Mol. Catal. B Enzym. 66: 311-318.

Doukyu, N. and H. Ogino. 2010. Organic solvent tolerant enzymes. Biochem. Eng.

J. 48: 270–282.

Duffus, J. H. 2002. ―Heavy metals‖—a meaningless term? (IUPAC Technical

Report). Pure Appl. Chem. 74: 793–807.

Ebrahimpour, A., R. N. Z. R. A. Rahman, M. Basri, and A. B Salleh. 2011. High

level expression and characterization of a novel thermostable, organic solvent

tolerant, 1,3-regioselective lipase from Geobacillus sp. strain ARM . Bioresour.

Technol., In Press, Accepted Manuscript, Available online 29 March 2011.

Ensley, B. D., B. J. Ratzkin, T. D. Osslund, M. J. Simmon, L. P. Wackett, and D.

T. Gibson. 1983. Expression of naphthalene oxidation genes in Escherichia coli

results in the biosynthesis of indigo. Science. 222: 167–169.

Fang, Y., S. Liu, S. Wang, and M. Lv. 2009. Isolation and screening of a novel

extracellular organic solvent-stable protease producer. Biochem. Eng. J. 43: 212-215.

Fang, Y., Z. Lu, F. Lv, X. Bie, S. Liu, Z. Ding, and W. Xu. 2006. A newly isolated

organic solvent tolerant Staphylococcus saprophyticus M36 produced organic solvent-

stable lipase. Curr. Microbiol. 53: 510–515.

Page 6: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9157/11/... · Optimization of physical factors affecting the production of thermo-stable organic solvent-tolerant

References

Ph.D. Thesis of Shah Kunal Nareshkumar [1091] Page 167

Fernandes, P., B. S. Ferreira, J. M. S. Cabral. 2003. Solvent tolerance in bacteria:

role of efflux pumps and cross-resistance with antibiotics. International Journal of

Antimicrobial Agents, 22: 211-216.

Ferrante, A. A., J. Augliera, K. Lewis, and A. M. Klibanov. 1995. Cloning of an

organic solvent-resistance gene in Escherichia coli: The unexpected role of

alkylhydroperoxide reductase. Proc. Natl. Acad. Sci. USA. 92: 7617-7621.

Ferrera, M., J. Soliverib, J. P. Francisco, N. Lopez-Cortesa, R. D. Dolores, M.

Christensenc, L. C. P. Jose, and A. Ballesterosa. 2005. Synthesis of sugar esters in

solvent mixtures by lipases from Thermomyces lanuginosus and Candida antarctica

B, and their antimicrobial properties. Enzyme Microb. Technol. 36:391–398.

Furth, A. J. 1980. Removing unbound detergent from hydrophobic proteins. Anal.

Biochem. 109: 207–215.

Gaur, R., A. Gupta, and S. K. Khare. 2008a. Lipase from solvent tolerant

Pseudomonas aeruginosa strain: Production optimization by response surface

methodology and application. Bioresour. Technol. 99: 4796-4802.

Gaur, R., A. Gupta, and S. K. Khare. 2008b. Purification and characterization of

lipase from solvent tolerant Pseudomonas aeruginosa PseA. Process Biochem. 43:

1040-1046.

Gaur, R., and S. K. Khare. 2009. Cellular response mechanisms in Pseudomonas

aeruginosa PseA during growth in organic solvents. Lett. Appl. Microbiol. 49: 372-

377.

Gaur, R., T. Grover, R. Sharma, S. Kapoor, and S. K. Khare. 2010. Purification

and characterization of a solvent stable aminopeptidase from Pseudomonas

aeruginosa: Cloning and analysis of aminopeptidase gene conferring solvent stability.

Process Biochem. 45: 757-764.

Geok, L. P., C. N. A. Razak, R. N. Z. A. Rahman, M. Basri, A. B. Salleh. 2003.

Isolation and screening of an extracellular organic solvent-tolerant protease producer.

Biochem. Eng. J. 13: 73-77.

Ghatorae, A. S., G. Bell, P. J. Halling. 1994. Inactivation of enzymes by organic

solvents: new technique with well-defined interfacial area. Biotechnol. Bioeng. 43:

331–336.

Page 7: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9157/11/... · Optimization of physical factors affecting the production of thermo-stable organic solvent-tolerant

References

Ph.D. Thesis of Shah Kunal Nareshkumar [1091] Page 168

Ghorbel, B., A. Sellami-Kamoun, and M. Nasri. 2003. Stability studies of protease

from Bacillus cereus BG1. Enzyme Microb. Technol. 32: 513-518.

Ghorbel-Frikha, B., Sellami-Kamoun, A.; Fakhfakh, N.; Haddar, A.; Manni, L.;

Nasri, M. 2005. Production and purification of a calcium dependent protease from

Bacillus cererus BG1. J. Ind. Microbiol. Biotechnol. 32: 186-194.

Gibson, D. T., and V. Subramanian. 1984. Microbial Degradation of Aromatic

Hydrocarbons. In: Gibson, D. T. (ed) Microbial degradation of organic compounds.

Dekker, New York.

Gibson, D. T., G. E. Cardini, F. C. Maseles, and R. E. Kallio. 1970. Incorporation

of oxygen-18 into benzene by Pseudomonas putida. Biochemistry 9: 1631–1635.

Godfrey, T., and S. West. 1996. Industrial enzymology, 2nd ed., p. 3. Macmillan

Publishers Inc., New York, N.Y.

Goodwin, K. D., R. Tokarczyk, F. C. Stephens, and E. S. Saltzman. 2005.

Description of toluene inhibition of methyl bromide biodegradation in seawater and

isolation of a marine toluene oxidizer that degrades methyl bromide. Appl. Environ.

Microbiol. 71: 3495-3503.

Greene, E. A., J. G. Kay, K. Jaber, L. G. Stehmeier, and G. Voordouw. 2000.

Composition of soil microbial communities enriched on a mixture of aromatic

hydrocarbons. Appl. Environ. Microbiol. 66: 5282-5289.

Griebenow, K. and A. M. Klibanov. 1996. On protein denaturation in aqueous-

organic mixtures but not in pure organic solvents. J. Am. Chem. Soc. 47: 11695–

11700.

Gupta, A., and S. K. Khare. 2006. A protease stable in organic solvents from

solvent tolerant strain of Pseudomonas aeruginosa. Bioresour. Technol. 97: 1788-

1793.

Gupta, A., and S. K. Khare. 2007. Enhanced production and characterization of a

solvent stable protease from solvent tolerant Pseudomonas aeruginosa PseA. Enzyme

Microb. Technol. 42: 11-16.

Gupta, A., I. Roy, R. K. Patel, S. P. Singh, S. K. Khare, and M. N. Gupta. 2005.

One-step purification and characterization of an alkaline protease from

haloalkaliphilic Bacillus sp. J. Chromatogr. A. 1075: 103–108.

Page 8: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9157/11/... · Optimization of physical factors affecting the production of thermo-stable organic solvent-tolerant

References

Ph.D. Thesis of Shah Kunal Nareshkumar [1091] Page 169

Gupta, A., I. Roy, S. K. Khare, and M. N. Gupta. 2005b. Purification and

characterization of a solvent stable protease from Pseudomonas aeruginosa PseA. J.

Chromatogr., A. 1069: 155-161.

Gupta, A., R. Singh, S. K. Khare, and M. N. Gupta. 2006. A solvent tolerant

isolate of Enterobacter aerogenes . Bioresour. Technol. 97: 99-103.

Gupta, M. N., and I. Roy. 2004. Enzymes in organic media forms, functions and

applications. Eur. J. Biochem. 271: 2575–2583.

Gupta, R., P. Rathi, N. Gupta and S. Bradoo. 2003. Lipase assays for conventional

and molecular screening: an overview. Biotechnol. Appl. Biochem. 37: 63-71.

Gupta, R., Q. K. Beg, and P. Lorenz. 2002. Bacterial alkaline proteases: molecular

approaches and industrial applications. Appl. Microbiol. Biotechnol. 59:15–32.

Hayashi, S., T. Kobayashi, and H. Honda. 2003. Simple and rapid cell growth assay

using tetrazolium violet coloring method for screening of organic solvent tolerant

bacteria. J. Biosci. Bioeng. 96: 360-363.

Head I. M., D. M. Jones, and W. F. Roling. 2006. Marine microorganisms make a

meal of oil. Nat. Rev. Microbiol. 4: 173-182.

Heipieper, H. J. and J. A. M. de Bont. 1994. Adaptation of Pseudomonas putida

S12 to ethanol and toluene at the level of the fatty acid composition of membranes.

Appl. Environ. Microbiol. 60: 4440–4444.

Heipieper, H. J., B. Loffeld, H. Keweloh, and J. A. M. de Bont. 1995. The

cis/trans isomerisation of unsaturated fatly acids in Pseudomonas putida S12: an

indicator for environmental stress due to organic compounds. Chemosphere. 30:

1041-1051.

Heipieper, H. J., F. J. Weber, J. Sikkema, H. Keweloh, and J. A. M. de Bont.

1994. Mechanisms of resistance of whole cells to toxic organic solvents. Trends

Biotechnol. 12: 409–415.

Heipieper, H. J., G. Meulenbeld, Q. van Oirschot, and J. A. M. de Bont. 1996.

Effect of environmental factors on the trans/cis ratio of unsaturated fatty acids in

Pseudomonas putida S12. Appl. Environ. Microbiol. 62: 2773–2777.

Hodgson, J. 1994. Still water run deep. Bio/Technology 12:983–987.

Page 9: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9157/11/... · Optimization of physical factors affecting the production of thermo-stable organic solvent-tolerant

References

Ph.D. Thesis of Shah Kunal Nareshkumar [1091] Page 170

Holt, J. G., N. R. Krieg, P. H. A. Sneath, J. T. Staley, and S. T. Williams. 1994.

Bergey’s Manual of Determinative Bacteriology, 9th ed., The Williams & Wilkins

Co., Baltimore.

Hommu, M., H. Chibana, and K. Tanaka. 1993. Introduction of extracellular

proteinase in Candida albicans. J. Gen. Microbiol. 139: 1187–1193.

Huheey, J. E. Chemistry: Principles of structure and reactivity. New York: Harper

and Row; 1972.

Hun, C. J., R. N. Z. A. Rahman, A. B. Salleh, and M. Basri. 2003. A newly

isolated organic solvent tolerant Bacillus sphaericus 205y producing organic solvent-

stable lipase. Biochem. Eng. J. 15: 147-151.

Inoue, A., and K. Horikoshi. 1989. Pseudomonas thrives in high concentrations of

toluene. Nature (London) 338: 264-266.

Inoue, A., and K. Horikoshi. 1991. Estimation of solvent-tolerance of bacteria by the

solvent parameter log P. J. Ferment. Bioeng. 71: 194-196.

Inoue, A., M. Yamamoto, and K. Horikoshi. 1991. Pseudomonas putida which can

grow in the presence of toluene. Appl. Environ. Microbiol. 57: 1560-1562.

Isken, I., Santos, P. M. A. C. and de Bont, J. A. M. 1997. Effect of solvent

adaptation on the antibiotic resistance in Pseudomonas putida S12. Appl. Microbiol.

Biotechnol. 48: 642–647.

Isken, S., A. Derks, P. F. G. Wolffs, and J. A. M. De Bont. 1999. Effect of organic

solvents on the yield of solvent-tolerant Pseudomonas putida S12. Appl. Environ.

Microbiol. 65: 2631-2635.

Isken, S., and J. A. de Bont. 1998. Bacteria tolerant to organic solvents.

Extremophiles. 2:229–238.

Isken, S., and J. A. M. de Bont. 1996. Active efflux of toluene in a solvent-resistant

bacterium. J. Bacteriol. 178: 6056-6058.

Isken, S., P. M. A. C. Santos, and J. A. M. deBont. 1997. Effect of solvent

adaptation on the antibiotic resistance in Pseudomonas putida S12. Appl. Microbiol.

Biotechnol. 48:642–647.

Page 10: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9157/11/... · Optimization of physical factors affecting the production of thermo-stable organic solvent-tolerant

References

Ph.D. Thesis of Shah Kunal Nareshkumar [1091] Page 171

Ito, T., H. Kikuta, E. Nagamori, H. Honda, H. Ogino, H. Ishikawa, T. Kobayashi.

2001. Lipase production in two-step fed-batch culture of organic solvent-tolerant

Pseudomonas aeruginosa LST-03. J. Biosci. Bioeng. 91: 245-250.

Iwabuchi, N., M. Sunairi, H. Anzai, M. Nakajima, and S. Harayama. 2000.

Relationships between colony morphotypes and oil tolerance in Rhodococcus

rhodochrous. Appl. Environ. Microbiol. 66: 5073-5077.

Jasvir, S., N. Gill, G. Devasahayam, and D. K. Sahoo. 1999. Studies on alkaline

protease produced by Bacillus sp. NG 312. Appl. Biochem. Biotechnol. 76: 57–63.

Ji, Q., S. Xiao, B. He, and X Liu. 2010. Purification and characterization of an

organic solvent-tolerant lipase from Pseudomonas aeruginosa LX1 and its application

for biodiesel production. J. Mol. Catal. B Enzym. 66: 264-269.

Johnvesly, B. and G. R. Naik. 2001. Studies on production of thermostable alkaline

protease from thermophilic and alkaliphilic Bacillus sp. JB-99 in a chemically defined

medium. Process Biochem. 38: 155–159.

Joo H. J., C. G. Kumar, G. C. Park, K. T. Kim, S. R. Paik, C. S. Chan. 2002.

Optimization of the production of an extracellular alkaline protease from Bacillus

horikoshii. Process Biochem. 37: 139–144.

Joshi, G. K., S. Kumar, and V. Sharma. 2007. Production of moderately

halotolerant, sds stable alkaline protease from Bacillus cereus mtcc 6840 isolated

from lake Nainital, Uttaranchal state, India. Braz. J. Microbiol. 38: 773-779.

Kadavy, D. R., J. M. Hornby, T. Haverkost, and K. W. Nickerson. 2000. Natural

antibiotic resistance of bacteria isolated from larvae of the oil fly, Helaeomyia

petrolei. Appl. Environ. Microbiol. 66: 4615-4619.

Kademi, A., N. Ait-Abdelkar, L. Fakhreddine and J. Baratti. 2000. Purification

and characterization of a thermostable esterase from the moderate thermophile

Bacillus circulans. Appl. Microbiol. Biotechnol. 54: 173-179.

Kamino, K. 2001. Novel barnacle underwater adhesive protein is a charged amino

acid-rich protein constituted by a Cys-rich repetitive sequence. Biochem. J. 356: 503–

507.

Kanjanavas, P., S. Khuchareontaworn, P. Khawsak, A. Pakpitcharoen, K.

Pothivejkul, S. Santiwatanakul, K. Matsui, T. Kajiwara and K. Chansiri. 2010.

Page 11: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9157/11/... · Optimization of physical factors affecting the production of thermo-stable organic solvent-tolerant

References

Ph.D. Thesis of Shah Kunal Nareshkumar [1091] Page 172

Purification and characterization of organic solvent and detergent tolerant lipase from

thermotolerant Bacillus sp. RN2. Int. J. Mol. Sci. 11: 3783-3792.

Karan, R., S. P. Singh, S. Kapoor, and S.K. Khare. 2011. A novel organic solvent

tolerant protease from a newly isolated Geomicrobium sp. EMB2 (MTCC 10310):

production optimization by response surface methodology. New Biotechnol. 28: 136-

145.

Karbalaei-Heidari, H. R., A. Ziaee, M. A. Amoozegar. 2007. Purification and

biochemical characterization of a protease secreted by the Salinivibrio sp. strain AF-

2004 and its behavior in organic solvents. Extremophiles. 11: 237–243.

Katalin, B. B., D. Nóra, U. Olga, and G. László. 2002. Application of pervaporation

for removal of water produced during enzymatic esterification in ionic liquids.

Desalination. 149: 267–268.

Kawata, T., and H. Ogino. 2010. Amino acid residues involved in organic solvent-

stability of the LST-03 lipase. Biochem. Biophys. Res. Commun. Volume 400: 384-

388.

Keay, L., and B. S. Wildi. Proteases of genus Bacillus. 1970. I. Neutral proteases.

Biotechnol. Bioeng. 12: 179–212.

Keith, L. H., and W. A. Telliard. 1979. Priority pollutants. I. A perspective view.

Environ. Sci. Technol. 13:416–423.

Keweloh, H. and H. J. Heipieper. 1996. Trans unsaturated fatty acids in bacteria.

Lipids. 31: 129–137.

Khan, A. R., S. Nirasawa, S. Kaneko, T. Shimonishi, and K. Hayashi. 2000.

Characterization of a solvent resistant and thermostable aminopeptidase from the

hyperthermophillic bacterium, Aquifex aeolicus. Enzyme Microb. Technol. 27: 83-88.

Kieboom, J., J. J. Dennis, G. J. Zylstra, and J. A. M. De Bont. 1998a. Active

efflux of organic solvents by Pseudomonas putida S12 is induced by solvents. J.

Bacteriol. 180: 6769-6772.

Kieboom, J., J. J. Dennis, J. A. M. de Bont, and G. J. Zylstra. 1998b.

Identification and molecular characterization of an efflux pump involved in

Pseudomonas putida S12 solvent tolerance. J. Biol. Chem. 273: 85-91.

Page 12: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9157/11/... · Optimization of physical factors affecting the production of thermo-stable organic solvent-tolerant

References

Ph.D. Thesis of Shah Kunal Nareshkumar [1091] Page 173

Kilbanov, A. M. Improving enzymes by using them in organic solvents. Nature

(London, UK) 2001;409:241-6.

Kim, D., Y. S. Kim, S. K. Kim, S. W. Kim, G. J. Zylstra, Y. M. Kim, and E. Kim.

2002. Monocyclic aromatic hydrocarbon degradation by Rhodococcus sp. strain

DK17. Appl. Environ. Microbiol. 68: 3270-3278.

Kim, J. M., and C. O. Jeon. 2009. Isolation and characterization of a new benzene,

toluene, and ethylbenzene degrading bacterium, Acinetobacter sp. B113. Curr.

Microbiol. 58: 70–75.

Kim, J. M., N. T. Le, B. S. Chung, J. H. Park, J. W. Bae, E. L. Madsen, and C. O.

Jeon. 2008. Influence of soil components on the biodegradation of benzene, toluene,

ethylbenzene, and o-, m-, and p-xylenes by the newly isolated bacterium

Pseudoxanthomonas spadix BD-a59. Appl. Environ. Microbiol. 74: 7313-7320.

Kim, K., S. Lee, K. Lee, and D. Lim. 1998. Isolation and characterization of

toluene-sensitive mutants from the toluene-resistant bacterium Pseudomonas putida

GM73. J. Bacteriol. 180: 3692–3696.

Kise H., A. Hayakawa, and H. Noritomi. 1990. Protease-catalyzed synthetic

reactions and immobilization-activation of the enzymes in hydrophilic organic

solvents. J. Biotechnol. 14: 239–254.

Kita, A., K. Honda, H. Ohtake, and J. Kato. 2009. Molecular mechanism of

organic solvent tolerance in Rhodococcus opacus strain B4. J. Biosci. Bioeng. 108:

S82.

Kobayashi, H., H. Takami, H. Hirayama, K. Kobata, R. Usami, and K.

Horikoshi. 1999. Outer membrane changes in a toluene-sensitive mutant of toluene-

tolerant Pseudomonas putida IH-2000. J. Bacteriol. 181: 4493-4498.

Kobayashi, H., K. Uematsu, H. Hirayama, and K. Horikoshi. 2000. Novel toluene

elimination system in a toluene-tolerant microorganism. J. Bacteriol. 182: 6451-6455.

Kobayashi, H., M. Yamamoto and R. Aono. 1998. Appearance of a stress-response

protein, phage-shock protein A, in Escherichia coli exposed to hydrophobic organic

solvents. Microbiology. 144: 353-359.

Page 13: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9157/11/... · Optimization of physical factors affecting the production of thermo-stable organic solvent-tolerant

References

Ph.D. Thesis of Shah Kunal Nareshkumar [1091] Page 174

Kongpol, A., T. Pongtharangkul, J. Kato, K. Honda, H. Ohtake & A. S. Vangnai.

2009. Characterization of an organic-solvent-tolerant Brevibacillus agri strain13 able

to stabilize solvent/water emulsion. FEMS Microbiol. Lett. 297: 225–233.

Koops, B.C., H. M. Verheij, A. J. Slotboom, and M. R. Egmond. 1999. Effect of

chemical modification on the activity of lipases in organic solvents. Enzyme Microb.

Technol. 25: 622–631.

Laane, C. 1987. Medium engineering for bioorganic synthesis. Biocatalysis. 30: 80–

87.

Laemmli, U. K. 1970. Cleavage of structural proteins during assembly of head of

bacteriophage T4. Nature (London). 227: 680–685.

Leon, R., P. Fernandes, H. M. Pinheiro, and J. M. S Cabral. 1998. Whole cell

biocatalysis in organic media. Enzyme Microb. Technol. 23:483–500.

Leščić, I., B. Vukelić, M. Majerić-Elenkov, W. Saenger, and M. Abrami. 2001.

Substrate specificity and effects of water-miscible solvents on the activity and

stability of extracellular lipase from Streptomyces rimosus. Enzyme Microb. Technol.

29: 548-553.

Li, L., T. Komatsu, A. Inoue, and K. Horikoshi. 1995. A toluene-tolerant mutant of

Pseudomonas aeruginosa lacking the outer membrane protein F. Biosci. Biotechnol.

Biochem. 59: 2358–2359.

Li, S., B. He, Z. Bai, and P. Ouyang. 2009. A novel organic solvent-stable alkaline

protease from organic solvent–tolerant Bacillus licheniformis YP1A. J. Mol. Catal. B

Enzym. 56: 85-88.

Li, X., L. Zhang, and K. Poole. 1998. Role of the multidrug efflux systems of

Pseudomonas aeruginosa in organic solvent tolerance. J. Bacteriol. 180: 2987-2991.

Lin, Q., and I. A. Mendelssohm. 1998. The combined effects of phytoremediation

and biostimulation in enhancing habitat restoration and oil degradation of petroleum

contaminated wetlands. Ecological Engineering. 10: 263-274.

Lin, S. 1996. Production and stabilization of a solvent-tolerant alkaline lipase from

Pseudomonas pseudoalcaligenes F-111. J. Ferment. Bioeng. 82: 448-451.

Page 14: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9157/11/... · Optimization of physical factors affecting the production of thermo-stable organic solvent-tolerant

References

Ph.D. Thesis of Shah Kunal Nareshkumar [1091] Page 175

Liu, S., Y. Fang, M. Lv, S. Wang, and L. Chen. 2010. Optimization of the

production of organic solvent-stable protease by Bacillus sphaericus DS11 with

response surface methodology. Bioresour. Technol. 101: 7924-7929.

Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein

measurement with the folin phenol reagent. J. Biol. Chem. 193: 265-275.

Mabrouk, S. S., A. M. Hashem, N. M. A. El-Shayeb, A. M. S. Ismail, and A. F.

Abdel-Fattah. 1999. Optimization of alkaline protease productivity by Bacillus

licheniformis ATCC 21415. Bioresource Technol. 69: 155–159.

MacDonald, P. M., B. D. Sykes, and R N. McElhaney. 1985. Fluorine-19 nuclear

magnetic resonance studies of lipid fatty acyl chain order and dynamics in

Acholeplasma laidlawii B membranes. A direct comparison of the effects of cis and

trans cyclopropane ring and double-bond substituents on orientational order.

Biochemistry 24: 4651-4659.

Macfarlane, G. T. and S. Macfarlane. 1992. Physiological and nutritional factors

affecting Synthesis of extracellular metalloproteinase by Clostridium bifermentans.

Appl. Environ. Microbio. 58: 1973–1976.

Magnusson, A. O., J. C. Rotticci-Mulder, A. Santagostino, and K. Hult. 2005.

Creating space for large secondary alcohols by rational redesign of Candida

antarctica lipase B. Chem. Biochem. 6: 1051–1056.

Mahanta, N., A. Gupta, and S. K. Khare. 2008. Production of protease and lipase

by solvent tolerant Pseudomonas aeruginosa PseA in solid-state fermentation using

Jatropha curcas seed cake as substrate. Bioresour. Technol. 99: 1729-1735.

Mahanta, N., A. Gupta, and S. K. Khare. 2008. Production of protease and lipase

by solvent tolerant Pseudomonas aeruginosa PseA in solid-state fermentation using

Jatropha curcas seed cake as substrate. Bioresour. Technol. 99: 1729-1735.

Marmur J. 1961. A procedure for the isolation of deoxyribonucleic acid from

microorganisms. J. Mol. Biol. 3: 208–218.

Martinez P, M. E. Van Dam, A. C. Robinson, K. Chen, and F. H. Arnold. 1992.

Stabilization of subtilisin E in organic solvents by site directed mutagenesis.

Biotechnol. Bioeng. 39:141–147.

Mascarelli, A. 2010. After the oil. Nature. 467: 22-24.

Page 15: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9157/11/... · Optimization of physical factors affecting the production of thermo-stable organic solvent-tolerant

References

Ph.D. Thesis of Shah Kunal Nareshkumar [1091] Page 176

Matsumoto, M., J. A. M. de Bont, and S. Isken. 2002. Isolation and

characterization of the solvent-tolerant Bacillus cereus strain R1. J. Biosci. Bioeng.

94: 45-51.

McKellar, R. C., K. C. Shamsuzzamam, S. Jose, and H. Cholette. 1987. Influence

of iron (III) pyoverdine on extracellular proteinase and lipase production by

Pseudomonas fluorescens B52. Arch. Microbiol. 147: 225– 230.

Mehrotra, S., P. K. Pandey, R. Gaur and N. S. Darmwal. 1999. The production of

alkaline protease by a Bacillus species isolate. Bioresource Technol. 67: 201–203.

Mermod, N., S. Harayama, and K. N. Timmis. 1986. New route to bacterial

production of indigo. Bio/Technology 4:321–324.

Mine, Y., K. Fukunaga, M. Yoshimoto, K. Nakao, and Y. Sugimura. 2003.

Stereochemistry of a diastereoisomeric amphiphile and the species of the lipase

influence enzyme activity in the transesterification catalyzed by a lipase co-

lyophilizate with the amphiphile in organic media. Biotechnol. Lett. 25: 1863–1867.

Mitsch and Gosselink. 2000. Wetlands. John Wiley and Sons, Inc., New York.

Moon, S.H., and S. J. Parulekar.1991. A parametric study of protease production in

batch and fed-batch cultures of Bacillus firmus. Biotechnol. Bioeng. 37, 467–483.

Moreno, B., A. Vivas, R. Nogales, and E. Benitez. 2009. Solvent tolerance acquired

by Brevibacillus brevis during an olive-waste vermicomposting process. Ecotoxicol.

Environ. Saf. 72: 2109-2114.

Mukherjee, A. K., M. Borah, and S. K. Rai. 2009. To study the influence of

different components of fermentable substrates on induction of extra cellular α-

amylase synthesis by Bacillus subtilis DM-03 in solid state fermentation and

exploration of feasibility for inclusion of α-amylase in laundry detergent formulations.

Biochem. Eng. J. 43: 149–156.

Musat, F., and F. Widdel. 2008. Anaerobic degradation of benzene by a marine

sulfate-reducing enrichment culture, and cell hybridization of the dominant phylotype.

Environ. Microbiol. 10:10–19.

Na, K., A. Kuroda, N. Takiguchi, T. Ikeda, H. Ohtake, and J. Kato. 2005.

Isolation and characterization of benzene-tolerant Rhodococcus opacus strains. J.

Biosci. Bioeng. 99: 378-382.

Page 16: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9157/11/... · Optimization of physical factors affecting the production of thermo-stable organic solvent-tolerant

References

Ph.D. Thesis of Shah Kunal Nareshkumar [1091] Page 177

Naidu, K. S. B., and K. L. Devi. 2005. Optimization of thermostable alkaline

protease production from species of Bacillus using rice bran. African Journal of

Biotechnology. 4: 724-726.

Nawani, N., and J. Kaur. 2007. Study on lipolytic isoenzymes from a thermophilic

Bacillus sp.: production, purification and biochemical characterization. Enzyme

Microb. Technol. 40: 881–887.

Neumann, G., Y. Veeranagouda, T. B. Karegoudar, Ö. Sahin, I. Mäusezahl, N.

K. U. Kappelmeyer, H. J. Heipieper. 2005. Cells of Pseudomonas putida and

Enterobacter sp. adapt to toxic organic compounds by increasing their size.

Extremophiles. 9: 163–168.

Nielsen, L. E., D. R. Kadavy, S. Rajagopal, R. Drijber, and K. W. Nickerson.

2005. Survey of extreme solvent tolerance in gram-positive cocci: membrane fatty

acid changes in Staphylococcus haemolyticus grown in toluene. Appl. Environ.

Microbiol. 71: 5171-5176.

Nikaido, H. 1996. Multidrug efflux pumps of gram-negative bacteria. J. Bacteriol.

178: 5853–5859.

Ogino, H., and H. Ishikawa. 2001. Enzymes which are stable in the presence of

organic solvents. J. Biosci. Bioeng. 91: 109–16.

Ogino, H., F. Watanabe, M. Yamada, S. Nakagawa, T. Hirose, A. Noguchi, M.

Yasuda, and H. Ishikawa. 1999a. Purification and characterization of organic

solvent-stable protease from organic solvent-tolerant Pseudomonas aeruginosa PST-

01. J. Biosci. Bioeng. 87: 61-68.

Ogino, H., K. Miyamoto, and H. Ishikawa. 1994. Organic solvent-tolerant

bacterium which secretes organic-solvent-stable lipolytic enzyme. Appl. Environ.

Microbiol. 60: 3884-3886.

Ogino, H., K. Miyamoto, M. Yasuda, K. Ishimi, and H. Ishikawa. 1999b. Growth

of organic solvent-tolerant Pseudomonas aeruginosa LST-03 in the presence of

various organic solvents and production of lipolytic enzyme in the presence of

cyclohexane. Biochem. Eng. J. 4: 1-6.

Page 17: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9157/11/... · Optimization of physical factors affecting the production of thermo-stable organic solvent-tolerant

References

Ph.D. Thesis of Shah Kunal Nareshkumar [1091] Page 178

Ogino, H., K. Yasui, T. Shiotani, T. Ishihara, and H. Ishikawa. 1995. Organic

solvent-tolerant bacterium which secretes an organic solvent-stable proteolytic

enzyme. Appl. Environ. Microbiol. 61: 4258–4262.

Ogino, H., M. Yamada, F. Watanabe, H. Ichinose, M. Yasuda, H. Ishikawa.

1999c. Peptide synthesis catalyzed by organic solvent-stable protease from

Pseudomonas aeruginosa PST-01 in monophasic aqueous-organic solvent systems. J.

Biosci. Bioeng. 88: 513-518.

Ogino, H., S. Nakagawa, K. Shinya, T. Muto, N. Fujimura, M. Yasuda, and H.

Ishikawa. 2000. Purification and characterization of organic solvent-stable lipase

from organic solvent-tolerant Pseudomonas aeruginosa LST-03. J. Biosci. Bioeng.

89: 451-457.

Ogino, H., Y. Gemba, M. Yamada, M. Shizuka, M. Yasuda, H. Ishikawa. 2000.

The synthetic rate of dipeptide catalyzed by organic solvent-stable protease from

Pseudomonas aeruginosa PST-01 in the presence of water-soluble organic solvents.

Biochem. Eng. J. 5: 219-223.

Oka, A. R., C. D. Phelps, L. M. McGuinness, A. Mumford, L. Y. Young, and L.

J. Kerkhof. 2008. Identification of critical members in a sulfidogenic benzene-

degrading consortium by dna stable isotope probing. Appl. Environ. Microbiol. 74:

6476-6480.

Okuyama, H., N. Okajima, S. Sasaki, S. Higashi, and N. Murata. 1991. The

cis/trans isomerization of the double bond of a fatty acid as a strategy for adaptation

to changes in ambient temperature in the psychrophilic bacterium Vibrio sp. strain

ABE-1. Biochim. Biophys. Acta 1084: 13-20.

Pakchung, A. A. H., P. J. L. Simpson, and R. Codd. 2006. Life on Earth.

Extremophiles Continue to Move the Goal Posts. Environ. Chem. 3:77–93.

Pansare A. C., V. Venugapal, N. F. Lewis. 1985. A note on nutritional influence on

extracellular protease synthesis in Aeromonas hydrophilia. J. Appl. Bacteriol. 58:

101–104.

Parales, R. E., J. L. Ditty, and C. S. Harwood. 2000. Toluene-degrading bacteria

are chemotactic towards the environmental pollutants benzene, toluene, and

trichloroethylene. Appl. Environ. Microbiol. 66: 4098-4104.

Page 18: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9157/11/... · Optimization of physical factors affecting the production of thermo-stable organic solvent-tolerant

References

Ph.D. Thesis of Shah Kunal Nareshkumar [1091] Page 179

Paul, B. H., K. McCalay, S. Vainberg, M. Tugusheva, C. W. Condee, and R. J.

Steffan. 2001. Biodegradation of methyl tert-butyl ether by a pure bacterial culture.

Appl. Environ. Microbiol. 67: 5601–5607.

Paulsen, I. T., M. H. Brown, and R. A. Skurray. 1996. Proton-dependent multidrug

efflux systems. Microbiol. Rev. 60: 575–608.

Philip L, SM Maliyekkal, ER Reneb, T Swaminathan. 2004. Performance of BTX

degraders under substrate versatility conditions. J. Hazard. Mater. B109: 201–211.

Pinkart, H. C., J. W. Wolfram, R. Rogers, and D. C. White. 1996. Cell Envelope

Changes in Solvent-Tolerant and Solvent-Sensitive Pseudomonas putida Strains

following Exposure to o-Xylene. Appl. Environ. Microbiol. 62: 1129-1132.

Poole, K., D. E. Heinrichs, and S. Neshat. 1993. Cloning and sequence analysis of

an EnvCD homologue in Pseudomonas aeruginosa: regulation by iron and possible

involvement in the secretion of the siderophore pyoverdine. Mol. Microbiol. 10: 529–

544.

Prince R. C., R. R. Lessard, and J. R. Clark. 2003. Bioremediation of marine oil

spills. Oil Gas Sci. Technol. 58: 463-468.

Rachadech, W., A. Navacharoen, W. Ruangsit, T. Pongtharangkul, and A. S.

Vangnai. 2010. An organic solvent, detergent, and thermostable alkaline protease

from the mesophilic, organic solvent tolerant Bacillus licheniformis 3C51.

Microbiology. 79: 620–629.

Rahman, R. N. Z. A., L. P. Geok, M. Basri, and A. B. Salleh. 2005a. An organic

solvent-tolerant protease from Pseudomonas aeruginosa strain K: Nutritional factors

affecting protease production. Enzyme Microb. Technol. 36: 749-757.

Rahman, R. N. Z. A., L. P. Geok, M. Basri, and A. B. Salleh. 2005b. Physical

factors affecting the production of organic solvent-tolerant protease by Pseudomonas

aeruginosa strain K. Bioresour. Technol. 96: 429-436.

Rahman, R. N. Z. R. A., C. N. Razak, K. Ampon, M. Basri, W. M. Z. W. Yunus,

and A. B. Salleh. 1993. Purification and characterization of a heat-stable alkaline

protease from Bacillus stearothermophilus F1. Appl. Microbiol. Biotechnol. 40: 822–

827.

Page 19: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9157/11/... · Optimization of physical factors affecting the production of thermo-stable organic solvent-tolerant

References

Ph.D. Thesis of Shah Kunal Nareshkumar [1091] Page 180

Rahman, R. N. Z. R. A., L. P. Geok, M. Basri, and A. B. Salleh. 2006. An organic

solvent-stable alkaline protease from Pseudomonas aeruginosa strain K: Enzyme

purification and characterization. Enzyme Microb. Technol. 39: 1484-1491.

Rahman, R. N. Z. R. A., M. Basri, and A. B. Salleh. 2003. Heat stable alkaline

protease from Bacillus stearothermophilus F1: nutritional factors affecting protease

production. Ann. Microbiol. 53: 199–210.

Rahman, R. N. Z. R. A., S. Mahamad, A. B. Salleh, M. Basri. 2007. A new

organic solvent tolerant protease from Bacillus pumilus 115b. J. Ind. Microbiol.

Biotechnol. 34: 509–517.

Rahman, R. N. Z. R. A., S. N. Baharum, A. B. Salleh, and M. Basri. 2006. S5

lipase: An organic solvent tolerant enzyme. The Journal of Microbiology. 44: 583-

590.

Rahman, R. N. Z. R. A., S. N. Baharum, M. Basri, and A. B. Salleh. 2005. High-

yield purification of an organic solvent-tolerant lipase from Pseudomonas sp. strain

S5. Anal. Biochem. 341: 267-274.

Rai, S. K., and A. K. Mukherjee. 2009. Ecological significance and some

biotechnological application of an organic solvent stable alkaline serine protease from

Bacillus subtilis strain DM-04. Bioresour. Technol. 100: 2642-2645.

Rai, S. K., and A. K. Mukherjee. 2010. Statistical optimization of production,

purification and industrial application of a laundry detergent and organic solvent-

stable subtilisin-like serine protease (Alzwiprase) from Bacillus subtilis DM-04.

Biochem. Eng. J. 48: 173-180.

Ramos, J. L., E. Duque, J. Rodriguez-Herva, P. Godoy, Ali Haidour, F. Reyes,

and A. Fernandez-Barrero. 1997. Mechanisms for solvent tolerance in bacteria. J.

Biol. Chem. 272: 3887–3890.

Ramos, J. L., E. Duque, M. J. Huertas, and A. Haïdour. 1995. Isolation and

expansion of the catabolic potential of a Pseudomonas putida strain able to grow in

the presence of high concentrations of aromatic hydrocarbons. J. Bacteriol. 177:

3911–3916.

Ramos, J. L., E. Duque, P. Godoy, and A. Segura. 1998. Efflux pumps involved in

toluene tolerance in Pseudomonas putida DOT-T1E. J. Bacteriol. 180: 3323-3329.

Page 20: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9157/11/... · Optimization of physical factors affecting the production of thermo-stable organic solvent-tolerant

References

Ph.D. Thesis of Shah Kunal Nareshkumar [1091] Page 181

Ramos, J., E. Duque, J. Rodriguez-Herva, P. Godoy, A. Haidour, F. Reyes, and

A. Fernandez-Barrero. 1997. Mechanisms for solvent tolerance in bacteria. J. Biol.

Chem. 272:3887-3890.

Ramos, J., E. Duque, M. Gallegos, P. Godoy, M. Ramos- Gonsalez, A. Rojas, W.

Teran, and A. Segura. 2003. Mechanisms of solvent tolerance in gram-negative

bacteria. Annu. Rev. Microbiol. 56:743-768.

Reddy, L. V. A., Y-J. Wee and H-W. Ryu. 2008. Purification and characterization

of an organic solvent and detergent-tolerant novel protease produced by Bacillus sp.

RKY3. J. Chem. Technol. Biotechnol. 83: 1526–1533.

Ronen, Z., S. Visnovsky, and A. Njidat. 2005. Soil extracts and coculture assist

biodegradation of 2, 4, 6-tribromophenol in culture and soil by an auxotrophic

Achromobacter piechaudii strain TBPZ. Soil Biol. Biochem. 37: 1640–1647.

Royon, D., M. Daz, G. Ellenrieder, and S. Locatelli. 2007. Bioresour. Technol. 98:

648–653.

Ruiz, D. M., and R. E. De Castro. 2007. Effect of organic solvents on the activity

and stability of an extracellular protease secreted by the haloalkaliphilic archaeon

Natrialba magadii. J. Ind. Microbiol. Biotechnol. 34: 111–115.

Rula, A.D., L.A. Cohen. 1999. Temperature effects and substrate interactions during

the aerobic biotransformation of BTEX mixtures by toluene enriched consortia and

Rhodococcus rhodochrous. Biotechnol. Bioeng. 62: 526–535.

Sana, B., D. Ghosh, M. Saha, and J. Mukherjee. 2006. Purification and

characterization of a salt, solvent, detergent and bleach tolerant protease from a new

gamma-Proteobacterium isolated from the marine environment of the

Sundarbans. Process Biochem. 41: 208-215.

Sardesai, Y. N., and S. Bhosle. 2004. Industrial potential of organic solvent tolerant

bacteria. Biotechnol. Prog. 20: 655-660.

Sardessai1, Y., and S. Bhosle. 2003. Isolation of an organic-solvent-tolerant

cholesterol-transforming Bacillus species, BC1, from coastal sediment. Mar.

Biotechnol. 5: 116-118.

Page 21: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9157/11/... · Optimization of physical factors affecting the production of thermo-stable organic solvent-tolerant

References

Ph.D. Thesis of Shah Kunal Nareshkumar [1091] Page 182

Sareen, R., & P. Mishra. 2008. Purification and characterization of organic solvent

stable protease from Bacillus licheniformis RSP-09-37. Appl. Microbiol. Biotechnol.

79: 399–405.

Sareen, R., U. T. Bornscheuer, and P. Mishra. 2004. Synthesis of kyotorphin

precursor by an organic solvent-stable protease from Bacillus licheniformis RSP-09-

37. J. Mol. Catal. B Enzym. 32: 1-5.

Schlatmann, J., Aires-barros, R.M., Cabral, S.M.J. 1991. Esterification of short

chain organic acids with alcohols by a lipase microencapsulated in reversed micelles.

Biocatal. Biotransfor. 5, 137–144.

Schoemaker, H. E., D. Mink, and M. G. Wubbolts. 2003. Dispelling the myths:

biocatalysis in industrial synthesis. Science 299:1694–1697.

Sen, S., and T. Satyanarayana. 1993. Optimization of alkaline protease production

by thermophilic Bacillus licheniformis S-40. Ind. J. Microbiol. 33: 43–47.

Shah, A., and P. Mishra. 1995. Microbial Tolerance to Solvents and Organic Acids.

Progress in Industrial Microbiology. 33: 317-349.

Shah, K. R., P. M. Patel, and S. A. Bhatt. 2007. Lipase production by Bacillus sp.

under different physio-chemical conditions. Journal of Cell & Tissue Research. 7:

913–916.

Shah, K., K. Mody, J. Keshri, B. Jha. 2010. Purification and characterization of a

solvent, detergent and oxidizing agent tolerant protease from Bacillus cereus isolated

from the Gulf of Khambhat. J. Mol. Catal. B Enzym. 67: 85-91.

Shim, H., E.B. Shin, S.T. Yang. 2002. A continuous fibrous-bed bioreactor for

BTEX biodegradation by co-culture of Pseudomonas putida and Pseudomonas

fluorescens, Adv. Environ. Res. 7: 203–216.

Shimizu, K., S. Hayashi, T. Kako, M. Suzuki, N. Tsukagoshi, N. Doukyu, T.

Kobayashi, and H. Honda. 2005. Discovery of glpc, an organic solvent tolerance-

related gene in Escherichia coli, using gene expression profiles from DNA

microarrays. Appl. Environ. Microbiol. 71: 1093–1096.

Shimogaki, H., K. Takeuchi, T. Nishino, M. Ohdera, T. Kudo, K. Ohba, et al.

1991. Purification and properties of a novel surface active agent and alkaline resistant

protease from Bacillus sp. Y. Agric. Biol. Chem. 55: 2251–2258.

Page 22: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9157/11/... · Optimization of physical factors affecting the production of thermo-stable organic solvent-tolerant

References

Ph.D. Thesis of Shah Kunal Nareshkumar [1091] Page 183

Shinoda, Y., Y. Sakai, H. Uenishi, Y. Uchihashi, A. Hiraishi, H. Yukawa, H.

Yurimoto, and N. Kato. 2004. Aerobic and anaerobic toluene degradation by a

newly isolated denitrifying bacterium, Thauera sp. strain DNT-1. Appl. Environ.

Microbiol. 70: 1385-1392.

Shu, Z., R. Lin, H. Jiang, Y. Zhang, M. Wang, and J. Huang. 2009. A rapid and

efficient method for directed screening of lipase-producing Burkholderia cepacia

complex strains with organic solvent tolerance from rhizosphere. J. Biosci. Bioeng.

107: 658-661.

Sikkema, J., J. de Bont, and B. Poolman. 1994. Interactions of cyclic hydrocarbons

with biological membranes. J. Biol. Chem. 269: 8022-8026.

Sikkema, J., J. de Bont, and B. Poolman. 1995. Mechanisms of solvent toxicity of

hydrocarbons. Microbiol. Rev. 59: 201-222.

Singh, S. K., S. K. Singh, V. R. Tripathi, S. K. Khare, and S. K. Garg. 2011. A

novel psychrotrophic, solvent tolerant Pseudomonas putida SKG-1 and solvent

stability of its psychro-thermoalkalistable protease. Process Biochemistry, In Press,

Accepted Manuscript, Available online 26 March 2011.

Sinha, N. and T. Satyanarayana. 1991. Alkaline protease production by

thermophilic Bacillus licheniformis. Ind. J Microbiol. 31: 425–430.

Smallwood, I. M. 1996. Handbook of Organic Solvent Properties, first ed., Arnold,

London.

Smith, M. R. 1990. The biodegradation of aromatic hydrocarbons by bacteria.

Biodegradation. 1:191-206.

Smith, M. R. 1994. The physiology of aromatic hydrocarbon degrading bacteria. In:

Ratledge, C. (ed) Biochemistry of Microbial Degradation. Kluwer, Dordrecht.

Soni, K., and D. Madamwar. 2000. Ester synthesis by lipase immobilized on silica

and microemulsion based organogels (MBGs). Process Biochem. 36: 607–611.

Sonnleitner, B. 1983. In: Advances in Biochemical engineering/Biotechnology

(Fiechter A ed.) Springer-verlag. p. 69.

Spies et al. 1996. Proceedings of the 1993 Exxon Valdez Oil Spill Symposium,

American Fisheries Society, Bethesda, Maryland.

Page 23: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9157/11/... · Optimization of physical factors affecting the production of thermo-stable organic solvent-tolerant

References

Ph.D. Thesis of Shah Kunal Nareshkumar [1091] Page 184

Srikumar, R., X. Z. Li, and K. Poole. 1997. Inner membrane efflux components are

responsible for beta-lactum specificity of multidrug efflux pumps in Pseudomonas

aeruginosa. J. Bacteriol. 179: 7875–7881.

Stinson, S. C. 1998. Counting on chiral drugs. Chem. Eng. News. 76: 83–96.

Stoner, M. R., D. A. Douglas, P. J. Gualfetti, T. Becker, M. C. Manning, J. F.

Carpenter, and T. W. Randolph. 2004. Protease autolysis in heavy-duty liquid

detergent formulations: effects of thermodynamic stabilizers and protease inhibitors.

Enzyme Microb. Technol. 34: 114–125.

Strongin, A.Y., L. S. Izotova, Z. T. Abramov, D. I. Gorodetsky, L. M. Ermakova,

L. A. Baratova, et al. 1978. Intracellular serine protease of Bacillus subtilis:

sequence homology with extracellular subtilisins. J. Bacteriol. 133: 1401-1411.

Sulong, M. R., R. N. Z. R. A. Rahman, A. B. Salleh, M. Basri. 2006. A novel

organic solvent tolerant lipase from Bacillus sphaericus 205y: Extracellular

expression of a novel OST-lipase gene. Protein Expr. Purif. 49: 190-195.

Sun, W., S. Xie, C. Luo, and A. M. Cupples. 2010. Direct link between toluene

degradation in contaminated-site microcosms and a Polaromonas strain. Appl.

Environ. Microb. 76: 956-959.

Takahashi K., A. Ajima, T. Yoshimoto, and Y. Inada. 1984. Polyethylene glycol-

modified enzymes trap water on their surface and exert enzymic activity in organic

solvents. Biotechnol. Lett. 6:765–770.

Takii, Y., N. Kuriyama, and Y. Suzuki. 1990. Alkaline serine protease produced

from citric acid by Bacillus alcalophilus subsp. halodurans KP 1239. Appl.

Microbiol. Biotechnol. 34: 57–62.

Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular

Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:

1596-1599.

Tamura, K., M. Nei, and S. Kumar. 2004. Prospects for inferring very large

phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. (USA) 101:

11030-11035.

Page 24: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9157/11/... · Optimization of physical factors affecting the production of thermo-stable organic solvent-tolerant

References

Ph.D. Thesis of Shah Kunal Nareshkumar [1091] Page 185

Tang, X. Y., Y. Pan, S. Li, and B. F. He. 2008. Screening and isolation of an organic

solvent-tolerant bacterium for high-yield production of organic solvent-stable

protease. Bioresour. Technol. 99: 7388-7392.

Thumar, J. T., and S. P. Singh. 2009. Organic solvent tolerance of an alkaline

protease from salt-tolerant alkaliphilic Streptomyces clavuligerus strain Mit-1. J. Ind.

Microbiol. Biotechnol. 36: 211–218.

Torres, S., A. Pandey, G. R. Castro. 2011. Organic solvent adaptation of Gram

positive bacteria: Applications and biotechnological potentials Biotechnology

Advances, In Press, Uncorrected Proof, Available online 12 April 2011.

Towatana, N.H., A. Painupong, and P. Suntinanalert. 1999. Purification and

characterization of an extracellular protease from alkaliphilic and thermophilic

Bacillus sp. PS719. J Biosc Bioeng 1999;87:581–7.

Trautwein, K., S. Kühner, L. Wöhlbrand, T. Halder, K. Kuchta, A. Steinbüchel,

and R. Rabus. 2008. Solvent stress response of the denitrifying bacterium

―Aromatoleum aromaticum‖ strain EbN1. Appl. Environ. Microbiol. 74: 2267-2274.

Tsukagoshi, N., and R. Aono. 2000. Entry into and release of solvents by escherichia

coli in an organic-aqueous two-liquid-phase system and substrate specificity of the

AcrAB-TolC solvent-extruding pump. J. Bacteriol. 182: 4803-4810.

Ulrich, A. C., and E. A. Edwards. 2003. Physiological and molecular

characterization of anaerobic benzene-degrading mixed cultures. Environ. Microbiol.

5:92–102.

UNESCO. 2004. Impacts and challenges of a large coastal industry. Alang-Sosiya

Ship-Breaking Yard, Gujarat, India. Coastal region and small island papers 17,

UNESCO, Paris, 65 pp.

Uttatree, S., P. Winayanuwattikun, and J. Charoenpanich. 2010. Isolation and

characterization of a novel thermophilic-organic solvent stable lipase from

Acinetobacter baylyi. Appl. Biochem. Biotechnol. 162: 1362–1376.

Uttatree, S., P. Winayanuwattikun, and J. Charoenpanich. 2010. Isolation and

characterization of a novel thermophilic-organic solvent stable lipase from

Acinetobacter baylyi. Appl. Biochem. Biotechnol. 162: 1362–1376.

Page 25: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9157/11/... · Optimization of physical factors affecting the production of thermo-stable organic solvent-tolerant

References

Ph.D. Thesis of Shah Kunal Nareshkumar [1091] Page 186

Van Sonsbeek, H. M., H. H. Beeftink, and J. Tramper. 1993. Two-liquidphase

bioreactors. Enzyme Microb. Technol. 15:722–729.

Venkateswarlu, K., and N. Sethunathan. 1985. Enhanced degradation of carbofuran

by Pseudomonas cepacia and Nocardia sp. in the presence of growth factors. Plant

Soil. 84: 445–449.

Venosa and Zhu. 2005. In: Bioremediation of Aquatic and Terrestrial Ecosystems.

Edited by Fingerman and Nagabhushanam, Science Pub., UK.

Wang, L., N. Qiao, F. Sun, and Z. Shao. 2008. Isolation, gene detection and solvent

tolerance of benzene, toluene and xylene degrading bacteria from nearshore surface

water and Pacific Ocean sediment. Extremophiles. 12: 335–342.

Wangikar, P. P., P. C. Michels, D. S. Clark, and J. S. Dordick. 1997. J. Am.

Chem. Soc. 119: 70-76.

Weber, F. J. and J. A. M. de Bont. 1996. Adaptation mechanisms of

microorganisms to the toxic effects of organic solvents on membranes. Biochim.

Biophys. Acta. 1286: 225–245.

Weelink, S. A. B., N. C. G. Tan, H. ten Broeke, C. van den Kieboom, W. van

Doesburg, A. A. M. Langenhoff, J. Gerritse, H. Junca, and A. J. M. Stams. 2008.

Isolation and characterization of Alicycliphilus denitrificans strain BC, which grows

on benzene with chlorate as the electron acceptor. Appl. Environ. Microbiol. 74:

6672-6681.

Weisburg, W.G., S. M. Barns, D. A. Pelletier, D. J. Lane. 1991. 16S Ribosomal

DNA amplification for phlogenetic study. J. Bacteriol. 173: 697-703.

Whited, G. M., W. R. McCombie, L. D. Kwart, and D. T. Gibson. 1986.

Identification of cis-diols as intermediates in the oxidation of aromatic acids by a

strain of Pseudomonas putida that contains a TOL plasmid. J. Bacteriol. 166:1028–

1039.

Winkler, U.K., and M. Stuckmann. 1979. Glycogen, hyaluronate and some other

polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. J.

Bacteriol. 138: 663–670.

Page 26: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9157/11/... · Optimization of physical factors affecting the production of thermo-stable organic solvent-tolerant

References

Ph.D. Thesis of Shah Kunal Nareshkumar [1091] Page 187

Xu, J., M. Jiang, H. Sun, and B. He. 2010. An organic solvent-stable protease from

organic solvent-tolerant Bacillus cereus WQ9-2: Purification, biochemical properties,

and potential application in peptide synthesis. Bioresour. Technol. 101: 7991-7994.

Yang, L., J. S. Dordick, and S. Garde. 2004. Hydration of enzyme in nonaqueous

media is consistent with solvent dependence of its activity. J. Biophys. 87: 812–821.

Zahir, Z., K. D. Seed, and J. J. Dennis. 2006. Isolation and characrterization of

novel organic solvent-tolerant bacteria. Extremophiles. 10: 129-138.

Zaks, A., and A. M. Klibanov. 1984. Enzymatic catalysis in organic media at 100

°C. Science. 224:1249–1251.

Zaks, A., and A. M. Klibanov. 1985. Enzyme-catalyzed processes in organic

solvents. Proc. Natl. Acad. Sci. USA. 82: 3192-3196.

Zaks, A., and D. R. Dodds, 1997. Application of biocatalysis and biotransformations

to the synthesis of pharmaceuticals. Drug Disc. Today. 2: 513–531.

Zgurskaya, H. I., and H. Nikaido. 2000. Multidrug resistance mechanisms: drug

efflux across two membranes. Mol. Microbiol. 37: 219–225.

Zhang, A., R. Gao, N. Diao, G. Xie, G. Gao, and S. Cao. 2009. Cloning, expression

and characterization of an organic solvent tolerant lipase from Pseudomonas

fluorescens JCM5963. J. Mol. Catal. B Enzym. 56: 78-84.

Zhao, L., J. Xu, J. Zhao, J. Pan, and Z. Wang. 2008. Biochemical properties and

potential applications of an organic solvent-tolerant lipase isolated from Serratia

marcescens ECU1010. Process Biochem. 43: 626-633.